

Shaping the Future

Privileged & Confidential

Groundwater Contamination Assessment Fiskville Training College 4549 Geelong-Ballan Road, Fiskville, Vic

Job No. 212163.2 Prepared for Ashurst March 2014

Shaping the Future

DOCUMENT CONTROL

© Copyright 2014

Cardno Lane Piper Pty Ltd

(ACN 120 109 935)

Bldg 2, 154 Highbury Road,

Burwood Vic 3125

Taly (02) 0888 0400 Few (02) 0808 24

Tel: (03) 9888 0100 Fax: (03) 9808 3511 www.lanepiper.com.au www.cardno.com.au This report is prepared solely for the use of Ashurst (the Client) to whom this report is addressed and must not be reproduced in whole or part or included in any other document without our express permission in writing. No responsibility or liability to any third party is accepted for any damages arising out of the use of this report by any third party.

Report Title:	Privileged & Confidential Groundwater Contamination Assessment Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Vic		
Doc. Ref:	212163.2Report01.7		
Client:	Ashurst		
Report Date:	19 March 2014		
Signatures:	Prepared By: Authorised By:		
	David Louwrens BSc Geol, MEnv Project Manager/Associate Hydrogeologist	Anthony Lane CEnvP Senior Principal Hydrogeologist	

Documents Distribution

No. of Copies	Туре	Recipient Name	Position & Company
1	Electronic	Rob Jamieson	Partner, Ashurst
1	Electronic	File 212163.2	Cardno Lane Piper Pty Ltd

GROUNDWATER CONTAMINATION ASSESSMENT

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Vic

EXECUTIVE SUMMARY

Cardno Lane Piper Pty Ltd was engaged by Ashurst ("the Client"), on behalf of the Country Fire Authority ("CFA"), to conduct a Groundwater Contamination Assessment at the CFA Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Vic.

Objectives

The purpose of this assessment is to provide preliminary advice on the groundwater contamination status of the site and, in particular, to address recommendations in the report of the Independent Fiskville Investigation¹ (IFI). Recommendations 1 and 2 in the IFI report state that:

- 1. Soil and groundwater quality be assessed in areas where fuel storage tanks are currently located or have been located in the past, both above and below ground.
- 2. Groundwater investigations be undertaken in the vicinity of the historical flammable liquids pad, the fuel mixing area, the historical foam training pits, the prop storage area, and the area used to rehabilitate contaminated soils in 1998.

It is noted that soil quality at the site has been separately assessed and is presented in Cardno Lane Piper's "Targeted Soil Assessment" report (Cardno Lane Piper, 2014b).

The objectives of this assessment were as follows:

- 1. Assess the hydrogeological conditions at the site as a basis for understanding the occurrence and flow of groundwater and its vulnerability to contamination.
- 2. Identify the past or current activities at the site with potential to cause contamination of groundwater at the site.
- 3. Assess the groundwater for contaminants at Fiskville in the areas defined in the IFI report.
- 4. Provide a preliminary assessment of the feasibility for obtaining a supply of water from groundwater sources for fire fighter training at Fiskville.
- 5. Conduct the work to a standard which will enable it to be used as part of the assessment required by an EPA Auditor.

Scope of Work

Site History Review and Planning included a review of past groundwater investigations and a desktop hydrogeological assessment, as follows:

¹ Report prepared by Prof. Robert Joy (June 2012)

212163.2Report01.7

- The topography and surface water drainage of the site were defined, as well as the proximity to the nearest surface water body and any associated potentially sensitive aquatic ecosystems.
- The location of nearby sensitive environments and receptors such as residential, child-care facilities, primary schools, wetlands or streams were identified.
- A review of the regional and local hydrogeology from published sources was completed.
- Site infrastructure and potential sources of contamination were assessed, and features are shown in the Site Layout Plan (Figure 2, Appendix A).

Regional Groundwater Investigation and Characterisation of Hydrogeology (installation of groundwater bores in areas believed not to be contaminated by site activities) and Targeted Groundwater Investigation (installation of groundwater bores to investigate potential groundwater contamination in targeted areas that are listed in the IFI report):

- Cardno Lane Piper installed a total of eleven groundwater bores at the site. Figure 3,
 Appendix A, shows all existing and former groundwater bores that were installed at the site.
- Six bores were installed in the Newer Volcanics basalt. Of these, five were either dry or contained minimal groundwater, with only bore GW101 in the north-east of the site recording significant groundwater inflow.
- Two bores were installed in the Werribee Formation to depths of up to 60 m, and no groundwater was encountered. Bore depths of greater than 80 m in the Lower Werribee Formation may be required to assess the first regional aquifer beneath the site.
- Three bores were installed in perched groundwater at shallow depths (near Dams 1 & 2 and the FL PAD). The perched groundwater occurs in porous scoria fill which was imported to the site to construct the southern PAD area including Dam 2. This fill has been saturated by rainfall, water from fire fighter training activities and potentially by leakage from Dams 1 and 2 (dams used to store water discharged from the FL PAD).
- Sampling and analysis of groundwater samples was conducted for a broad range of analytes. This included three existing groundwater bores that were installed at the site during previous investigations.

Analysis & Reporting:

- Prepared a Conceptual Hydrogeological Model (CHM) as the basis for the assessment of potential impacts on the groundwater levels and quality.
- Developed a Conceptual Site Model of contamination occurrence based on the CHM, taking into account the history of potentially contaminating activities at the site and the hydrogeology.
- Assessed the impact of contamination on groundwater quality and beneficial uses.
- Reported the findings and recommendations relevant to the objectives of the assessment in a format consistent with EPA Publication 668 guidance.

Conclusions

Hydrogeological Understanding of the Site

An understanding of the hydrogeology of any investigation site, in its regional context, is fundamental to the investigation of groundwater contamination. The initial desktop assessment identified the shallow geological unit (Newer Volcanics) as the likely regional water table aquifer at the site. However, this unit had minimal water and is considered to be unsaturated, except in the north-eastern corner of the site. Deeper drilling to about 60 m in the Werribee Formation failed to find groundwater. Some groundwater was found in shallow

bores in the vicinity of Dam 2 and the FL PAD, and has been interpreted to be 'perched groundwater' in man-made fill, and not representative of the natural groundwater in aquifers used by farmers and others for a range of purposes in the region. For this reason, this perched groundwater may not need to be protected under *SEPP Groundwaters of Victoria*.

The interpreted hydrogeology indicates a low risk of groundwater contamination by sources at the site surface, or the subsequent contamination of surface waters by discharging groundwater, for the following reasons:

- The groundwater is very deep (more than 60 m) and is protected by overlying low permeability soils. This minimises the likelihood of seepage of contaminants to depths where the first aquifer is expected.
- The groundwater is classified as Segment B under SEPP Groundwaters of Victoria, based on published information. The perched water is 'fresh' and may be classified as Segment A, but should not be considered protected under the SEPP, given its artificial nature and limited extent.
- The small number of groundwater bore users near the Fiskville site indicates a low risk of impact on users of groundwater bores, in the unlikely event of the groundwater becoming contaminated at the site.
- The groundwater is too deep to discharge to the nearest surface water body (Lake Fiskville
 in the west of the site). The nearest possible point of regional groundwater discharge is
 expected to be Yaloak Creek to the east and south-east of the site. In the unlikely event
 that contaminants such as petroleum hydrocarbons entered the groundwater beneath the
 site, they would biodegrade during migration over such a long travel distance.
- The hydrogeology is sufficiently well understood and no further groundwater investigations are justified at this time. Further work may be required by an EPA Environmental Auditor recently engaged to comply with an EPA Clean Up Notice.

Potential Sources of Contamination & Risks

The sources of potential contamination set out in the IFI Report were reviewed in detail by the Cardno Lane Piper team, and reported separately in the Site History Review (Cardno Lane Piper, 2014a). In summary, this study concluded that there are currently, and historically, several potential sources of contamination of both soil and groundwater at the site, as listed in Section 3 of this report.

The subsequent investigation of soil contamination presented in the Cardno Lane Piper report titled "Targeted Soil Assessment" (Cardno Lane Piper, 2014b) identified very limited areas of contamination, including surface soil contaminated with petroleum hydrocarbons and Perfluorinated Compounds (PFCs) near the FL PAD, and one isolated occurrence of petroleum hydrocarbons in a former UST pit, now backfilled. Neither of these would be characterised as a significant source of these contaminants to the groundwater. It is noted that PFCs are foam chemicals that are used in fire training activities, and historically included Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA).

It is also noted that the soil in the FL PAD area was contaminated by petroleum hydrocarbons before being remediated in 1998. Up to 5,400 m³ of soil was excavated from the FL PAD area and bio-remediated in the Soil Composting Area. This represents a significant reduction of a potential source of groundwater contamination in this area of the site.

It is concluded that there is a low risk of contaminated groundwater from these sources impacting the natural groundwater systems at the site and its vicinity.

Groundwater Contamination Observed

Only one of the groundwater bores monitored at the site is considered to be representative of the natural water table aquifer of the region (which most often occurs in the Newer Volcanics). A number of water samples were collected from bores which contained minor seepages. The seepage water was generally insufficient to obtain a representative sample from which reliable water quality data could be obtained.

Contamination was reported in perched water in imported fill in the vicinity of Dam 2 and the FL PAD. This included concentrations of PFCs reported in two shallow bores, as discussed in Section 6.3. The contaminated perched water is of no significance as 'groundwater contamination', as the water is limited to this area and would not be extracted for any use. (A common interpretation of *SEPP Groundwaters of Victoria* would indicate that this water would not be protected under the policy due to its mode of occurrence.) However, the water requires management for two reasons: a) it has the potential to seep towards the nearby stormwater drain, and b) the perched water is in hydraulic connection with the water in Dams 1 and 2, which are similarly contaminated and discharge to Lake Fiskville, and then potentially off-site. The perched water is proposed to be remediated together with the contents of the dams, and the proposed further investigations will contribute to the design of this remedial response.

The contaminants found in the perched water do not present a vapour contamination risk and therefore do not present a health risk to site occupants via that pathway. Further, the low concentration of petroleum hydrocarbons reported in one of the bores is also not a vapour risk.

In summary, it is considered highly unlikely that the fire fighter training activities at the site have resulted in any significant contamination of the regional aquifers deep beneath the site. Groundwater contamination is limited to perched water near Dam 2 and the FL PAD, and presents no significant risk to site occupants.

Water Supply from Groundwater

The assessment has shown that there is no substantial aquifer with permanent water within 60 m of the surface. The desktop study has shown that the most prospective water supply aquifer in the region is the Werribee Formation Aquifer. However, this aquifer contains relatively saline water and may not be suitable for fire fighter training activities (if not treated by reverse osmosis) due to the need to discharge used water to a fresh water creek.

It is possible that the deeper units of the Werribee Formation Aquifer could yield a useful water supply. However, deep (200 m) exploratory drilling would be required to assess this prospect. Given the high cost of such exploration and the likelihood of obtaining saline water, such expenditure is not proposed at this time. In the event that a Reverse Osmosis water treatment plant is installed at the site for other reasons, then the feasibility of using deep groundwater as a water supply for fire fighter training should be considered.

Recommendations

Based on the conclusions of this investigation:

- 1. Further work is recommended to investigate the extent of PFC contamination in the shallow, perched water in the fill near Dams 1 and 2 and the FL PAD, and its potential to seep to the stormwater drainage system.
- An assessment of the feasibility of remediating PFC contamination in the perched water should be completed after the further investigation of the area, including hydraulic testing of the fill.

- 3. It is possible that some of the new bores installed during 2012 may 'gain' groundwater over time. During the next monitoring round, it is recommended that all bores should gauged for water level and, if sufficient water is present, the bores should be developed and sampled to establish a scope for the investigation of regional groundwater.
- 4. While further investigation of the regional aquifers is not required at this time, the EPA Environmental Auditor, engaged recently to audit the site in compliance with an EPA Clean Up Notice, should be consulted to ascertain his requirements for any further investigations.
- 5. In the event that a Reverse Osmosis water treatment plant is installed at the site, the feasibility of using the plant to treat the deep saline groundwater as a water supply for fire fighter training should be considered.

Limitations

While this Executive Summary has endeavoured to accurately summarise the key points of the Report, the latter shall take precedence and the Executive Summary must be read in conjunction with the full report (Cardno Lane Piper document ref. 212163.2Report01.7.docx).

While this report has been undertaken in accordance with the current industry guidelines and practices, there may be some limitations on the meaning and use of this report. The reader is advised to read this report in conjunction with the attached document *About Site Environmental Assessment Reports* (Appendix I).

Cardno Lane Piper Pty Ltd

March 2014

GROUNDWATER CONTAMINATION ASSESSMENT

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Vic

Table of Contents

		ENT CONTROL	
EXE	ECUT	IVE SUMMARY	. [
1	INTR	ODUCTION	1
	1.1	Background	. 1
	1.2	Purpose & Objectives	. 1
	1.3	Scope of Assessment	
	1.4	Standard of Assessment & Limitations	
	1.5	Assessment Timeline	
2	SITE	DESCRIPTION & SETTING	
	2.1	Site Definition and Description	
	2.2	Surrounding Land Uses	
	2.3	Site Use & Infrastructure	
		Previous Groundwater Assessment – Coffey 1996	
3	POT	ENTIAL SOURCES OF CONTAMINATION	7
4		INVESTIGATIONS & RESULTS	
•	4.1	Drilling and Bore Construction	
	4.2	Discussion of Bore Installation Results	
	4.3	Groundwater Monitoring Event	
	1.0	4.3.1 Groundwater Levels	
		4.3.2 Groundwater Sampling	
		4.3.3 Field Physicochemical Parameters	
	4.4	Laboratory Testing – Groundwater	
	4.5	Quality Control / Quality Assurance	
5		CEPTUAL HYDROGEOLOGICAL MODEL	
	5.1	Geographic Setting and Climate	
	5.2	Geology and Aquifers	
	·	5.2.1 Regional and Local Geology	
		5.2.2 Regional and Local Aquifers	
	5.3	Groundwater Occurrence and Flow Systems	
		5.3.1 Groundwater Levels and Flow Direction	
		5.3.2 Groundwater Flow Systems	22
		5.3.3 Local Seepage from Perched Aquifer	
	5.4	Groundwater Quality & Beneficial Uses	
		5.4.1 Groundwater Salinity	
		5.4.2 Groundwater Major Ion Chemistry	
		5.4.3 Protected Beneficial Uses of Groundwater	
_		Groundwater Resource Utilisation	
6		UNDWATER CONTAMINATION ASSESSMENT	
	6.1	Interpretation of Laboratory Results	
	6.2	Interpretation against Beneficial Uses of Groundwater	
		6.2.1 Maintenance of Aquatic Ecosystems	
		6.2.2 Potable Water Supply	
		6.2.3 Potable Mineral Water	
		6.2.4 Agriculture, Parks & Gardens	
		6.2.5 Stock Watering	J١

	6	6.2.6	Industrial Water Use	32
	6	5.2.7	· J · · · · · · · · · · · · · · · · · ·	
	-	5.2.8	Buildings & Structures	
			to Groundwater	
7			NTARY WATER SUPPLY	
8			ONS	
			geological Understanding of the Site	
			ial Sources of Contamination and Risks	
			dwater Contamination Observed	
			Supply from Groundwater	
9			NDATIONS	
10	REFE	RENC	ES	40
			Text Tables	
Tak	olo 1 1:	Cito A	Assessment Timeline	2
			dentification Details	
			unding Land Uses	
Tak) C 4-1.	Doro	ndwater Monitoring Bore Installation Summary Construction Details	10 11
			Survey Details ndwater Elevation (20 September 2012)	
			· · · · · · · · · · · · · · · · · · ·	
			ndwater Monitoring Events Summaryndwater Physicochemical Parameters	
			atory Testing Program	
			cted Beneficial Uses of Groundwater Segments	
			by Registered Groundwater Bores	
			nary of Groundwater Results Above Criteria	
ı	<i>5</i> 10 0 1.	Cumin	mary of organiamator resource risove oritoria	
			Text Figures	
Fig	ure 2-1	: Aeria	al Photo of CFA Fiskville Site	4
Fig	ure 4-1	: Drillir	ng of Groundwater Bore GW102	8
			ective Cover on Bore GW104	
Fig	ure 4-3	: Prote	ective Cover on Bore GW107	10
Fig	ure 5-1	: Moor	rabool Reservoir Weather Station Data	19
Fig	ure 5-2	: Regi	onal Geology of Fiskville Area	20
			A consequently a second	
			Appendices	
_	-	к А		9 Pages
_	ures			
_			ocality Plan	
			erial Photograph	
_			dwater Bore Locations	
			dwater Elevation Plan	
			raphic Plan	
			nal Geology Plan	
_		_	gical Section A-A'	
			Diagram	
Fig	ure 9: S	Stiff Dia	agrams	

Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I

LIST OF ABBREVIATIONS AND UNITS

Chemical Names

BTEX Benzene, Toluene, Ethylbenzene & Xylenes (subset of MAH)

CHC Chlorinated Hydrocarbons

MAH Monocyclic Aromatic Hydrocarbons

OCP OrganoChlorine Pesticides
OPP OrganoPhosphate Pesticides

PAHs Polycyclic Aromatic Hydrocarbons

PCBs PolyChlorinated Biphenyls
PHC Petroleum Hydrocarbons

SVOC Semi-Volatile Organic Compounds

TDS Total Dissolved Solids (salinity of water)

TOC Total Organic Carbon

TPH Total Petroleum Hydrocarbons

TRH Total Recoverable Hydrocarbons (= TPH)

VOC Volatile Organic Compounds

VHC Volatile Halogenated Compounds

Technical Terms

AGL Above Ground Level

AHD Australian Height Datum

AMG Australian Map Grid

ANZECC Australian and New Zealand Environment and Conservation Council

AST Aboveground Storage Tank

BDL Below Detection Limit
BGL Below Ground Level
COC Chain of Custody

CoEA Certificate of Environmental Audit
CoPC Chemicals of Potential Concern
DNAPL Dense Non-Aqueous Phase Liquid

DO Dissolved Oxygen
EC Electrical Conductivity

EILs Environmental Investigation Levels
EPA Environmental Protection Authority
ESA Environmental Site Assessment

GCMS Gas Chromatograph - Mass Spectrometer

GDB Groundwater Database (Department of Natural Resources and Environment)

GME Groundwater Monitoring Event
HILs Health Investigation Levels

LNAPL Light Non-Aqueous Phase Liquid

LOR Limit of Reporting N/A Not Applicable

NAPL Non-Aqueous Phase Liquid

NEPM National Environmental Protection Measure
PID Photo-ionisation detector (measures in ppm)

PQL Practical Quantitation Limit
PSH Phase Separated Hydrocarbon

QA Quality Assurance
QC Quality Control
RL Reduced Level

RPD Relative Percentage Difference
SoEA Statement of Environmental Audit

TIT Triple Interceptor Trap

UCL Upper confidence Limit ("95% UCL of the mean" is a value for the mean

concentration from sampling which has only a 5% chance of being greater than the

true mean value.)

UST Underground Storage Tank

Units

ha Hectares

mBGS Metres Below Ground Surface

mg/kg Milligram per Kilogram (approximately equivalent to ppm)

mg/L Milligram per Litre

mTOC Metres below Top of Casing

ppb Part per Billion ppm Parts per Million

μg/kg Microgram per Kilogram (approximately equivalent to ppb)

μg/L Microgram per Litre

μS/cm Micro Siemens per Centimetre (Electrical Conductivity - Water)

Site Specific

6:2 FTs 6:2 Fluorotelomer Sulfonate

CFA Country Fire Authority

FL PAD Flammable Liquids Practical Area Drill

IFI Independent Fiskville Investigation (Prof. Rob Joy)

PAD Practical Area Drills

PFC Perfluorinated Compounds
PFOS Perfluorooctane Sulfonate
PFOA Perfluorooctanoic Acid
RTG Regional Training Ground

GROUNDWATER CONTAMINATION ASSESSMENT

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Vic

1 INTRODUCTION

1.1 Background

Cardno Lane Piper Pty Ltd was engaged by Ashurst ("the Client") on behalf of the Country Fire Authority ("CFA"), to conduct a Groundwater Contamination Assessment at the CFA Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Vic. The location and features of the site are shown in Figures 1 and 2 (Appendix A).

Cardno Lane Piper developed a work program to respond to recommendations in the Report of the Independent Fiskville Investigation² (IFI) in relation to site contamination, and other items considered to be strategic or prudent.

Following commencement of this work, EPA notified the CFA that a Clean Up Notice would be issued for the site and this would include an Environmental Audit by an EPA-appointed Environmental Auditor. This notice was issued by EPA on 22 January 2013. This report has been written in anticipation of involvement by an EPA Auditor.

1.2 Purpose & Objectives

The purpose of this assessment is to provide the Client with preliminary advice on the contamination status of the site and, in particular, to address Recommendations 1 and 2 in the IFI report, which state:

- Soil and groundwater quality be assessed in areas where fuel storage tanks are currently located or have been located in the past, both above and below ground.
- 2. Groundwater investigations be undertaken in the vicinity of: the historical flammable liquids pad, the fuel mixing area, the historical foam training pits, the prop storage area, and the area used to rehabilitate contaminated soils in 1998.

The objectives of this assessment were as follows:

- 1. Assess the hydrogeological conditions at the site as a basis for understanding the occurrence and flow of groundwater and its vulnerability to contamination.
- 2. Identify the past or current activities at the site with potential to cause contamination of groundwater at the site.
- 3. Assess the groundwater for contaminants at Fiskville in the areas defined in the IFI report.
- 4. Provide a preliminary assessment of the feasibility for obtaining a supply of water from groundwater sources for fire fighter training at Fiskville.
- 5. Conduct the work to a standard which will enable it to be used as part of the assessment required by an EPA Auditor.

² Report prepared by Robert Joy (June 2012)

212163.2Report01.7

1.3 Scope of Assessment

This investigation included the following work:

- Site History Review & Planning including a review of past groundwater investigations and a desktop Hydrogeological Assessment.
- Regional Groundwater Investigation & Characterisation of Hydrogeology including the installation of groundwater bores in parts of the site that are believed not to have been contaminated by site activities.
- Targeted Groundwater Investigation including the installation of groundwater bores to investigate potential groundwater contamination in targeted areas listed in the IFI report, including:
 - ASTs and USTs (former and current)
 - Flammable Liquid PAD
 - Fuel mixing area
 - Foam training pits
 - Props storage
 - Soil remediation area
 - Drum fire area
 - Landfill areas (south-west of site)
 - Drum burial areas

As a result of the absence of groundwater during the investigation, it was decided not to install seven of the proposed groundwater bores. These included bores targeting drum burial, soil remediation, landfill and former UST areas, and one regional hydrogeology bore. This is discussed in more detail in Section 4.2.

Cardno Lane Piper carried out the following tasks in order to satisfy the purpose and objectives of this assessment:

Define the Site, Features & Surrounds

- 1. Defined the topography and surface water drainage of the site and its proximity to the nearest surface water body and any associated potentially sensitive aquatic ecosystems.
- 2. Identified the location of nearby sensitive environments and receptors such as residential, child-care facilities, primary schools, wetlands or streams.

Hydrogeology & Groundwater Resource Use

3. Reviewed the regional and local hydrogeology to identify likely site soil and rock types, aquifers, groundwater occurrence, expected groundwater flow direction, quality and resource value.

Intrusive Site Investigation Sampling & Testing

- 4. Implemented a comprehensive work plan, including laboratory analysis of field quality control (QC) samples.
- 5. Conducted an intrusive investigation of groundwater conditions at the site by sampling at selected locations as set out in the following sections of this report, including the following general scope of work:
 - Drilling and installation of 11 groundwater monitoring bores
 - Survey of groundwater bores by a licensed surveyor

6. Conducted testing of groundwater samples in for a broad range of analytes (using a NATA accredited laboratory).

Analysis & Reporting

- 7. A Conceptual Hydrogeological Model (CHM) was prepared (based on the requirements of EPA Publication 668) as the basis for the assessment of the impacts on the groundwater levels and quality.
- 8. A Conceptual Site Model was developed based on the CHM and taking into account the history of potentially contaminating activities at the site.
- 9. An Assessment of the impact of contamination on groundwater quality and beneficial uses was undertaken.
- 10. This report was prepared to provide findings and recommendations relevant to the objectives of the assessment.

1.4 Standard of Assessment & Limitations

This assessment has been undertaken in accordance with the current "industry standards" for an environmental site assessment (ESA) for the purpose and objectives and scope identified in this report. These standards are set out in:

- National Environment Protection [Assessment of Site Contamination] Measure (NEPM),
 December 1999, National Environment Protection Council (NEPC)
- Groundwater Sampling Guidelines. EPA Publication 669, April 2000
- AS4482.1- 2005: Guide to the sampling and investigation of potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds. Standards Australia (2005).
- Hydrogeological Assessment (Groundwater Quality) Guidelines, EPA Publication 668
 September 2006

This assessment report is not a geotechnical report (and the bore logs or test pit logs may not be sufficient as the basis for geotechnical advice).

An overview of environmental site assessments and their limitations is included in Appendix I.

1.5 Assessment Timeline

The key milestones during this assessment are summarised in Table 1-1

Table 1-1: Site Assessment Timeline

Date	Activity/Milestone
19 July 2012	Cardno Lane Piper engaged by the Client
6 August 2012	Conducted site inspection
22 August to 11 September 2012	Installed groundwater bores
23 August 2012	Surveyed bore locations and levels
20 September 2012	Conducted groundwater sampling Surveyed bore locations and levels
20 March 2014	Issued revised final report

2 SITE DESCRIPTION & SETTING

2.1 Site Definition and Description

The CFA Fiskville site is rectangular in shape and occupies an area of approximately 150 ha, as shown in Figure 2-1. CFA site uses include the Practical Area Drill (PAD) training facility (also known as the Operational Area), administration, accommodation, amenities and recreational areas. The north-western, southern and south-eastern portions of the site are pastures which are leased to local farmers for livestock grazing. An airstrip and hanger are present near the central northern boundary of the site. Tree 'plantations' are located in several parts of the site, including a large area to the south of the airstrip and a smaller area in the south-east part of the site. Small wooded areas are also present near the residential housing area in the south-western part of the site.

The site is mostly flat-lying in the central and eastern parts, but is more undulating in the western part where the land slopes down to Beremboke Creek and Lake Fiskville. The site topography is described in more detail in Section 5.

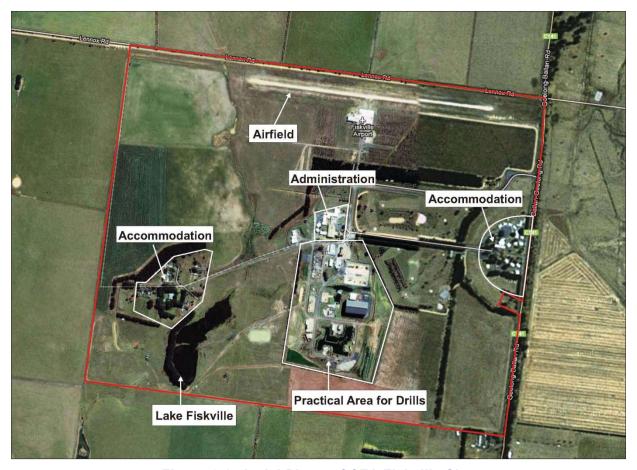


Figure 2-1: Aerial Photo of CFA Fiskville Site

Table 2-1 summarises the key details defining the site. Title information and property report documents are included in Appendix F. The location of the site is shown in Figure 1, Appendix A.

Site Address

Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Vic

Site Area

Approximately 150.3 ha

Lots 1, 2, 3 and 4 on Title Plan 845669K Volume 09503, Folio 693

Municipality

Parish of Yaloak

Current Site Owner

Country Fire Authority

Table 2-1: Site Identification Details

2.2 Surrounding Land Uses

Planning Zone

The surrounding land uses and sensitive receptors are outlined in Table 2-2.

Farming Zone

Direction Land Use or Activity North Lennox Lane, then farm land (livestock grazing) to the north Farm land (livestock grazing) Beremboke Creek is present in the western part of the site (Beremboke Creek changes name to Swamp Gully further to the north and merges West with Eclipse Creek to the south) Lake Fiskville, near the south-western corner of the site, is a surface water body along Beremboke Creek Geelong-Ballan Road, then farm land (livestock grazing) to the east East Yaloak Creek is located approximately 250 m east of the site at its closest point South Farm land (livestock grazing)

Table 2-2: Surrounding Land Uses

2.3 Site Use & Infrastructure

The Fiskville site is the CFA's largest fire fighter training facility in Victoria. Site infrastructure and features are shown in Figure 2, Appendix A and include:

- Administration buildings and reception
- Teaching centre
- Accommodation and meals facilities (near eastern site boundary)
- Residential housing (south-western part of site)
- PAD (Operational Area) including fire fighting training facilities, fuel storage and props
- Workshop and storage facilities
- Amenities buildings
- VUT building
- Airstrip and hanger

- 4WD training area
- Water storages (Dams 1 to 4)
- Lake Fiskville
- Golf course
- Former landfill areas (south-western corner of site)
- Sewerage treatment plant
- Former Soil composting area

2.4 Previous Groundwater Assessment - Coffey 1996

A review of the documentation provided by CFA indicated that there has been one previous investigation which included a groundwater assessment. This was by Coffey Partners International Pty Ltd (Coffey) who prepared a report titled "Groundwater Monitoring Network Installation (1996)".

Of the eight bores installed by Coffey, three remain at the site, namely bores BH3, BH4 and BH5. The location of all former and existing groundwater bores are shown in Figure 3, Appendix A.

Areas targeted during the Coffey investigation included the following:

- Drum burial pit
- Sludge burial pit
- Underground storage tank (UST)
- Flammable liquid PAD (FL PAD)
- Fuel mixing areas
- Landfill
- Dam 1

Coffey installed four deep and four shallow groundwater bores at the site. The four deep bores (BH1 to BH4) were installed to depths ranging from 17 to 25 m depth in basalts of the Newer Volcanics. While all four bores were initially dry, bore BH2 later reported a groundwater level at a depth of 14.8 m below ground level. The four shallow bores (BH5 to BH8) were installed to depths ranging from 1.8 to 2.8 m to investigate the possible presence of perched groundwater associated with areas of known or suspected filling.

Groundwater sampling was conducted about two weeks after installation of the bores. All bores were dry, with the exception of deep bore BH2 and shallow bore BH5. Bore BH2 targeted the FL PAD, and bore BH5 targeted the suspected drum burial area near the airfield. Groundwater samples collected from these bores were tested for a range of analytes, including TPH, BTEX, eight metals and nitrate.

Bores BH2 and BH5 reported copper, nickel and zinc above ecological assessment criteria, with bore BH2 reporting an elevated zinc concentration of 0.13 mg/L. All other analytes were either below laboratory detection limits or below the relevant assessment criteria in both bores.

In summary, the investigation by Coffey in 1996 indicated a general absence of a regional water table aquifer to a depth of 25 m. Some perched groundwater was found potentially associated with disturbed ground where filling had occurred. The groundwater found at BH2 at 14.8 m may also be from seepage of perched groundwater, as no other groundwater was found. In the bores where groundwater was encountered, laboratory testing results did not report any significant contamination for the analytes tested.

3 POTENTIAL SOURCES OF CONTAMINATION

Past or current activities at the site with the potential to be sources of groundwater contamination are also those with potential to contaminate the soil. A site history review (Cardno Lane Piper, 2014a) has been undertaken by the Cardno Lane Piper team and reported under separate cover. In summary, this study concluded that there are several potential past or present sources of groundwater contamination at the site. These are listed below and their locations are shown in Figure 2, Appendix A.

The key features or facilities with potential as sources of contamination are:

- Storage of flammable liquids in drums and tanks in the storage areas (includes "props" storage and "drum fire" areas) west of the FL PAD
- Former FL PAD and "Foam Pits"
- Dams 1 & 2 containing contaminated water
- Soil remediation compost area
- Fire training props outside the FL PAD where flammable liquids were used
- Drum burial area
- Former Landfill 1 & 2
- Sewage treatment plant infiltration field
- Former underground fuel storage tank

The features listed above include the features identified in the IFI Report as requiring investigation for groundwater contamination which were described as:

- ASTs and USTs (former and current)
- Flammable Liquids PAD
- Fuel mixing area
- Foam training pits
- Props storage
- Soil remediation area
- Drum fire area
- Landfill areas (south-west of site)
- Drum burial areas

4 SITE INVESTIGATIONS & RESULTS

This section outlines the program of work to obtain the necessary groundwater data for the objectives of the study. It describes the drilling and bore construction program, as well as the groundwater level monitoring, sampling and laboratory testing. It also identifies the factual data obtained and validates the quality of the data.

The interpretation of results is discussed in Section 5, where the hydrogeology is explained, and in Section 6 where the contamination status of the groundwater is discussed.

Field work was conducted during the period 20 August to 20 September 2012 and included the following:

- Drilling, installation and development of groundwater monitoring bores (GW101 to GW111)
- Survey of bores for location and level
- Groundwater sampling from bores.

4.1 Drilling and Bore Construction

Prior to the commencement of drilling, Cardno Lane Piper obtained (from Southern Rural Water) a Bore Construction Licence (BCL) on behalf of the CFA, for the installation of groundwater monitoring bores at the site. The BCL is included in Appendix C. The drilling contractor, South Western Drilling Pty Ltd, provided two water bore drillers who are licensed for this work under the *Water Act* 1989. A photograph taken at the location of bore GW102, showing the type of drilling equipment, is presented as Figure 4-1.

Figure 4-1: Drilling of Groundwater Bore GW102

Bores GW101 to GW111 were installed from 22 August to 11 September 2012. These included five bores installed to assess the 'regional' or background conditions and six bores in the Operational Area. Groundwater bore locations are shown in Figure 3, Appendix A.

The bores were drilled using a hand-auger and/or solid flight auger from surface to depths ranging from 0.5 to 4.5 m, and using downhole hammer to depths of up to 31 m. Two bores were advanced below the base of the Newer Volcanics basalt into the Werribee Formation using the rotary mud drilling method to depths of up to 60 m, as described in Table 4-1. The geology encountered is described in Section 5.

Excess drill cuttings from bores installed in the Operational Area were stored in drums provided by Chemsal, and subsequently removed from the site by Chemsal. EPA Waste Transport Certificates were completed by Chemsal and are included in Appendix G.

Bores in the 'regional' areas were fitted with a pad-locked protective cover (metal standpipe/monument cover) to preserve the bores for future monitoring. Figure 4-2 shows an example of this completion method at bore GW104, installed as a background bore in the Newer Volcanics Aquifer in the south-eastern part of the site.

Figure 4-2: Protective Cover on Bore GW104

Bores in the Operational Areas were installed with a flush-mounted road box. Figure 4-3 shows an example of this completion method at bore GW107, installed in fill near the service station prop area.

Figure 4-3: Protective Cover on Bore GW107

Details of the groundwater monitoring bore drilling and construction activities are presented in Table 4-1.

Table 4-1: Groundwater Monitoring Bore Installation Summary

Activity	Details			
Dates of Field Activity	22 August 2012 to 11 September 2012 (Bores GW101 to GW111)			
Drilling Contractor	South Western Drilling			
	Bores were installed in accordance with the requirements of a Bore Construction Licence, which was obtained in advance (Appendix C). The work was performed by a driller licensed to perform this level of bore installation under the <i>Water Act</i> 1989, and supervised by a qualified Cardno Lane Piper environmental scientist.			
	Bores installed in the Newer Volcanics were constructed as follows:			
	 Drilled using downhole air hammer (100 mm diameter drill bit) Constructed bore with 50 mm, flush jointed, class 18 PVC, threaded screen and casing. 			
Bore Construction	Bores installed in the Werribee Formation were constructed as follows:			
Construction	Drilled through basalt using downhole air hammer (190 mm diameter drill bit)			
	 Installed 125 mm PVC casing to the base of the Newer Volcanics basalt as a pre- collar. 			
	Drilled Werribee Formation using rotary mud method (110 mm rock roller drill bit).			
	 The drilling fluid used was an organic polymer called AMC Bio-Vis Xtra (Bio-Vis). Bio-Vis is an organic polymer that is an effective viscosifier in either fresh or salty water and, in itself, forms a complete mud system. Bio-Vis is a modified Guar Gum in the form of a granular powder. It is recommended for rotary mud drilling is not expected to detrimentally affect groundwater quality in monitoring bores 			

Activity	Details	
	following development. The Material Safety Data Sheet (MSDS) for Bio-Vis is included in Appendix C.	
	 Constructed bore with 50 mm, flush jointed, class 18 PVC, threaded screen and casing, with a 1 m length sump at the base. 	
	Bore construction details are provided in Appendix C, and summarised in Section 4.2.	
Bore Pack Type and Arrangement	In most bores, the sand filter pack was raised approximately 1 m above the top of the screen. A bentonite seal was set an additional 1 m above the top of the filter pack. The bores were grout sealed from the bentonite seal to the surface and capped with a concrete-set, monument covers or flush-mounted roadbox covers depending on their locations at the site. Bores in the Operational Area were secured with roadbox covers and bores in 'regional' areas of the site were secured with monument covers.	
Surveying	Bores were surveyed to Map Grid Australia (MGA) and Australian Height Datum (AHD) by a licensed surveyor. Bore survey details are presented in Table 4-3. The survey report is included in Appendix D.	
Bore Development	Given the generally low water levels in bores installed at the site, only two bores could be adequately developed. These included bore GW101, which was developed using the air lifting technique, and bore GW107 which was developed using a bailer. Bore development is summarised in Table C-1, Appendix C.	

Bores GW101 to GW107, GW110 and GW111 were constructed with the screen intervals in basalt. Bores GW108 and GW109 were constructed with the screen intervals in silty to sandy clays. Comprehensive bore construction and aquifer details are presented in Table C-1 in Appendix C. Key bore construction details are presented in Table 4-2.

Table 4-2: Bore Construction Details

Bore ID	Drilled Depth (m)	Bore Depth (m)	Unit Monitored	Protective Cover	Screened Interval (m bgl)	Filter Pack Interval (m bgl)
GW101	18	18	Basalt	Monument Cover	12 – 18	11 – 18
GW102	25	23.5	Basalt	Monument Cover	17.5 – 23.5	16.5 – 23.5
GW103	31.5	29	Basalt	Monument Cover	23 – 29	22 – 29
GW104	29	26	Basalt	Monument Cover	14 – 26	13 – 26
GW105	28	26	Basalt	Road Box	17 – 26	16 – 26
GW106	27	24.5	Basalt	Road Box	18.5 – 24.5	17.5 – 24.5
GW107	2.7	2.7	Fill / Basalt	Road Box	0.2 - 2.7	0.2 – 2.7
GW108	59.5	41	Silty Sands	Monument Cover	30 – 40	29 – 41
GW109	49.5	47	Silty Sands	Road Box	40 – 46	39 – 47
GW110	2.9	2.9	Fill / Basalt	Road Box	0.3 – 2.9	0.3 – 2.9
GW111	4.5	4.5	Fill / Basalt	Road Box	0.3 – 4.5	0.3 – 4.5
ВН3	21	21	Basalt	Monument Cover	15 – 21	12 – 21
BH4	20	20	Basalt	Monument Cover	14 – 20	5.3 – 20
BH5	1.8	1.8	Basalt	Monument Cover	0.8 – 1.8	0.4 – 1.8

4.2 Discussion of Bore Installation Results

It was originally proposed to install 17 groundwater bores to test the groundwater in both the regional background areas and target areas at the site, as described in the scope of work in Section 1. However, given that many of the bores were dry, it was decided to discontinue the program and only 11 bores were installed. The 11 bores included one additional bore (GW108), where a nested pair was installed to test both the Newer Volcanics and Werribee Formation aquifers. Figure 3, Appendix A, shows all current and previously installed groundwater bores, as well as the locations of the bores that were not installed.

The seven target locations where proposed bores were not installed include the following:

- Drum burial area (golf course)
- Drum burial area (north of Administration buildings)
- Former UST
- Sewage treatment plant infiltration field
- Former soil remediation area
- Former Landfill 1
- Regional hydrogeology (near southern site boundary)

The first bore drilled by Cardno Lane Piper was GW101 near the north-east corner of the site. Groundwater was intersected in the Newer Volcanics basalt at a depth approximately 15 m and the standing water level (SWL) was later recorded at 9.5 m below ground level. The final bore depth was 18 m.

The next five bores (GW102 to GW106) were drilled through the Newer Volcanics into the top of the Werribee Formation without intersecting any substantial quantity groundwater in the Newer Volcanics. All bores were installed in the lower part of the Newer Volcanics. The depth to the Newer Volcanics - Werribee Formation contact ranges from 24 to 30 m below ground level in these bores. The bores were either dry, or a small amount of water collected at the base of the bores following installation.

The next bore, GW107, intersected a significant amount of perched groundwater at a shallow depth, and the bore was installed in scoria fill and natural basaltic clays to a depth of 2.7 m.

It was decided to drill a deep bore to test for groundwater in the Werribee Formation at one of the 'regional' locations. Bore GW108 was drilled adjacent to bore GW104 in the south-east part of the site. It was drilled using the mud rotary method to a depth of 59.5 m, approximately 33 m below the base of the Newer Volcanics, but intersected a minor quantity of groundwater when tested at completion depth. After drilling to this target depth, the drill rods were removed from the bore and drilling mud was airlifted out of the bore. After the bore was left to stand for a period of time, it was dipped to test for standing groundwater. There was no groundwater at this depth. It was decided to install the bore to 41 m depth, with the screen from 30 to 40 m, and a 1 m sump at the base. The screen interval of 30 to 40 m was selected as it was considered the most likely interval to 'make' groundwater, based on the coarse sands and gravels that were intersected. However, as noted above, the bore did not make any groundwater.

Bore GW09, sited adjacent to the FL PAD, did not intersect groundwater in the Newer Volcanics and was therefore drilled deeper, into the Werribee Formation. The presence of groundwater was assessed using the same method as above, and it was determined that none was present to depth of 49.5 m. The bore casing and screen was installed to 47 m depth, with the screen from 40 to 46 m, and a 1 m sump at the base.

Given that most of the bores did not intersect groundwater in the Newer Volcanics, bores GW110 and GW111 (drilled in the Operational Area) were installed at shallow depth to monitor perched groundwater in scoria fill and weathered basalt.

Bores GW101 and GW107 were developed following installation. Bore GW110 was not developed after installation but was purged prior to sampling. Given the shallow depth of the bore and the porous nature of the near-surface fill, it is unlikely that the groundwater sampling would have been compromised through not developing the bore. All other bores contain very little groundwater, as shown in Table 4-4 and could not be developed. It was decided not to purge these bores prior to sampling, to ensure that a sample could be collected.

It is noted that the inability to develop and/or purge some of the bores indicates that the data from these bores may be of low reliability for the following reasons:

- The small volume of water available (less than 0.5 m of water depth) could adversely affect both the representativeness and repeatability of the groundwater sample analyses.
- The water may be adversely affected by the effects of drilling (cross-contamination from equipment or drilling fluids) which are less significant in bores with groundwater inflow.

Subsequent to installation, the SWLs in two of the bores (GW101 and GW107) rose to levels above the screen intervals. Bore GW101 was installed as a background bore (approximately 400 m north and hydraulically up-gradient of site infrastructure) and there is an extremely low chance of separate phase hydrocarbons or LNAPL. No dissolved petroleum hydrocarbons were detected in GW101, indicating that no LNAPL is present. The SWL in Bore GW107 is only 15 mm above the screen, and no petroleum hydrocarbons were reported in the groundwater sample. These bore are considered suitable for their purpose.

Bore survey details are presented in Table 4-3.

Table 4-3: Bore Survey Details

Bore ID	Easting	Northing	RL GL (m AHD)	RL TOC (m AHD)	Casing Stick- up (m agl)
GW101	255454.31	5826176.96	438.165	438.848	0.683
GW102	254526.10	5826117.92	441.547	442.225	0.678
GW103	254043.81	5825894.15	446.233	446.785	0.552
GW104	255205.96	5825603.34	438.885	439.609	0.724
GW105	254739.62	5825754.74	441.775	441.639	-0.136
GW106	254726.51	5825700.15	441.525	441.438	-0.087
GW107	254754.21	5825581.59	441.435	441.37	-0.065
GW108	255205.92	5825605.55	438.861	439.661	0.800
GW109	254914.33	5825709.28	440.945	440.859	-0.086
GW110	254877.99	5825667.37	440.832	440.746	-0.086
GW111	254862.12	5825470.46	441.054	440.975	-0.079
BH3	254085.09	5825436.43	440.096	440.524	0.428
BH4	254761.04	5826135.19	442.720	443.168	0.448
BH5	254761.13	5826137.57	442.747	443.15	0.407

4.3 Groundwater Monitoring Event

4.3.1 Groundwater Levels

Standing water level (SWL)³ measurements were recorded for all groundwater bores during the Groundwater Monitoring Event (GME) on 20 September 2012. Three bores were dry. The SWLs were converted to relative water levels (RWLs as m AHD) using the top of casing (TOC) values from survey data. The groundwater levels are presented in Table 4-4 and in Figure 4, Appendix A.

Table 4-4: Groundwater Elevation (20 September 2012)

Bore ID	Bore Depth (m)	SWL (m bgl)	SWL (m bTOC)	RWL (m AHD)	Water Column in Bore (m)
GW101	18.0	9.412	10.095	428.75	8.59
GW102	23.5	Dry	Dry	-	-
GW103	29.0	28.498	29.050	417.74	0.50
GW104	26.0	Dry	Dry	-	-
GW105	26.0	Dry	Dry	-	-
GW106	24.5	24.162	24.075	417.36	0.34
GW107	2.7	0.185	0.120	441.25	2.52
GW108	41.0	40.135	40.935	398.73	0.87
GW109	47.0	46.791	46.705	394.15	0.21
GW110	2.9	0.526	0.440	440.31	2.37
GW111	4.5	4.064	3.985	436.99	0.44
ВН3	21.0	20.197	20.625	419.90	0.80
BH4	20.0	19.407	19.855	423.31	0.59
BH5	1.8	0.903	1.310	441.85	0.90

SWL = Standing Water Level; RWL = Relative Water Level

4.3.2 Groundwater Sampling

The GME was carried out in accordance with the EPA guidelines for groundwater sampling (EPA Publication 669) and Cardno Lane Piper field procedures. Groundwater sampling field records are included in Appendix G. The GME activities are summarised in Table 4-5.

Table 4-5: Groundwater Monitoring Events Summary

Activity	Details	
Date of Field Activity 20 September 2012 (Bores GW101 to GW111; BH3 to BH5)		
Bore gauging	Monitoring bores were gauged using an oil/water interface probe. Gauging was completed prior to purging and sampling. All bores were measured	

³ Depth to groundwater level below ground level or the top of the PVC casing

212163.2Report01.7

Activity	Details			
	against a specified mark at the top of the PVC casing.			
Bore purging	Groundwater bores GW101, GW107 and GW110 contained groundwater column sufficient for bore purging and measurement of field parameters (dissolved oxygen, electrical conductivity, pH, oxidation-reduction potential and temperature). The field parameters for bores GW101, GW107 and GW110 were recorded between each purge volume. Purging continued until parameters had stabilised.			
	Field parameters were recorded for bores BH3, BH4 and BH5, but purging of these bores was not possible due to the small water volumes in the bores.			
	Bore purging and sampling records and field meter calibration certificates are provided in Appendix G.			
Sampling and NAPL detection	Samples would not be collected if non-aqueous phase liquid (NAPL) was present. NAPL was not identified in any of the bores.			
Bore purging and sampling procedures	Disposable polyethylene bailers equipped with low flow bottom emptying sampling devices were used to undertake purging and obtain groundwate samples. Groundwater samples were directly obtained into sample containers (pre-preserved where appropriate) provided by the laboratory sampled without headspace. Samples for metals analysis were field filter to 0.45 µm. All samples were labelled with an indelible marker pen on waresistant labels attached to the sample bottles.			
Decontamination procedure	All non-disposable field equipment (including the interface probe) was cleaned using Decon 90 and rinsed with deionised water between each bore.			
Sample preservation and transport	Samples were stored on ice, in an esky while on-site and in transit to the laboratory, under Chain of Custody documentation			
Disposal of purged groundwater	For two of the bores, purged groundwater was transferred via buckets to a steel drum which was temporarily stored on-site and later transported and disposed of off-site by an EPA certified waste transport contractor (Waste Transport Certificates in Appendix G). For all other bores, there was insufficient water for purging prior to collecting the samples.			

4.3.3 Field Physicochemical Parameters

As part of the sample gathering process, groundwater samples are also tested in the field using water quality meters. This measures physicochemical parameters including:

- Temperature
- Electrical Conductivity
- pH
- Dissolved oxygen
- Oxidation-Reduction Potential

These provide valuable supplementary information for interpretation of groundwater chemistry data and also assist in guiding the sample quality control process.

The initial standing water level and stabilised physicochemical parameters recorded during the GME are summarised in Table 4-6. Further observations on water turbidity, colour and odour can be found in the field sampling record sheets presented in Appendix G.

Bore ID	Standing Water Level (m bgl)	Electrical Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Temp (°C)	рН	Redox Potential (mV)
GW101	9.41	2,578	4.19	16.3	6.95	47.1
GW102	Dry	-	-	-	-	-
GW103 ¹	28.49	-	-	-	-	-
GW104	Dry	-	-	-	-	-
GW105	Dry	-	-	-	-	-
GW106 ¹	24.15	-	-	-	-	-
GW107	0.21	797	6.70	11.5	7.21	-73.5
GW108 ¹	40.2	-	-	-	-	-
GW109 ²	46.79	-	-	-	-	-
GW110	0.53	718	5.68	12.1	7.22	92.1
GW111 ¹	4.06	-	-	-	-	-
ВН3	19.84	6,647	6.46	15.4	7.0	124.6
BH4	19.41	492	4.38	15.0	7.9	98.6
BH5	0.63	2,970	3.57	12.5	7.1	-28.0
		2,970			7.1	-28.0

Table 4-6: Groundwater Physicochemical Parameters

4.4 Laboratory Testing – Groundwater

Groundwater samples were analysed for the range of analytes presented in Table 4-7.

The primary laboratory was ALS in Clayton, Melbourne. The secondary laboratory (quality control) was mgt-LabMark in Oakleigh, Melbourne. Both laboratories are NATA-accredited for the parameters tested.

Table 4-7: Laboratory Testing Program

Sample ID	Analysis
GW101	NEPM Water Screen, Major Ions, TDS, EC, pH, TKN, Ammonia (N), Nitrate (N), Total P
GW102	Dry – not sampled
GW103	NEPM Water Screen, Major Ions, TDS, EC, pH, TKN, Ammonia (N), Nitrate (N), Total P
GW104	Dry – not sampled
GW105	Dry – not sampled
GW106	NEPM Water Screen, Major Ions, TDS, EC, pH, TKN, Ammonia (N), Nitrate (N), Total P
GW107	NEPM Water Screen, Major Ions, TDS, EC, pH, TKN,

^{1.} Insufficient groundwater to measure physicochemical parameters

^{2.} Insufficient groundwater to collect sample or measure physicochemical parameters

Sample ID	Analysis			
	Ammonia (N), Nitrate (N), Total P Perchlorate, PFOS/PFOA, PCDD/PCDF			
GW108	NEPM Water Screen, Major Ions, TDS, EC, pH, TKN, Ammonia (N), Nitrate (N), Total P			
GW109	Insufficient water – not sampled			
GW110	NEPM Water Screen, Major Ions, TDS, EC, pH, TKN, Ammonia (N), Nitrate (N), Total P Perchlorate, PFOS/PFOA, PCDD/PCDF			
GW111				
внз	NEPM Water Screen, Major Ions, TDS, EC, pH, TKN,			
BH4	Ammonia (N), Nitrate (N), Total P			
BH5				
Analytical Screen Definition				
NEPM Water Screen: Hexavalent Chromium, Metals (21), PCB, Fluoride, Cyanide,				

NEPM Water Screen: Hexavalent Chromium, Metals (21), PCB, Fluoride, Cyanide, Total Recoverable Hydrocarbons (TRH), VOC and SVOC Screen (including OC Pesticides, PAH, Phenols, Phthalates)

Copies of the NATA stamped laboratory reports and Chain of Custody documentation are included in Appendix E. Tabulated laboratory results are presented in Appendix B. The quality control/ quality assurance (QA/QC) of the groundwater sampling program is discussed in Section 4.5.

4.5 Quality Control / Quality Assurance

A critical aspect of hydrogeological assessments is the demonstration of the quality of the data used as the basis for the assessment. This is achieved through a Data Validation process which includes a review of the following aspects of data collection:

- Project Quality Objectives and Plans
- Data Representativeness
- Data Precision & Accuracy
- Laboratory Performance
- Data Comparability
- Data Set Completeness

A detailed review of these aspects has been undertaken, the results of which are presented in Appendix E.

The data validation has concluded that there are no significant systematic errors in the data collection process for groundwater. Therefore, the dataset used as the basis for the groundwater assessment is considered valid and complete.

5 CONCEPTUAL HYDROGEOLOGICAL MODEL

In accordance with EPA Publication 668 *Hydrogeological Assessment (Groundwater Quality) Guidelines*, the hydrogeology of the study area should be characterised as the basis for interpretation of the occurrence of contamination observed. This based on an interpretation of both public record data and that produced during a site investigation. This summary description is referred to as the Conceptual Hydrogeological Model and consists of descriptions of:

- Geographic Setting and Climate
- Geology and Aguifers
- Groundwater Occurrence and Flow Systems
- Groundwater Quality & Beneficial Uses
- Groundwater Resource Utilisation.

5.1 Geographic Setting and Climate

The site is located in a rural setting, approximately 65 km west-north-west of Melbourne. It is situated near the south-eastern margin of the Western Uplands physiographic region at an elevation of approximately 440 m AHD. Bacchus Marsh, some 15 km to the east of Fiskville is at an elevation of approximately 140 m AHD, which represents a fall of some 300 m over this distance.

The topography of the site and its immediate surrounds are gently undulating and generally of low relief. The lowest point of the site is near the south-western corner, where Beremboke Creek 'exits' the site in its southerly flow direction. The land is elevated in the central part of the site and falls away towards Yaloak Creek to the east and towards Beremboke Creek and Lake Fiskville to the west. The land is also elevated on the western boundary of the site, sloping down towards Beremboke Creek and Lake Fiskville to the east. The maximum surface elevation difference across the site is approximately 8 m.

Figure 5-1 shows the average monthly rainfall for the Fiskville weather station compared to evaporation for the Moorabool Reservoir weather station (located about 20 km to the north of the site), obtained from the Bureau of Meteorology (September 2012). The graph indicates that there is a potential for rainfall to infiltrate the subsurface (rainfall excess over evaporation) during the months of June to September and recharge the local aquifers.

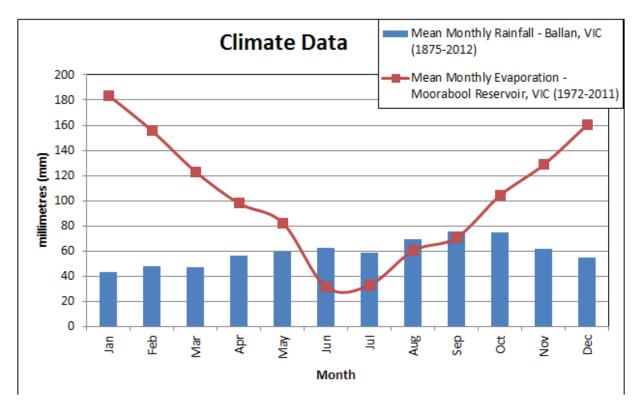


Figure 5-1: Moorabool Reservoir Weather Station Data

5.2 Geology and Aquifers

5.2.1 Regional and Local Geology

The geology of the site in its regional setting has been ascertained from the following sources:

- Birch, W.D. (2003) Geology of Victoria
- Ballan 1:50,000 Geological Map Series (Geological Survey of Victoria, 1986)
- Melbourne 1:250,000 Geological Map Series (Geological Survey of Victoria, 1997)
- DPI GeoVic Website August 2012

Fiskville is situated within the Bendigo Zone of the Western Lachlan Fold Belt. The Bendigo Zone is a structural domain within which there has been significant uplift, which has resulted in the exposure of older, bedrock lithologies mostly of Ordovician age. The Rowsley Fault forms a significant fault scarp near Bacchus Marsh, believed to form the eastern margin of this uplifted zone. Within the Bendigo Zone, Fiskville is located within a downthrown block known as a graben. East-west trending faults, Spring Creek Fault to the south and Coimadai Fault to the north, form the margins of the graben. The regional geology of the area is shown in Figure 5-2 below.

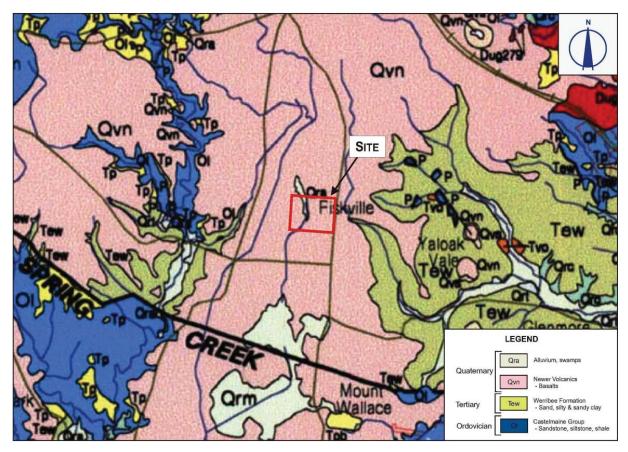


Figure 5-2: Regional Geology of Fiskville Area

Local areas of Quaternary age alluvium and swamp/marsh deposits are associated with present day drainage lines in the region, including Beremboke Creek and the upper reaches of Yaloak Creek.

The CFA Fiskville site is underlain by Newer Volcanics basalts of Quaternary age. The basalts are derived from lava flows from volcanic eruption centres that were scattered across a wide area to the west of Melbourne. Based on bores drilled by Cardno Lane Piper, the basalt is up to 29 m thick at the site. The basalt is variably weathered and clayey intervals were commonly intersected in the bores. A relatively continuous clay band was interpreted in bores drilled in the Operational Area and in the south-eastern part of the site.

Werribee Formation sediments of Tertiary age underlie the Newer Volcanics, with its upper surface intersected recorded at depths ranging from 24 to 29 m across the site. The Werribee Formation is of fluvial origin and comprises largely unconsolidated sediments including silty to sandy clay, sands and gravels. Intervals of ligneous clay and brown coal are also reported. The Werribee Formation outcrops in Yaloak Creek to the east of the site and in the Moorabool River East Branch to the west of the site. In these locations, the creeks have eroded through the Newer Volcanics, exposing the underlying Werribee Formation. The younger and potentially overlying Brighton Group (fluvial sands, silts and gravels) occurs to the west of the site (Moorabool River East Branch) but is absent in bores at the site.

The Castlemaine Group underlies the Werribee Formation and consists of sandstone, siltstone, shale and chert of marine origin (deep sea turbidite deposits). The Castlemaine Group is of Ordovician age and may be described at bedrock in the Fiskville area. The depth to bedrock at the site is not known, but is expected to be in excess of 120 m, based on information from geological and topographical plans and references.

Cardno Lane Piper has interpreted the geological logs and prepared a geological cross-section for the site. Geological section A-A' is orientated west to east and is presented as Figure 5 (Appendix A). The position of the cross-section line is shown in Figure 3 (Appendix A) and includes four of the groundwater bores installed by Cardno Lane Piper.

This geological framework is supported by the results of drilling at the site, and inspection at the site and surrounding areas.

The key geological observations or interpretations from drilling at the site are as follows:

- Basalt extends across the entire site, from near-surface to a depth of up to 30 m below ground surface;
- Within the basalt, a layer of red-brown clay or extremely weathered basalt, forms a continuous horizon at a consistent depth (25 to 27 m) across much of the site; and
- Werribee Formation sediments were intersected in seven of the eleven bores drilled by Cardno Lane Piper.

5.2.2 Regional and Local Aquifers

Aquifers are geological units that contain and transmit groundwater. Regional geological units that are expected to form principal aquifers in the vicinity of the site include:

- Newer Volcanics Aquifer (NVA)
- Werribee Formation Aguifer (WFA)
- Ordovician Bedrock Aquifer (OBA)

A summary of the properties of these potential aguifers is as follows:

The NVA is a Quaternary age, fractured basalt, water table aquifer with highly variable permeability, but generally providing low bore yields. It can locally provide high bore yields especially in the vicinity of scoria cone eruption centres like Black Hills near Gordon.

The WFA is a Tertiary age porous media aquifer which may contain sand and gravel units. The formation sometimes contains intervals of ligneous clay and lignite/coal seams. This aquifer is confined and areas of lower elevation may occur as flowing artesian bores. The WFA provides variable bore yields, as low as 3 L/sec, and as much as 20 L/sec.

The OBA is an Ordovician age fractured shale, mudstone and sandstone aquifer; it has low primary porosity and permeability and, where overlain by younger deposits, can be confined to semi-confined. Jointing and fracturing have produced secondary porosity and permeability.

Observations made during drilling at the site indicate that the Newer Volcanics and Werribee Formation, while significant potential aquifers, are largely dry due to the high elevation of the site. The significance of this in terms of potential for groundwater contamination is discussed further in Section 5.3.

5.3 Groundwater Occurrence and Flow Systems

5.3.1 Groundwater Levels and Flow Direction

Based on previous drilling at the site, groundwater was expected to occur at a depth of 20 to 30 m below ground level (mbgl) where it would form the water table in the NVA.

Groundwater was believed to be too deep to discharge to the nearest surface water body (Lake Fiskville in the west of the site). The nearest possible point of regional groundwater discharge was expected to be Yaloak Creek to the east and south-east of the site.

Site investigations found that the NVA was dry across the majority of the site. Only bore GW101, located in the north-east corner of the site and approximately 250 m west of Yaloak Creek, intersected significant groundwater in the NVA. All other bores constructed in the NVA were either dry, or contained minimal groundwater, as discussed in Section 5.4.

Groundwater was also found to be absent in the underlying Werribee Formation, which was drilled to a depth of up to 60 m below ground level.

5.3.2 Groundwater Flow Systems

Groundwater flow systems in any terrain characterise the occurrence of groundwater and its flow from areas of recharge to areas of discharge, often into surface water bodies. The main influences on groundwater occurrence and flow at the site are:

- Rainfall (providing limited recharge to groundwater, since rainfall exceeds evaporation for only four months of the year, from June to September)
- Lakes, dams
- Lower permeability, clayey layers within the aquifer which have the potential to slow the percolation of infiltrating water (eg. clay layers identified in the Newer Volcanics)
- Groundwater extraction (eg. stock supply wells)

Groundwater elevations are presented in plan view in Figure 4, Appendix A. There is insufficient data on groundwater occurrence or levels to enable a conventional contour plan of water level elevation to be prepared for this site. Groundwater levels are also shown in cross-section A-A' (Figure 5, Appendix A), which includes bores GW103, GW105, GW108 and GW109.

Based on topography and regional geology it was expected that the regional groundwater flow direction is to the south-east towards the deep valley incised by Yaloak Creek, which is located 200 m from the site at its closest point. Lake Fiskville seems unlikely to receive any discharge from groundwater as it is located well above the regional water table. Historically, Lake Fiskville has become dry, as it relies on flow in Beremboke Creek.

The actual groundwater flow direction in the water table aquifer at the site could not be determined, as the groundwater occurrences are interpreted to be "perched" above the regional water table which had not been intersected at a depth of 60m.

The distance of the site from the nearest surface water body (Yaloak Creek) with potential to receive groundwater discharge, and the great depth of groundwater at the site, indicates a low likelihood of any contaminant in the shallow subsurface at the site, firstly entering the regional water table aquifer beneath the site, and then secondly migrating with regional groundwater flow to an area of possible groundwater discharge at Yaloak Creek.

5.3.3 Local Seepage from Perched Aquifer

The perched fill aquifer around Dam 2 has a shallow water table which has been interpreted to flow outward from Dam 2 when its level is high, and towards Dam 2, when its level is low. In the event that the flow is away from Dam 2, there is potential for some shallow seepage into the embankment around the dam and above the perimeter stormwater drain.

This presents a potential pathway of a small amount of perched groundwater (reported in Section 6.1 to be contaminated) to enter the stormwater drainage system. This should be further investigated and remediated if necessary.

Minor perched water was reported in test pits in the landfill near the south-west corner of the site. This perched water is believed to be present as a result of rainwater infiltration into disturbed soils and presence of permeable materials in the landfill, contrasting with the low permeability clay soils beneath. It is considered highly unlikely that Lake Fiskville to the east would receive contaminated perched water derived from the landfill for the following reasons:

- Land slopes away from the landfill and not towards the lake;
- The LFG bores install around the landfills did not report perched water;
- The landfill has not been identified as a source of high concentrations of relevant contaminants; and
- The travel distance between the landfill and the lake would provide opportunity for attenuation of metals and organic compounds if a pathway existed.

5.4 Groundwater Quality & Beneficial Uses

5.4.1 Groundwater Salinity

The regional groundwater quality is reported in public records to range from 3,501 to 13,000 mg/L TDS⁴ (DCNR, 1995). Groundwater samples collected at the site reported TDS concentrations ranging from 376 to 4,530 mg/L, as shown in Table B-1, Appendix B. A number of the bores were installed dry, and subsequently 'made' water over time (including the Coffey bores, BH3 and BH4). Groundwater bores installed regionally in the Newer Volcanics are reported to have a mean TDS of approximately 3,200 mg/L (Leonard, 1992).

It is noted that two of the bores (GW107 and GW110) reporting low TDS values were installed in shallow, 'perched' groundwater in the Operational Area of the site. They were screened in scoria fill and weathered basalt, and do not reflect the true chemistry of the regional Newer Volcanics Aquifer which could be the benchmark quality for protection of groundwater quality at the site.

One of the bores (GW108) reporting a low TDS value was installed in the Werribee Formation and it is considered that the groundwater does not properly reflect the chemistry of the Werribee Formation. It is possible that this water, which was found in the sump of the constructed bore, is partly derived from water used in the drilling fluid. During future sampling programs (likely to be required by the EPA Auditor), the groundwater will be purged from this bore to ensure that a representative sample is collected.

5.4.2 Groundwater Major Ion Chemistry

Interpretation of major ion chemistry (naturally occurring chemicals, as opposed to contaminant chemicals introduced by human activity) is a key component in the understanding of groundwater occurrence and water quality data. This interpretation often utilises graphical formats to present large amounts of chemistry data, including the Piper Diagram and the Stiff Diagram.

Bores plotting close together on the Piper Diagram can indicate that they are installed in the same aquifer and typically at similar positions in the flow system. The Piper Diagram for this

⁴ TDS = Total Dissolved Solids

Cardno

site (Figure 6, Appendix A) shows that the following bores plot close together, suggesting similar groundwater chemistry:

Bores BH5, GW103 and GW106

However, the Piper Diagram shows no pattern and supports the view that groundwater at the site is largely perched and locally derived by infiltration of rainwater or fire training water discharge.

Stiff Diagrams (Figure 7, Appendix A) present the same chemistry in a different manner, providing a plot of major ions that may be easily interpreted in terms of relative percentages of cations and anions, with the overall "mass" of the diagram being proportional to TDS. These diagrams confirm a consistent chemistry between bores GW103, GW106 and BH5 in the NVA. All other bores seem to be distorted by "freshening" processes associated with rainfall infiltration or "salinising" processes associated with evaporated dam water (e.g. bore GW111 near Dam 2).

5.4.3 Protected Beneficial Uses of Groundwater

Table 5-1 presents the classification of beneficial uses of groundwater protected in accordance with *State Environment Protection Policy (SEPP) Groundwaters of Victoria (1997)*.

Segments (mg/L TDS) **A2** В C D **Beneficial Uses A1** (3,501-(greater (501-(1,001-(0-500)1,000) 3,500) 13,000) than 13,000) ✓ ✓ 1. Maintenance of ecosystems 2. Potable water supply ✓ Desirable ✓ Acceptable 1 ✓ 3. Potable mineral water supply ✓ ✓ 4. Agriculture, parks & gardens ✓ 5. Stock watering ✓ ✓ ✓ ✓ ✓ 5. Industrial water use 6. Primary contact recreation (e.g. Bathing, swimming) 7. Buildings and structures

Table 5-1: Protected Beneficial Uses of Groundwater Segments

The Victorian Groundwater Beneficial Uses Map Series (1995) shows the groundwater in the Fiskville area to have a salinity in the range of 3,501 to 13,000 mg/L TDS⁵, and is therefore classified as Segment C according to the SEPP *Groundwaters of Victoria* (1997).

Based on the testing program undertaken at the site, the groundwater in the NVA at this site has the following salinity and Segment classification under SEPP *Groundwaters of Victoria* (1997):

 $^{^{5}}$ Assumes a conversion of electrical conductivity (EC) and TDS as follows: EC x 0.65 μ S/cm = TDS mg/L.

_

^{✓ =} Protected Beneficial Use

- 376 to 4,530 mg/L TDS
- Average (mean) 2,590 mg/L TDS
- is classified as Segment B

Segment B groundwater falls within the salinity or TDS range of 1,001 to 3,500 mg/L, and water of this quality is protected for all beneficial uses listed in Table 5-1, with the exception of potable water supply. The 'fresh' groundwater in the perched fill aquifer may be classified as Segment A, but should not be considered protected under the SEPP, given its limited extent and artificial nature.

5.5 Groundwater Resource Utilisation

It is relevant to any assessment of groundwater contamination to know if the groundwater at or in the vicinity of the investigation site is used by owners of groundwater bores. All bores in Victoria should be registered with the relevant rural water authority in compliance with the *Water Act 1989*.

A search of the State Groundwater Management System database identified a total of 22 registered groundwater bores within a 5 km radius of the site, as shown in Figure 8 (Appendix A) and listed in Table 5-2. Further details of these bores, including bore depth, screen intervals and lithology are presented in Table H-1, Appendix H.

A summary of these bores is as follows:

- 22 bores within 5 km of the site, of which ten are non-groundwater bores, five are for investigation purposes, two are for stock, two are for domestic, three are for domestic and/or stock, one is for irrigation, and for one has an unknown purpose.
- None of the bores are considered significant for this assessment (potential private bore users) given their large distance from the site.
- Salinity data which can indicate the potential for groundwater being utilised (fresh
 groundwater is generally more widely used than brackish water), was not available for any
 of the bores.

It is also worth noting that, in the experience of Cardno Lane Piper, groundwater may also be utilised by persons with unregistered bores not appearing on the database. This should be taken into account in any assessment of impact on groundwater quality at a site.

Table 5-2 presents selected information for 12 groundwater bores (excludes non-groundwater bores) within 5 km of the site.

Bore ID Depth Date Distance (km) Direction **Bore** Lithology from site from site Use* (m) Completed B53380 55.16 31-Dec-39 4.18 SSW IV B53381 60.96 31-Dec-39 4.35 SSW IV S IR B53382 33.00 23-Dec-78 2.36 Basalt B53383 56.38 17-May-82 3.94 S DM Basalt/Clay B53384 50.30 S DM 19-May-82 3.47 Basalt/Clay 91.44 S ST B53385 9-Feb-83 2.43 Basalt/Sandstone

Table 5-2: Nearby Registered Groundwater Bores

Bore ID	Depth (m)	Date Completed	Distance (km) from site	Direction from site	Bore Use*	Lithology
B106570	21.30	31-Dec-39	2.78	N	IV	-
B106571	73.80	31-Dec-39	1.03	S	IV	-
B106573	61.00	2-Mar-83	1.70	W	IV	Basalt
B135442	76.00	15-Mar-98	3.31	NNE	DM/ST	Basalt/Clay
BG8010825/01	60.00	28-Jun-04	3.09	NW	DM/ST	Basalt
BS9019239/1	61.00	29-Mar-04	2.93	NNE	DM/ST	-

^{*} Bore Use: NKN = Not known; IV = Investigation; DM = Domestic; ST = Stock; DM/ST = Domestic/Stock; IR = Irrigation

This information indicates that there is no registered use of groundwater within approximately 1 km of the site. The most common use is as 'stock' bores which are used to supply stock water, and 'domestic' bores which are used for non-potable domestic purposes such as garden watering and toilet flushing⁶. Also, apart from two of the bores, it is noted that the bores are deep (50 to 90 m), confirming that groundwater in the region is deep.

The great depth of regional groundwater and the thickness of clay soil layers between the base of the basalt and the likely depth of groundwater indicate that the regional water table aquifer has low vulnerability to contamination. Further, the low frequency of groundwater use at or near the Fiskville site indicates a low risk of impact on users of groundwater bores in the unlikely event of the groundwater becoming contaminated.

⁶ Farm bores are rarely used for potable supply which is normally derived from rainwater tanks.

212163.2Report01.7

6 GROUNDWATER CONTAMINATION ASSESSMENT

6.1 Interpretation of Laboratory Results

The results of laboratory analysis are presented in Table B-1 in Appendix B and the laboratory reports are included in Appendix E.

The results of laboratory analysis have been compared against the water quality criteria relevant for each beneficial use of groundwater protected under SEPP *Groundwaters of Victoria* (1997). This has shown that:

- All samples reported certain metals above the adopted assessment criteria.
- Two samples reported fluoride above the adopted assessment criteria.
- Two samples reported PFCs above the adopted assessment criteria.
- Two samples reported bis(2-ethylhexyl) phthalate above the adopted assessment criteria.
- Five samples reported ammonia (N) above the adopted assessment criteria.
- One sample reported nitrate (N) above the adopted assessment criteria.

A review of the fieldwork records indicated that the turbid nature of four samples prevented field filtration for dissolved metals. The laboratory (ALS) took 'metals' samples from an unpreserved sample bottle and filtered these samples in the laboratory. It is noted that for bores BH5, GW103 and GW106, ALS commented that the samples were "diluted due to sample matrix values and the LORs were raised accordingly. This has resulted in the high aluminium concentrations (and possibly other metals) in these samples. The high aluminium concentrations in bores BH5 and GW106 are considered to be 'false positives' caused by the high turbidity, and are therefore not included in Table 6-1. Further consideration needs to be given to the validity of any samples from such low yield bores, and the work plan for future field sampling may need to be amended. For example, the use of a hydro-sleeve samplers and also vacuum assisted filtration may be considered for such bores.

Bores GW106 and GW108, installed in the Newer Volcanics and Werribee Formation respectively, reported phthalate⁷ concentrations which exceed the assessment criterion for drinking water. The source of the phthalate is unclear. However, it is unlikely to be from wastes or processes at the site, given the locations sampled (GW108 was installed in an area that is considered to be representative of background water quality). The phthalate was most likely introduced to the sample by the sampling equipment. This will be assessed during any further groundwater sampling, if required by the Auditor.

Bores BH5 and GW106, installed in the Newer Volcanics, reported concentrations of fluoride which exceed adopted assessment criteria. The source of the fluoride is not known, and will be monitored during the next sampling program.

The chromium (total) concentration (above assessment criterion for Primary Contact Recreation) in bore BH5 is due to chromium III only, as chromium VI reported a value below LOR. Bore GW106 reported chromium (total) above the assessment criterion for Agriculture/Irrigation. Chromium VI laboratory results were not reported for bore GW106, possibly due to insufficient sample. This will be checked during the next groundwater sampling program.

It is possible that some of the new bores installed during 2012 may 'gain' groundwater over time. During the next monitoring round, it is recommended that all bores should gauged for

⁷ The phthalate reported was bis(2-ethylhexyl)phthalate, a chemical used to make polymers 'plastic'.

7

water level and, if sufficient water is present, the bores should be developed and sampled to establish a scope for the further investigation of regional groundwater.

These results exceeding criteria are listed in Table 6-1 and interpreted in Sections 6.2 and 6.3 below.

Table 6-1: Summary of Groundwater Results Above Criteria

Analyte	Adopted Criteria (mg/L)	Sample ID	Reported Concentration (mg/L)
		BH4_200912	0.07
Aluminium	0.055 ¹	GW101_200912	0.67
		GW103_200912	0.82
Arsenic	0.01 ²	BH5_200912	0.037
Chromium	0.5 ⁵	BH5_200912	0.986
(total)	1 ³	GW106_200912	1.45
Cabalt	0.05 ³	BH5_200912	0.16
Cobalt	0.05	GW106_200912	0.242
		BH3_200912	0.002
		BH4_200912	0.005
		BH5_200912	0.163
		GW101_200912	0.002
Copper	0.0014 ¹	GW106_200912	0.200
		GW107_200912	0.002
		GW108_200912	0.002
		GW110_200912	0.009
		GW111_200912	0.003
	3 ⁵	BH5_200912	338
Iron	3	GW106_200912	540
	1 ³	GW107_200912	2.19
Lood	0.0034 ¹ , 0.1 ⁴	BH5_200912	0.165
Lead	0.0034 , 0.1	GW106_200912	0.146
		BH5_200912	0.542
Managanasa	0.5 ²	GW106_200912	0.628
Manganese		GW107_200912	0.891
	0.5 ² , 1 ⁵	GW111_200912	1.22
Molybdenum	0.01 ³ , 0.01 ⁴	GW103_200912	0.028
	0.011 ¹	GW107_200912	0.02
Niekol	0.011	GW110_200912	0.013
Nickel	0.011 ¹ , 0.02 ²	GW111_200912	0.049
	$0.011^1, 0.02^2, 0.2^3$	BH5_200912	0.575

Analyte	Adopted Criteria (mg/L)	Sample ID	Reported Concentration (mg/L)
		GW106_200912	0.611
Vanadium	0.1 ³	BH5_200912	0.51
		BH3_200912	0.017
		GW101_200912	0.009
Zino	0.008 ¹	GW106_200912	0.627
Zinc		GW110_200912	0.015
		GW111_200912	0.049
	0.008 ¹ , 2 ³	BH5_200912	4.55
		GW106_200912	0.27
		GW107_200912	0.18
Ammonia (N)	0.1 ⁵	GW108_200912	0.49
		GW110_200912	0.38
		GW111_200912	0.17
Nitrate (N)	7.2 ¹ , 11.3 ²	BH3_200912	21.1
Fluoride	1 ³	BH5_200912	1.1
	1.5 ² , 1 ³	GW106_200912	1.6
	50 ⁶	GW110_200912	310
TPH	600 ⁷	BH3_200912	810
	000	GW106_200912	1380
Bis(2-ethylhexyl)	10 ² ug/L	GW106_200912	175 ug/L
phthalate	10 ug/L	GW108_200912	78 ug/L
PFOA	0.0004 ⁸	GW107_200912	0.157
PFOA	0.0004	GW110_200912	0.092
PFOS	0.0002 ⁸	GW107_200912	0.139
	0.0002	GW110_200912	3.32
6:2 FTS	0.0002 ⁸	GW107_200912	0.0579
0.2 F13	0.0002	GW110_200912	1.21

Notes:

- 1. Maintenance of Ecosystems (ANZECC 2000 Fresh Water 95%)
- 2. Australian Drinking Water (NHMRC 2011)
- Agriculture/ Irrigation (ANZECC 1992) Stock Watering (ANZECC 1992) 3.
- Primary Contact Recreation (ANZECC 1992) 5.
- Dutch Target shallow groundwater < 10 m (2000)
- Dutch Intervention (2000)
- Provisional Health Advisory for PFOA and PFOS (US EPA 2009)

6.2 Interpretation against Beneficial Uses of Groundwater

The results have also been interpreted with reference to the beneficial uses of groundwater in SEPP *Groundwaters of Victoria* (1997) and the respective water quality criteria for each use. This section discusses potential risks posed to the protected beneficial uses of groundwater based on the results of the groundwater investigation.

6.2.1 Maintenance of Aquatic Ecosystems

The beneficial use 'maintenance of aquatic ecosystems' (in surface waters) is often relevant when assessing sites, given the connections that can occur between surface water and groundwater. However, as discussed in Section 5.3.2, this relevance can be tested in each case by considering the likelihood of groundwater at the site discharging to a specific surface water body and whether the contaminants observed at the site could be expected to migrate to the 'point of groundwater discharge' at the surface water body. The nearest off-site receptor is Yaloak Creek which is approximately 200 m to the east of the site at its closest point. The onsite receptors include Lake Fiskville and Beremboke Creek which are located approximately 200 m west of the Operational Area, as well as a number of smaller lakes and dams which occur at various locations at the site. These are not in connection with the groundwater which occurs very deep below the site.

Aluminium, copper, lead, nickel, zinc and nitrate concentrations were reported above the adopted ANZECC 2000 criteria in some bores. TPH concentrations slightly exceeded the adopted assessment criteria (Dutch 2000) in three bores at the site. These included TPH C_{10} - C_{14} in bore BH3 and TPH C_{15} - C_{28} in bores GW106 and GW110. However, if groundwater were to discharge from this site, it is unlikely to impact the nearest surface water body given the distance and time required for this to occur.

The metal concentrations exceeding the criteria are highest in bores BH5 and GW106 and may be considered to represent contamination from industrial activities. The water in bore GW106 is considered unrepresentative of the NVA, as the bore was dry when it was first drilled, and only a small amount of water seeped in, subsequently making the sample very turbid and making it difficult to obtain reliable results.

The perched groundwater in some bores in the Operational Area is believed to be the same as the water used for on-site training activities and stored in dams. This is due to the water occurring in permeable fill (scoria) used to form Dam 2. The groundwater chemistry and contamination levels are very similar to the water in Dam 2. Shallow, perched groundwater was not encountered during Cardno Lane Piper's drilling in regional, 'background' areas of the site.

It is considered possible that the elevated metal concentrations in the perched groundwater are in connection with the water bodies in Dams 1 and 2 in the Operational Area. Given the distance from the Operational Area, and limited extent of the fill holding the perched groundwater, discharge of this perched groundwater to Beremboke Creek and Lake Fiskville to the south-west of the site is considered unlikely and therefore only poses a negligible risk to natural aquatic ecosystems. However, measures are required to prevent the perched groundwater around Dam 2 from entering the stormwater drains in this area.

Nitrate concentrations only exceeded the adopted criterion in bore BH3, which was installed by Coffey (1996) to monitor the former landfill in the south-west of the site. However, for the same reasons as for other contaminants, this is not of relevance.

On balance, the groundwater quality results indicate some relevant results but only if the groundwater at the site discharged to a surface water body at or immediately proximal to the site. Given that this discharge is highly unlikely (as discussed in section 5.3.2), then this

beneficial use is not detrimentally affected by the condition of groundwater quality at the Fiskville site.

6.2.2 Potable Water Supply

The groundwater in the regional aquifer at the site is generally too saline to be used for drinking purposes and therefore this beneficial use does not need to be protected at the site and no further assessment is provided. The perched aquifer is interpreted not to be an aquifer protected by policy, a position that may need to be clarified with EPA or an EPA Environmental Auditor.

6.2.3 Potable Mineral Water

The site is in a recognised mineral water province as envisaged in EPA Publication 592 *Policy Impact Assessment of SEPP Groundwaters of Victoria.* A mineral spring occurs near the town of Ballan, approximately 10 km north of the Fiskville site. This could indicate that this beneficial use may be relevant to the site and requires further consideration.

It is concluded that this benefical use is not precluded due to the condition of groundwater at the site for the following reasons:

- Groundwater found to be contaminated at the site is shallow perched water in a man-made scoria "aquifer" which is not the regional aquifer potentially used in the vicinity of the site for drinking purposes.
- The groundwater does not conform to the definition of mineral water (potable groundwater which in its natural state contains carbon dioxide and other soluble matter in sufficient concentration to cause effervescence or impart a distinctive taste, SEPP Groundwaters of Victoria).

6.2.4 Agriculture, Parks & Gardens

This beneficial use is intended for the protection of crops and gardens irrigated with water from groundwater bores.

The reporting of aluminium, boron, chromium, cobalt, iron, molybdenum, nickel, vanadium, zinc and fluoride at concentrations above the adopted ANZECC 1992 criteria indicates some potential for harm to some sensitive flora, if this water was used for irrigation uses.

However, it is concluded that this beneficial use is not precluded due to the condition of groundwater at the site for the following reasons:

- The groundwater is not fresh, and while the salinity class is theoretically protected for this site, the water salinity and soil type (clay) would make this use unlikely.
- It is highly unlikely that groundwater will be used for this purpose, particularly given that no significant groundwater was intersected in the majority of bores at the site, and the availability of reticulated water at the site.

6.2.5 Stock Watering

This beneficial use is intended to protect the use of groundwater from bores (often with windmills) for livestock drinking water. The presence of livestock both at the site and on adjacent properties suggests that this beneficial use may occur in the area. However, the absence of groundwater in the shallow geological units makes it unlikely that groundwater will be used for this purpose in close proximity to the site.

The reporting of aluminium, lead and molybdenum at concentrations above the adopted ANZECC 1992 criteria for Stock Watering requires comment.

Molybdenum only slightly exceeds the assessment criterion in one bore. The aluminium and lead concentrations in two bores are well above assessment criteria. However, one bore (BH5) is installed in perched groundwater, and the other bore (GW106) believed not to be representative of the NVA due to the turbidity of the water in this bore.

The natural salinity (TDS) of the groundwater at the site may make the water unsuitable for Stock Watering.

Bore GW101 is the only bore that is considered to be representative of permanent groundwater in the NVA, and has a TDS of 4,530 mg/L, which is protected by SEPP Groundwaters of Victoria for this beneficial use. However, it is noted that this may be too saline for some stock without supplementary fresh water.

6.2.6 Industrial Water Use

This benefical use is intended to protect users of bores who wish to use groundwater for one of a wide range of industrial uses. Some industrial uses demand water that is purer than drinking water, while others can tolerate saline water. It is noted that wash-down water for stockyards/abattoirs is a potential industrial water use that needs to be considered.

On balance, it is concluded that this beneficial use is not precluded due to the condition of groundwater at the site for the following reasons:

- The naturally elevated natural salinity of the groundwater may restrict its use for a range of industrial purposes.
- It is highly unlikely that groundwater will be used for this purpose at the site, particularly given that no significant groundwater was intersected in the majority of bores at the site, and the availability of reticulated water at the site.
- The zoning of the area (farming) would also limit the likelihood of industrial land use, and therefore industrial water use in the vicinity of the site, with the exception of use for stockyard wash-down.

6.2.7 Primary Contact Recreation

This beneficial use is intended to protect people who might swim in water derived from a groundwater source, such as a bore used to fill a swimming pool. It can also relate to situations where a water body occurs at a site where it receives groundwater discharge and may be used for swimming. The latter is not relevant to this site as discussed above in relation to 'maintenance of aquatic ecosystems'

Aluminium and iron significantly exceed the relevant assessment criteria in bores BH5 and GW106. Chromium slightly exceeds the assessment criterion in bores BH5 and GW106, and manganese slightly exceeds the criterion in bore GW111. TPH concentrations slightly exceeded the adopted assessment criteria (Dutch 2000) in three bores, including TPH C_{10} - C_{14} in bore BH3 and TPH C_{15} - C_{28} in bores GW106 and GW110.

PFOS and PFOA exceed the adopted assessment criteria (adopted Drinking Water criterion x10) for bores GW107 and GW110 (installed in perched groundwater).

It is concluded that this beneficial use is not precluded due to the condition of groundwater at the site for the following reasons:

- The bores with the highest contaminant levels are either perched or otherwise not representative of the regional aquifer.
- It is understood that the construction of a swimming pool supplied by groundwater is not proposed for this site and would be very unlikely.

6.2.8 Buildings & Structures

This beneficial use is intended to protect buildings and in-ground structures that may come into contact with groundwater and be harmed (by corrosion or chemical attack) if that groundwater was contaminated.

While a full assessment of potential risks to buildings and structures falls outside the scope for this assessment, field observations combined with the results of pH and sulphate analysis suggest a low likelihood of corrosion risk due to contamination of groundwater at the site. Sulphate, chloride and pH results from site groundwater were compared to the guidance in AS2159-2009. Sulphate ranged from 12 to 177 mg/L, chloride ranged from 40 to 1,900 mg/L and pH ranged from 6.6 to 7.9. Based on these results, groundwater at the site is considered to be "non-aggressive" to concrete structures.

However, this report is not a geotechnical or corrosion risk assessment and specialist advice would be needed to assess potential corrosion risk to buildings and structures.

Furthermore, the fact that most of the bores at the site were dry indicates that buildings are unlikely to be in contact with groundwater, with the exception of those areas where perched groundwater was encountered.

Therefore, this beneficial use of groundwater is considered not to be precluded by contamination.

6.3 Risks to Groundwater

As part of this groundwater assessment, Cardno Lane Piper initially proposed to target the water table aquifer in the fractured basalt of the NVA. The recent monitoring of bores installed by Coffey (1996) reported groundwater at depths ranging from 18 to 20 m below ground level in two bores, and at 0.7 m below ground level in a bore installed to 1.8 m. It would appear that Coffey did not drill to the Newer Volcanics - Werribee Formation contact, and therefore the thickness of the Newer Volcanics at the site was not previously known. However, published geology maps show the underlying Werribee Formation outcropping along Yaloak Creek to the east and south-east of the site. Prior to commencement of drilling, Cardno Lane Piper estimated (based on extrapolation of geology and contour intervals) that the depth of the Newer Volcanics - Werribee Formation contact at the Fiskville site may be in the order of 25 to 30 m below ground level. This target depth was found to be correct.

The main aim of this investigation was to assess whether or not on-site activities had contaminated the water table aquifer at the site. Ten of the 14 bores contained sufficient groundwater to be sampled and tested, but only one of these (bore GW101) may be representative of the water table aquifer. The other bores either had insufficient water to be properly purged prior to sampling, or they were installed to monitor perched (shallow) groundwater. Some of the samples were turbid due to the lack of water inflow, and this limits the ability to obtain representative results.

Given that the Newer Volcanics (expected to be the uppermost or water table aquifer at the site) is largely unsaturated, it was decided to assess groundwater in the Werribee Formation. Bores GW108 and GW109 were drilled to depths of 60 m and 50 m respectively. To prevent potential groundwater cross-contamination, both bores were cased off in the Newer Volcanics before drilling into the Werribee Formation. The Werribee Formation was dry to depths of 20 m and 30 m below the base of the Newer Volcanics in bores GW108 and GW109 respectively.

Drilling deeper into the Werribee Formation to determine the depth to the regional water table was not pursued as the prospect of any contamination from the surface infiltrating to these depths through intervening clay units, was considered to be very low. Further exploratory drilling was suspended.

While a water table aquifer has not, as such, been intersected at the site, the investigation indicates that there is limited potential for on-site or off-site migration of contamination via groundwater. The only bore that intersected appreciable groundwater, which could sustain a low yield water supply bore, is bore GW101 which is located a significant distance to the northeast, and most probably hydraulically upgradient, of the Operational Area or other potentially impacted areas of the site.

Bores drilled in the Operational Area did not intersect significant groundwater in the NVA. However, perched groundwater was encountered in near-surface fill and clayey basalt in three bores in the Operational Area. The fill included scoria which was imported to the site to build up the area and form Dam 2 in 1999. The bores included one bore to the south of the service station prop (GW107), one bore to the south of the FL PAD (GW110) and one bore adjacent to Dam 2 (GW111). Bores GW107 and GW110 recorded elevated concentrations of PFOS and PFOA. These concentrations exceeded the adopted assessment criteria for Drinking Water and Primary Contact Recreation, though drinking or primary contact are highly unlikely to occur. Elevated concentrations of PFCs in perched groundwater in the Operational Area could result in localised impact, including discharge of groundwater to on-site dams and/or drainage channels. These results suggest that further investigation of shallow groundwater in the Operational Area is warranted.

A schematic diagram is presented as Figure 9, Appendix A. The diagram presents a cross-section showing potential contamination in the Operational Area of the site, including perched groundwater in the vicinity of the FL PAD and storage dam. The cross-section shows that the perched groundwater is limited to the porous scoria fill (found in the Operational Area), and that the deeper NVA is largely dry, with the exception of minor groundwater which is sometimes encountered at the base of the NVA.

The degree to which these features or activities have potential to contaminate groundwater depends on the actual amount of contamination released from each, and the unattenuated seepage of these materials to a depth where groundwater occurs. The soil investigations to date do not indicate significant residual contamination, following a major remediation effort in 1998. Further, the low permeability soils overlying the deep aquifer (believed to be in the lower Werribee Formation) would prevent significant vertical seepage of contaminants to the regional groundwater.

In summary, it is considered highly unlikely that the fire fighter training activities at the site have resulted in any significant contamination of groundwater, given the great depth of regional groundwater aquifer and the thickness of clay layers between the base of the basalt and the likely depth of the groundwater. Further, the low frequency of groundwater use at or near the Fiskville site indicates a low risk of impact on users of groundwater bores, in the unlikely event of groundwater becoming contaminated.

7 SUPPLEMENTARY WATER SUPPLY

The site is located in a region where deep aquifer units in the Werribee Formation are known to produce high groundwater bore yields. Given the opportunity to explore this aquifer during the groundwater contamination assessment, Cardno Lane Piper was also able to evaluate the resource potential of this unit.

The assessment has shown that there is no substantial aquifer with permanent water within 60m of surface. While it is possible that deeper units of the WFA could yield a useful water supply, further exploratory drilling (possible from 80 to 120m) would be required to confirm this.

The desktop study has shown that the regional salinity of groundwater in the WFA ranges from 2,500 to 4,000 mg/L TDS. This salinity makes the groundwater marginal as a water supply for training purposes, where the water is likely to be discharged to the surface water environment which contains fresh water. Such a saline groundwater could have a deleterious effect on the ecosystem of the aquatic environment into which the water discharges. Treatment of saline groundwater using a Reverse Osmosis process would be necessary to remove the salts and make the water suitable for discharge to the environment.

Consequently, and assuming that a Reverse Osmosis treatment plant would not be feasible to desalinate the groundwater, it is not advisable to invest the substantial funds required to install an exploratory water supply bore (diameter and cost would be much greater than for an environmental monitoring bore) to evaluate the productivity of the Werribee Formation Aquifer at the site. In the event that water availability becomes critical in the future, and if a reverse osmosis treatment plant had been installed to treat chemicals in the fire training water, then the feasibility of using deep groundwater resources should be reconsidered.

8 CONCLUSIONS

This section presents the conclusions of the groundwater contamination assessment which includes a conceptual 'hydrogeological assessment' of site conditions. It also concludes against the objectives of the investigation including the likely sources of contamination, including those identified in the IFI Report; it characterises the contamination status of the groundwater at the site and identifies the feasibility of using groundwater as a source of water for fire fighter training drills.

8.1 Hydrogeological Understanding of the Site

An understanding of the hydrogeology of any investigation site, in its regional context, is fundamental to the investigation of groundwater contamination. The initial desktop assessment identified the shallow geological unit (Newer Volcanics) as the likely regional water table aquifer at the site. However, this unit had minimal water and is considered to be unsaturated, except in the north-eastern corner of the site. Deeper drilling to about 60 m in the Werribee Formation failed to find groundwater. Some groundwater was found in shallow bores in the vicinity of Dam 2 and the FL PAD, and has been interpreted to be 'perched groundwater' in man-made fill, and not representative of the natural groundwater in aquifers used by farmers and others for a range of purposes in the region. For this reason, this perched groundwater may not need to be protected under *SEPP Groundwaters of Victoria*.

The interpreted hydrogeology indicates a low risk of groundwater contamination by sources at the site surface, or the subsequent contamination of surface waters by discharging groundwater, for the following reasons:

- The groundwater is very deep (more than 60 m) and is protected by overlying low permeability soils. This minimises the likelihood of seepage of contaminants to depths where the first aquifer is expected.
- The groundwater is classified as Segment B under SEPP Groundwaters of Victoria, based on published information. The perched water is 'fresh' and may be classified as Segment A, but should not be considered protected under the SEPP, given its artificial nature and limited extent.
- The small number of groundwater bore users near the Fiskville site indicates a low risk of impact on users of groundwater bores, in the unlikely event of the groundwater becoming contaminated at the site.
- The groundwater is too deep to discharge to the nearest surface water body (Lake Fiskville
 in the west of the site). The nearest possible point of regional groundwater discharge is
 expected to be Yaloak Creek to the east and south-east of the site. In the unlikely event
 that contaminants such as petroleum hydrocarbons entered the groundwater beneath the
 site, they would biodegrade during migration over such a long travel distance.

The hydrogeology is sufficiently well understood and no further groundwater investigations are justified at this time. Further work may be required by an EPA Environmental Auditor recently engaged to comply with an EPA Clean Up Notice.

8.2 Potential Sources of Contamination and Risks

The sources of potential contamination set out in the IFI Report were reviewed in detail by the Cardno Lane Piper team, and reported separately in the Site History Review (Cardno Lane Piper, 2014a). In summary, this study concluded that there are currently, and historically, several potential sources of contamination of both soil and groundwater at the site, as listed in Section 3 of this report.

The subsequent investigation of soil contamination presented in the Cardno Lane Piper Report titled "Targeted Soil Assessment" (Cardno Lane Piper, 2014b) identified very limited areas of contamination, including surface soil contaminated with petroleum hydrocarbons and PFCs near the FL PAD, and one isolated occurrence of petroleum hydrocarbons in a former UST pit, now backfilled. Neither of these would be characterised as a significant source of these contaminants to the groundwater.

It is also noted that the soil in the FL PAD area was contaminated by petroleum hydrocarbons before being remediated in 1998. Up to 5,400 m³ of soil was excavated from the FL PAD area and bio-remediated in the Soil Composting Area. This represents a significant reduction of a potential source of groundwater contamination in this area of the site.

It is concluded that there is a low risk of contaminated groundwater from these sources impacting the natural groundwater systems at the site and its vicinity.

8.3 Groundwater Contamination Observed

Only one of the groundwater bores monitored at the site is considered to be representative of the natural water table aquifer of the region (which most often occurs in the Newer Volcanics). A number of water samples were collected from bores which contained minor seepages. The seepage water was generally insufficient to obtain a representative sample from which reliable water quality data could be obtained.

Contamination was reported in perched water in imported fill in the vicinity of Dam 2 and the FL PAD. This included concentrations of PFCs reported in two shallow bores, as discussed in Section 6.3. The contaminated perched water is of no significance as 'groundwater contamination', as the water is limited to this area and would not be extracted for any use. (A common interpretation of *SEPP Groundwaters of Victoria* would indicate that this water would not be protected under the policy due to its mode of occurrence.) However, the water requires management for two reasons: a) it has the potential to seep towards the nearby stormwater drain, and b) the perched water is in hydraulic connection with the water in Dams 1 and 2, which are similarly contaminated and discharge to Lake Fiskville, and then potentially off-site. The perched water is proposed to be remediated together with the contents of the dams, and the proposed further investigations will contribute to the design of this remedial response.

The contaminants found in the perched water do not present a vapour contamination risk and therefore do not present a health risk to site occupants via that pathway. Further, the low concentration of petroleum hydrocarbons reported in one of the bores is also not a vapour risk.

In summary, it is considered highly unlikely that the fire fighter training activities at the site have resulted in any significant contamination of the regional aquifers deep beneath the site. Groundwater contamination is limited to perched water near Dam 2 and the FL PAD, and presents no significant risk to site occupants.

8.4 Water Supply from Groundwater

The assessment has shown that there is no substantial aquifer with permanent water within 60 m of the surface. The desktop study has shown that the most prospective water supply aquifer in the region is the Werribee Formation Aquifer. However, this aquifer contains relatively saline water and may not be suitable for fire fighter training activities (if not treated by reverse osmosis) due to the need to discharge used water to a fresh water creek.

It is possible that the deeper units of the Werribee Formation Aquifer could yield a useful water supply. However, deep (200 m) exploratory drilling would be required to assess this prospect. Given the high cost of such exploration and the likelihood of obtaining saline water, such expenditure is not proposed at this time. In the event that a Reverse Osmosis water treatment plant is installed at the site for other reasons, then the feasibility of using deep groundwater as a water supply for fire fighter training should be considered.

9 RECOMMENDATIONS

Based on the conclusions of this investigation:

- 1. Further work is recommended to investigate the extent of PFC contamination in the shallow, perched water in the fill near Dams 1 and 2 and the FL PAD, and its potential to seep to the stormwater drainage system.
- 2. An assessment of the feasibility of remediating PFC contamination in the perched water should be completed after the further investigation of the area, including hydraulic testing of the fill.
- 3. It is possible that some of the new bores installed during 2012 may 'gain' groundwater over time. During the next monitoring round, it is recommended that all bores should gauged for water level and, if sufficient water is present, the bores should be developed and sampled to establish a scope for the investigation of regional groundwater.
- 4. While further investigation of the regional aquifers is not required at this time, the EPA Environmental Auditor, engaged recently to audit the site in compliance with an EPA Clean Up Notice, should be consulted to ascertain his requirements for any further investigations.
- In the event that a Reverse Osmosis water treatment plant is installed at the site, the feasibility of using the plant to treat the deep saline groundwater as a water supply for fire fighter training should be considered.

10 REFERENCES

Legislation and Guidelines

- 1. Environment Protection Act, 1970 (Act No.8056/1970), Victoria.
- 2. Government of Victoria (1997) *State Environment Protection Policy (Groundwaters of Victoria)*. Victorian Government Gazette, S160, 17 December 1997.
- 3. Government of Victoria (2002). State Environmental Protection Policy (Prevention and Management of Contamination of Land). Victorian Government Gazette, S95, 4 June 2002.
- 4. Government of Victoria (2003) State Environment Protection Policy (Waters of Victoria). Victorian Government Gazette, S107, 4 June 2003.
- 5. Water Act, 1989. (Act No. 80/1989), Victoria.

General References

- 6. Australian & New Zealand Environment & Conservation Council (1992) *Australian Water Quality Guidelines for Fresh and Marine Waters*. National Water Quality Management Strategy.
- 7. Australian & New Zealand Environment & Conservation Council and Agriculture & Resource Management Council of Australia and New Zealand (2004). *Australian Drinking Water Guidelines*. *National Water Quality Management Strategy*.
- 8. Australian & New Zealand Environment & Conservation Council and Agriculture & Resource Management Council of Australia and New Zealand (2000) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. National Water Quality Management Strategy.
- 9. Australian & New Zealand Environment & Conservation Council / National Health and Medical Research Council (1992) *Australian and New Zealand Guidelines for the Assessment & Management of Contaminated Sites. January 1992.*
- 10. EPA (2000) A Guide to the Sampling and Analysis of Waters, Wastewaters, Soils and Wastes. Publication 441, 7th edition, March 2000, Environment Protection Authority, Victoria.
- 11. EPA (2000) *Groundwater Sampling Guidelines*. Publication 669, April 2000, Environment Protection Authority, Victoria.
- 12. EPA (2006). *Hydrogeological Assessment (Groundwater Quality) Guidelines*. Publication 668, September 2006.
- 13. EPA (2009) Soil Hazard Categorisation and Management. Publication IWRG621, June 2009, Environment Protection Authority, Victoria.
- 14. Ministry of Housing, Spatial Planning and the Environment (2009) *Soil Remediation Circular 2009*.
- 15. National Environmental Health Forum (1998) *Health-based Soil Investigation Levels, Soil Series No 1,* 1996 and 1998.
- 16. NEPC (National Environment Protection Council) (1999) *National Environment Protection* (Assessment of Site Contamination) Measure, December 1999.
- 17. NHMRC (2011) National Water Quality Management Strategy, *Australian Drinking Water Guidelines 6, 2011*. National Health and Medical Research Council, January 2011.
- 18. NSW EPA (1994) Guidelines for Assessing Service Station Sites. Environment Protection Authority, New South Wales EPA.
- 19. Standards Australia (2005) Guide to the sampling and investigation of potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds. AS4482.1-2005

- 20. Standards Australia (1999) Guide to the sampling and investigation of potentially contaminated soil Part 2: Volatile substances. AS4482.2-1999.
- 21. Leonard J.G. (1992). Port Phillip Region Groundwater Resources Future Use and Management. Department of Water Resources Victoria.
- 22. Geological Survey of Victoria (1986). Geological Map Series Ballan, 7722-4 Zone 55. 1:50,000.
- 23. Geological Survey of Victoria (1997). Geological Map Series Melbourne, SJ 55-5, Edition 2, 1:250,000. May 1997.
- 24. Department of Conservation & Natural Resources (1995). Victorian Groundwater Beneficial Use Map Series, South Western Victoria Water Table Aquifers, 1:500,000.
- 25. Department of Primary Industries website (GeoVic), 10 August 2012.

Site Specific References

- 26. Cardno Lane Piper (2014a). Site History Review, Fiskville Training College, 4549 Geelong Ballan Road, Fiskville, Victoria. March 2014.
- 27. Cardno Lane Piper (2014b). Targeted Soil Assessment. Fiskville Training College, 4549 Geelong Ballan Road, Fiskville, Victoria. March 2014.
- 28. Coffey Partners International Pty Ltd (1996). CFA Training College Groundwater Monitoring Network Installation, Ballan Vic. October 1996.
- 29. Golder & Associates (2012) CFA Training College, Fiskville VIC Preliminary Site Assessment. Prepared for the Independent Fiskville Investigation, 15 June 2012.
- 30. Joy, R. (2012). Fiskville Understanding the Past to Inform the Future. Report of the Independent Fiskville Investigation. 28 June 2012.

Appendix A 9 Pages

Figures

Figure 1: Site Locality Plan

Figure 2: Site Aerial Photograph

Figure 3: Groundwater Bore Locations

Figure 4: Groundwater Elevation Plan

Figure 5: Topographic Plan

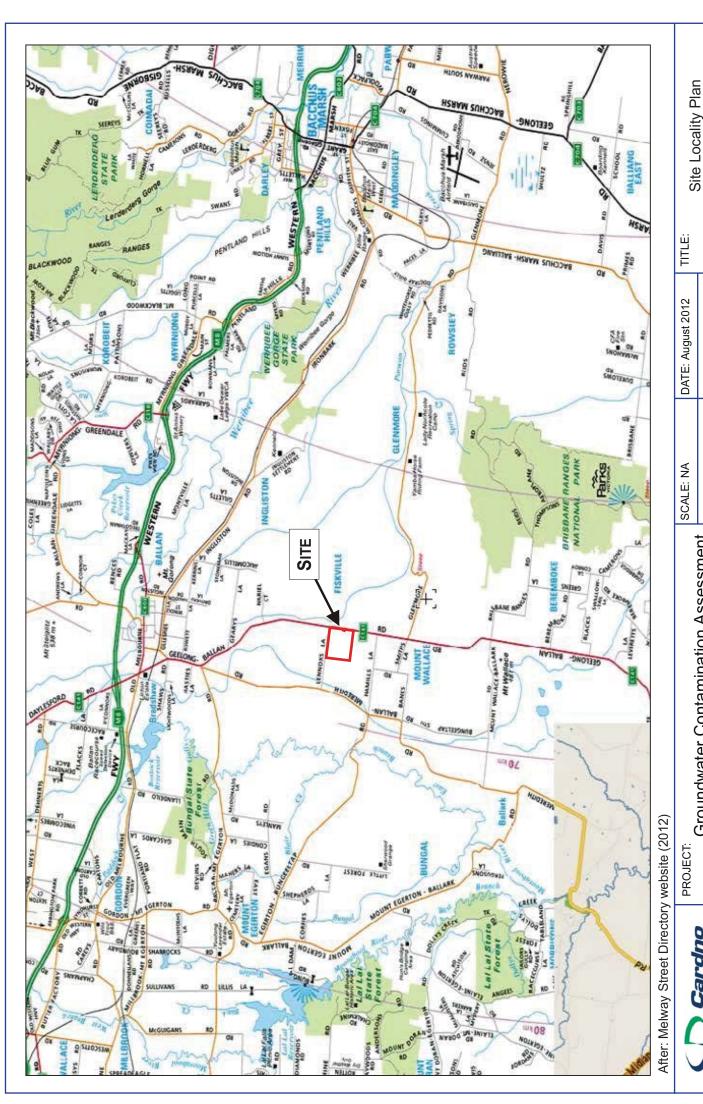

Figure 6: Regional Geology Plan

Figure 7: Geological Section A-A'

Figure 8: Piper Diagram

Figure 9: Stiff Diagrams

Fiskville Training College

Cardno LanePiper Shaping the Future

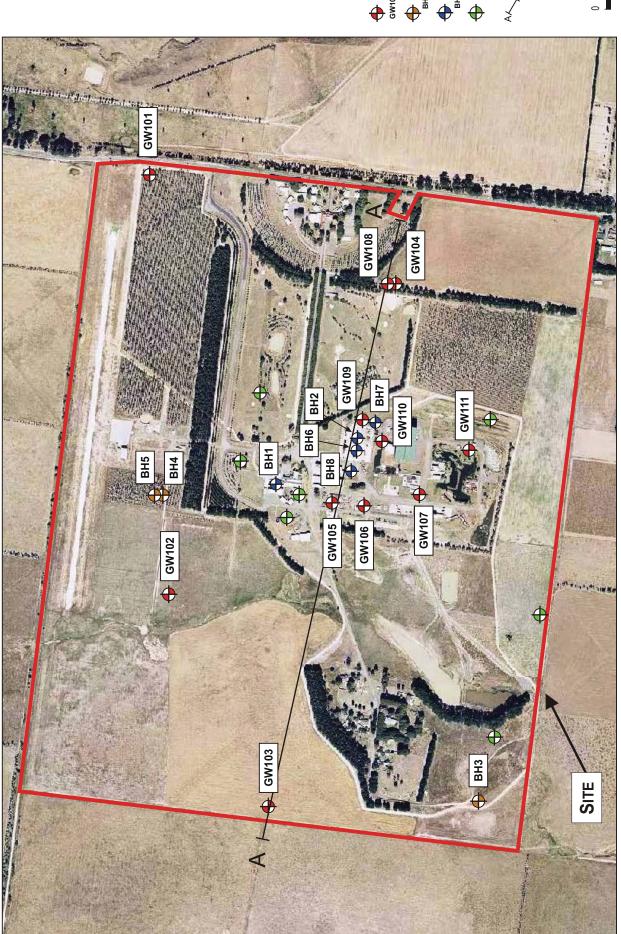
REF: Figure 1.cdr DRAWN: DJL Groundwater Contamination Assessment

FIG: 1

REV: 1

JOB No: 212163.2

PROJECT:
Groundwater Contamination Assessment
Fiskville Training College


TITLE: JOB No: 212163.2 DATE: June 2013 DRAWN: MCD/DJL SCALE: NA

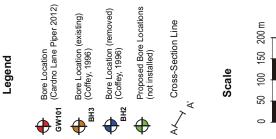

REV: 1 REF: Figure2.cdr

FIG: 2

Site Layout Plan

Base Plan: 2007 Aerial Photograph

PROJECT:
Groundwater Contamination Assessment
Fiskville Training College

1	SCALE: See scale bar DATE: June 2013	DATE: June 2013
nation Assessment	DRAWN: DJL	JOB No: 212163.2
282100 811	REF: Figure3.cdr	

Groundwater Monitoring Bore

TITLE:

Location Plan

FIG: 3

REV: 2

Legend

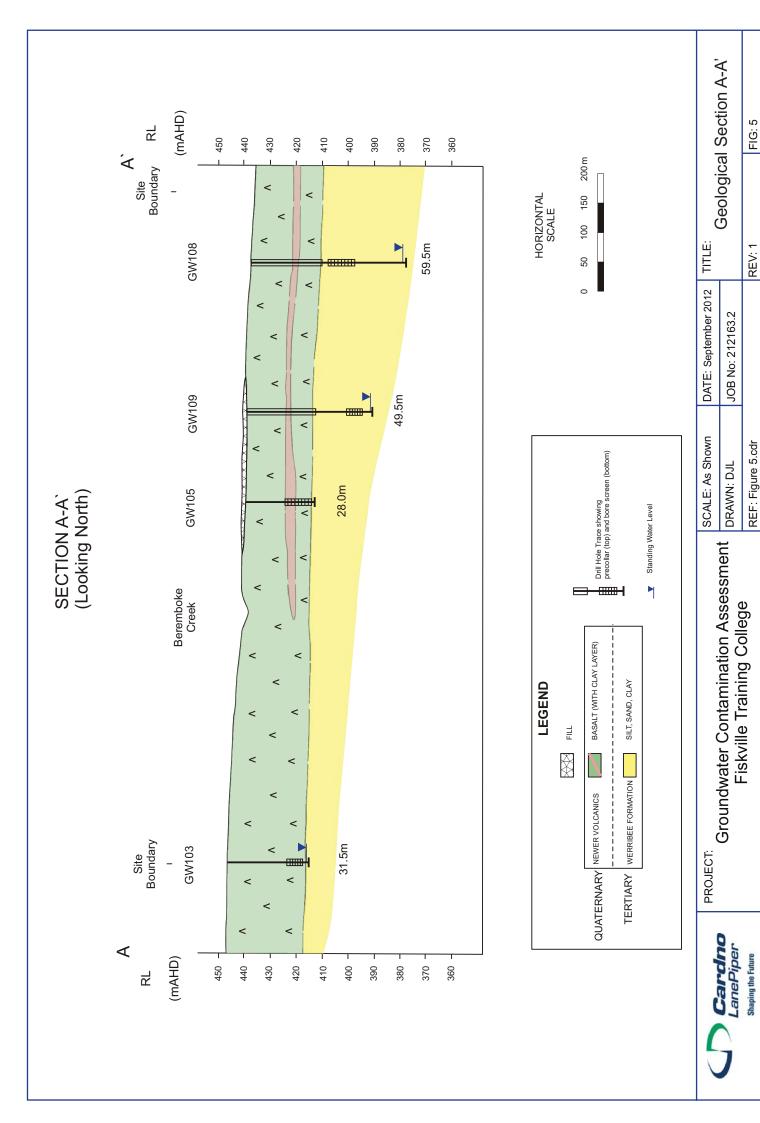
Bore Location (2012)

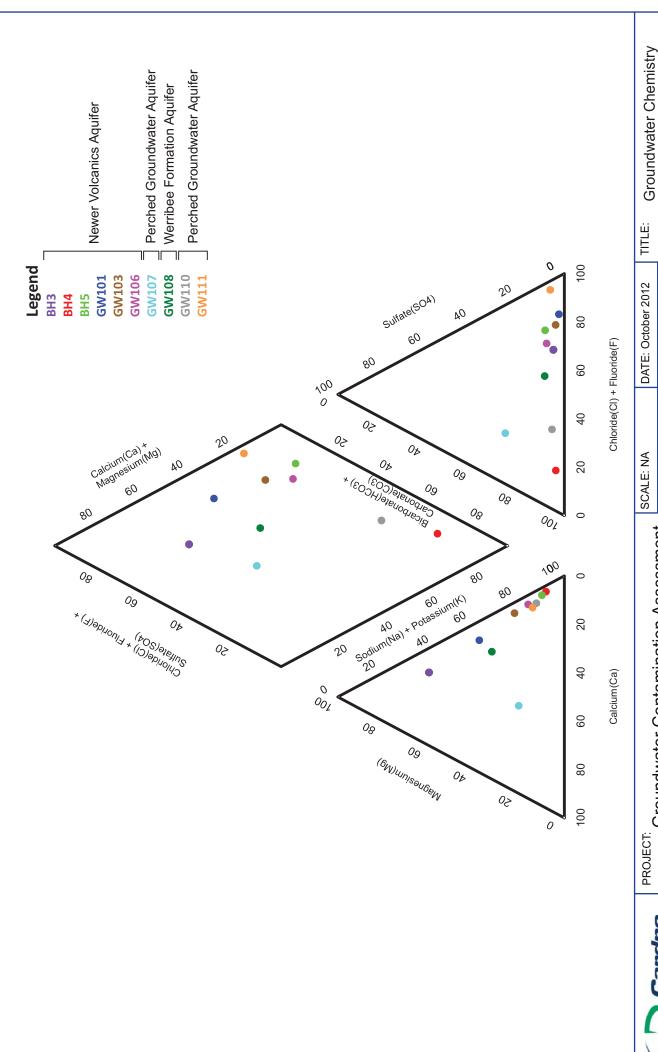
- showing groundwater elevation (m AHD)

Bore Location (1996) - showing groundwater elevation (mAHD)

Scale

Base Plan: 2007 Aerial Photograph


PROJECT:
Groundwater Contamination Assessment
Fiskville Training College


SCALE: See scale bar DATE: September 2012 TITLE: JOB No: 212163.2 REF: Figure4.cdr DRAWN: DJL

REV: 1

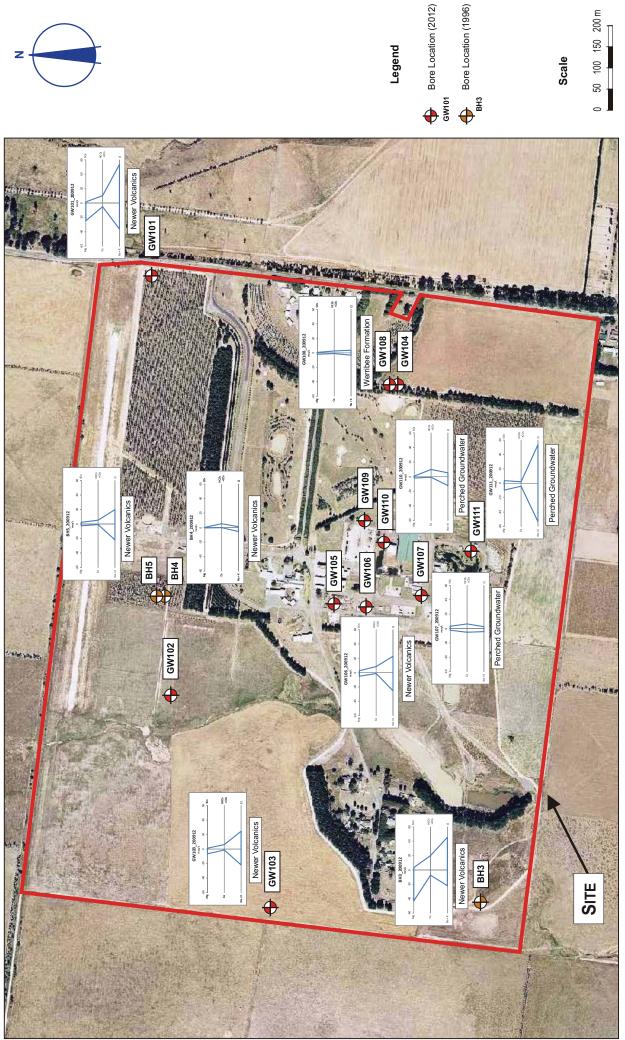
FIG: 4

Groundwater Elevation Plan

BROJECT:

Groundwater Contamination Assessment

Fiskville Training College


REF: Figure 6.cdr

7	SCALE: NA	DATE: October 2012	TITLE:
=	DRAWN: DJL	JOB No: 212163.2	
	REF: Figure6.cdr		REV: 1

Piper Diagram

FIG: 6

Legend

REF: Figure7.cdr

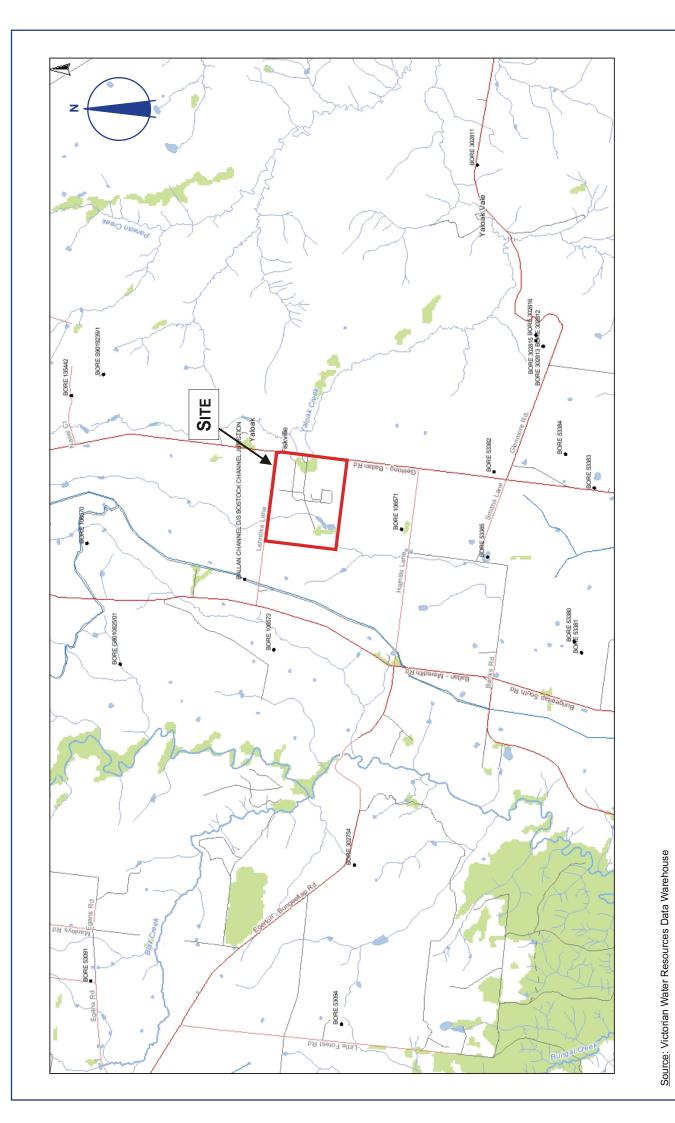
SCALE: See scale bar | DATE: September 2012 | TITLE: DRAWN: DJL

Scale

Groundwater Chemistry

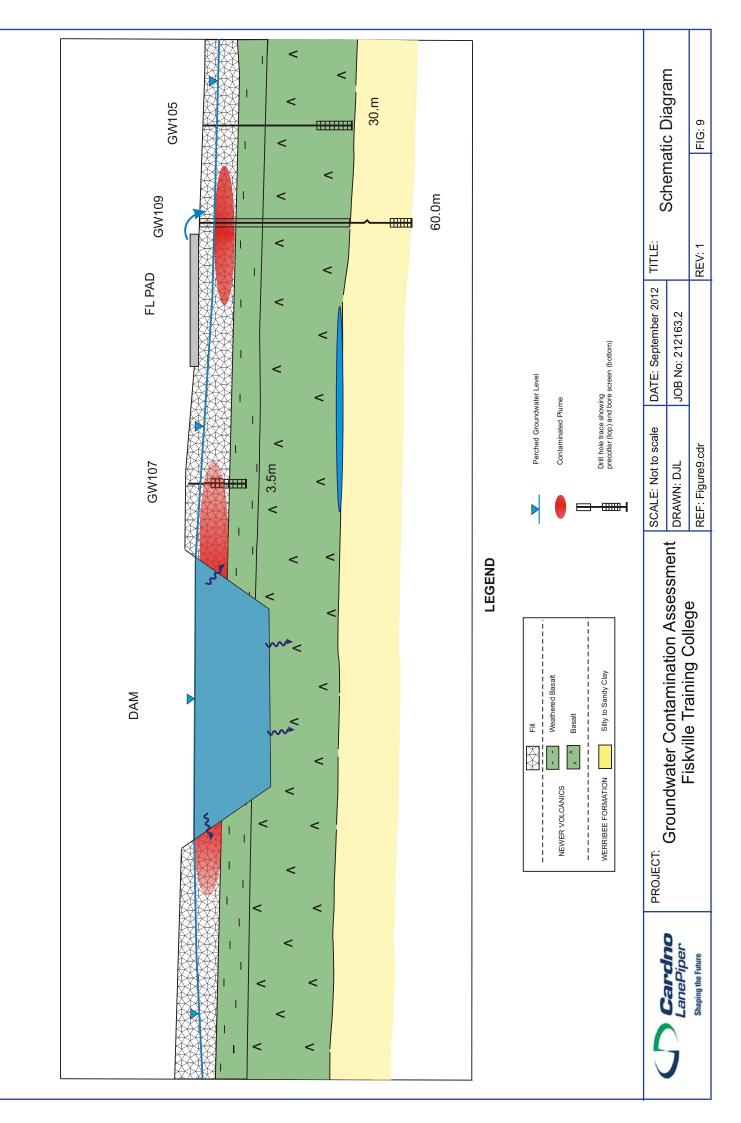
Stiff Plots FIG: 7

REV: 1


JOB No: 212163.2

Cardno LanePiper

Shaping the Future


Base Plan: 2007 Aerial Photograph

PROJECT:
Groundwater Contamination Assessment
Fiskville Training College Cardno LanePiper

Shaping the Future

	SCALE: NA	DATE: September 2012 111LE:		Groundwater Database
_	DRAWN: DJL	JOB No: 212163.2		Bore Locations
	REF: Figure8.cdr		REV: 1	FIG: 8

Appendix B 5 Pages

Tables of Laboratory Test Results

Table B-1: Groundwater Laboratory Results

Table B-2: RPD Results

Dichlorodifluoromethane	/bri	٧- 20				<50	<50	<50	<50	<50	<20	<50	<20	
odomethane	/bn	ر ا				<5		<5	<5	<5	<5	<5		<5
Trichlorofluoromethane	/brl	ال 50						<50	<50	<50	<20	<50	V	20

Appendix B

Page 1 of 4

Amino Alighatics Jug. Natives of each damine 19/1. Natives of exponylamine 19/1. Natives of exponylamine 19/1. Natives of exponylamine 19/1. Antino Aromatics 19/1. Antinos Altines 19/1. Antinos alline 19/1. 3-ritroanline 19/1. 4-ritroanline 19/1. 4-ritroanline 19/1. Antilines 19/1. Antilines 19/1. Antilines 19/1. Antilines 19/1. Antiline 19/1.		2000 Fresh Water (95%)		ADWG 2011 Health	ANZECC 1992 Agriculture/	ANZECC 1992 Stock Watering	Primary Contact Recreation										
	2 2 2							42 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <	\$ \$ \$ \$ \$ \$ \$		222	<2 <2 <2 <2		42 42 42 42 42 42 42 42 42 42 42 42 42 4	42 42 42 43 44 45 46<	2 2 2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	Ш							<2	<2	<2	<2	<2	<2	<2	42	<2	<2
	2							<2	<2	<2	<2 2	<2	<2	<2	♡	7	² 2
	4 4							44 44	44 44	44	4 4	>4 >4	44 44	4× 4×	4 4	4 4	44 44
	2 2							<2 <2 <2	<2> <2	<2 <2 <	<2 <2	<2 <2 <2	<2 <2 <2	<2 <2	7 7	<2 <2	<2 <2 <2
	2 2		250#12					<2 <2	<2 <2	<2 <2	Ç Ç	<2 <2	<2	<2 <2	7 7	2 2	<2 <2 <2 <2
	-		950	1		10	10	\ \	^	^	₽	· .	∨	7	▽	⊽	^
	2 0			300				<2>	<2 </td <td><2> <2</td> <td>7 7</td> <td>V 42</td> <td><2 72 73</td> <td>7 7</td> <td>7 7</td> <td>2 5</td> <td>[^]2</td>	<2> <2	7 7	V 42	<2 72 73	7 7	7 7	2 5	[^] 2
	Ш			000				<2>	<2>	<2>	<2 <2	3 %	<2>	<2>	7 7	7 0	<2
ylene (o) µg/L ylene Total µg/L	\downarrow		350	009				4 < 2	^ ^2	<2 <	2, 4	യ	< 4	2 × ×	0, 4	\$ 4	4 ×
	Ц									-							
	2 2							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V V2	V V	ψ.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V V2	v V	N A	φ	V V2
	2							<5	<5	<5	<5	\ \ \ \ \	<5	<5	\$2	\$2	<5
1,2-trichloroethane ug/L	വ		0069					V V	V V	V V	ς V	V V	V V2	V V	S S	€ 5	\$ \$
	2			30		0.3	0.3	<5	<5	V 22	<5	V 22	<5>	<5	<22	<52	<5
	ı,							V V	5 4	\$ \$	ν, Λ	V V	V V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ν, γ	ιζ, ₁	, A
	വ							C/ V2	2 2	200	7 %	0 V	V V2	5 2 2	7 5	7 \$	\$ \$2
	Ω			3		10	10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
-dichloropropane ug/L	ω u							io ic	C V	io ic	rc v	N A	N N	ις ν ν	ro r	\$ \$	\$ \$
	2							<5	<5	V 22	<5	V 22	<5>	<5	<22	<52	<5
	2							V22	\$ 5	V 22	\22 h	V V	ζ, ₁	32	\$ 1	\$ 5	\$ 5
arbon tetrachloride	വ			3		n	3	C/ V2	2 2	200	7 %	0 V	V V2	5 5 7 2	7 5	7 \$	\$ \$2
	Ц							<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	20							<50	<50 <5	×50	×50	×50 ×50	<50 <55	<50	× 20	× 20	×20 ×20 ×20
Iloromethane Ing/L	20							<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
	ιΩ							<52 i	\$\text{\sqrt{2}}	100	\$2 i	ς γ	, S	\$\right\{2}	\$	ζ, ,	ç, i
	ດ ເດ							o v	0 10	O IC	O LC	o ro	V V	v v	V V	v V	\$ \$2
	Ц			0.7				<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	9,		090					0,70	010	2,00	70,70	v 10	V10	V 410	7 410	7 410	49
	+		000			30	30	<5	<5	<5	<5	<5	<5>	<5>	2	2 %	×2 ×2
	Ц			50		10	10	<5	<5	<5	<5	<5	<5	<5	<2	<5	<5
	+							V V	V V2	Ω V	\$ \cdot \cdo	V V	V V2	V V2	\$ \$	\$ \$	\$ \frac{\dagger}{\dagger}
nyl chloride Lgar	20			0.3				<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
	0000							<0 00 V	CO 00>	<0 00 0 ×	<0 00 0 ×	<0.00	CU U>	COO 00>	2U UV>	CUU U>	CUU U>
	\perp		65#12					×4 ×4	<4	×0.002 ×4	<4	×44	×0.002 ×4	×4 ×4	42	<4	×44
6-dinitrotoluene µg/L	Ц							<4 4	>4	<4 4	4	<4	>4	44	4	42	>
	2		550					<2	<2	<2	<2 <2	<2	<2	<2	<2	<2 <2	<2
1,2,3-trichlorobenzene µg/L	2		10					<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
2,4-trichlorobenzene µg/L	4		170#12	4500				7 7	2 4	2 0	2 9	2 7	7 7	2 4	7 7	5 5	2 5
	2		260					<2>	<2>	<2>	<2 <2	<2	<2>	<2>	<2 <2	7 7	<2 <2
	2 -		09	40				2 1,	42	2 2	<2	<2	² 2	22 1	\$ r	<2 1	\$ 4
	വ							C/ S/	V2 V2	<55	°25	V V	V2	<5>	\$ \$	7 5	V V2
	2							<5	<5	<5	<5	<5	<5	<5	<2	<5	<5
hlorobenzene µg/L	ω <			300				V V	2 7	V V	\$ 5	V V2	V V	V V	\$ 7	7 22	V 22
	5 ‡							⁺ 2>	[‡] ⁷	7 7	7	<2	[‡] ⁷	<25 t	<2 <	5 4	⁺ ⁻ ⁻ ⁺
	ı			,				L,	L,	L,	E,	E,	E.	ų	E,	ų	i,
Bromomethane ug/L	20 0			- 1				65 65	\$200	<50	<50	<50	05>	05>	°20 °20 °20	<20	°20 °20 °20 °20 °20 °20 °20 °20 °20 °20
	Ц							<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
domethane µg/L	4							, v5 , x0	^ 55 /EU	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \F.	, v5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, v5	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	35 05	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

α
2
7
>
- 5
ų
2
c
-

Marie Color Colo			2009/2012 2009	M1211100 EN	M1211100 Er							
1	Units EQL Dutch Criteria ANZECC 2000 ADWG 2011 ANZECC 1992 2000 Fresh Water Health Agriculturel (95%) (95%) (198%) Irrigation	ANZECC 1992 Stock Watering	3ct									
14 2 2 2 2 2 2 2 2 2	Ц			-		-	-	-				
14 15 15 15 15 15 15 15	2 20		7 7	<2><2	42	7 7	^2 ^2	4 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 7	7 7	2 < 2
	2 160#12		² ²	<2>	<2>	25 5	<2>	<2	<2	2 9	25 9	<2
1 1 1 1 1 1 1 1 1 1	2 490*12		77 77	<22	<2>	7 7	<2 <2 <2	<2 <2	<2 <2 <2	7 %	7 77	<2 <
14 1 1 1 1 1 1 1 1 1	4 10		44	>4	<4	42	<4	44	44	4	42	<4
10,000 1,	2		<2	<2	<2	~	<2	<2	<2	<2	~	<2
1	7		7000	990	784	E43	900	405	000	720	004	100
1974 1000	Н) 	700 <1	70 4	212	300	57 	320	128	200	0 V
Mark 101	4		×1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	×1000	<1000
Mark 0.01 0.04	+	100#2	80	40	100	70	<10	270	180	490	380	170
			68.7	6.73	27.4	65.4	31.8	34	12.1	6.77	16.2	59.4
Marie Color Colo		4000#2	1610	6.13	704	1900	868	810	P. 06	0.18	189	1900
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0.004 0.007 0.08	142	<0.004	<0.004	<0.04	<0.004	8 -	2 '	<0.004	<0.004	<0.004	<0.004
1, 1, 1, 1, 1, 1, 1, 1,	- 3	Cove	6830	662	2690	6850	3130	2920	1270	099	1540	6590
Mark Coll. Mark	0.0	2*10	0.7	4 73	4.57	0.36	361	3.83	0.74	4.55	485	5.62
May 0.01 1.0	0.1		0.4	0.7	5.9	<0.1	1	11.1	1.8	2.8	6.0	0.5
March Color March Marc	0.01 7.2#20		21.1	0.12	0.01	0.67	<0.01	0.04	0.04	0.16	0.34	0.51
	0.01		24.1	0.01	0.02	<0.01 0.67	<0.01	0.06	<0.04 0.04	0.1	0.02	0.05
May 1 1 1 1 1 1 1 1 1 1	100		21,500	800	5900	700	1000	11,200	1800	3100	1300	1100
Mark	0.01	6-9	7.03	7.19	7.15	7.77	7.9	6.89	7.26	92.9	7.21	6.59
1944 5 5 5 5 5 5 5 5 5	- - -		495	125	111	821	495	580	97	72	277	1220
Harry 5 10 10 10 10 10 10 10	10	4	3790	376	3240	4530	1920	1700	780	400	434	3660
144, 6 6 6 6 6 6 6 6 6 6	Ш			٠		٠					•	
Mail	+		V V	N V	V V2	\$ K	N V	V V	N V	\$ 4	ψ. γ.	N V
1911 5 5 5 5 5 5 5 5 5	L		<5	<5	<5	<5	<52	<5	<5	<5	<5	<5
Mart S Mart Mar	4		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
100 100	+		V V2	V V2	V V2	V V	V V2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V V	\$ \$	\$ \$	\$ \$ \$
High	2		<5>	<5	<5	<5	<5	<5	<5	<5	<5	<5
May Color May May Color May Color May Color May Color May May Color May	ıo ı		, Ç2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V22	55 1	100	V 22	\$\frac{\circ}{2}	ζŞ i,	ζ., i	<5
mg/l 0.001			27	-	2	7	- 07	9	9	7	7	9
mg	0.01		0.01	0.07	1070	0.67	0.82	1170	<0.01	<0.01	0.02	0.04
Thirty COCO COCO	0.003		0.001	×0.001	<0.01	<0.001	×0.01	1.00	<0.001	<0.001	<0.001	<0.001 0.001
mg/L 0.007 0.007 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000	0.001		0.01	0.004	0.842	0.194	0.065	0.731	0.06	0.022	0.08	0.129
mg/L 0.005 0.057 0.007 0.007 0.001	0.001		<0.001	<0.001	0.02	<0.001	<0.01	<0.1	<0.001	<0.001	<0.001	<0.001
The color of the	0.05 0.37#12 4		0.07	<0.05	0.32	<0.05	<0.1	V 0.01	0.06	<0.05	0.06	0.21
This court is a court in the court is a court in the co		-	145	3	15	103	26	24	104	19	15	81
mg/L 0.001 0.004 0.005 0.004 0.005	0.01 0.001#12 0.05		<0.01	<0.01	<0.01	<0.01	<0.01	. !	<0.01	<0.01	<0.01	<0.01
mg/L 0.001 0.003 0.004 0.003 0.006 0.005	0.000		<0.001	<0.001	0.986	<0.001	<0.01	0.242	00.00	<0.001	0000	0.002
mg/L 0.005 0.005 0.005 0.005 0.001 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001	0.001 0.0014 2		0.002	0.005	0.163	0.002	<0.01	0.2	0.002	0.002	0.009	0.003
mg/L 0.001 0.005 0.001 0.005 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004	0.05		<0.05	0.06	338	0.71	0.56	540	2.19	<0.05	<0.05	<0.05
mg/L 0.001 0.002 0.002 0.002 0.004 0.001 0.024 0.148 mg/L 0.0001 0.0001 0.0002 0.0002 0.0001 0.001 0.004 0.010 mg/L 0.0001 0.001 0.0001 0.001 0.001 0.001 0.001 0.001 mg/L 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 mg/L 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 mg/L 0.01 0.01 0.001 0.001 0.001 0.001 0.001 mg/L 0.01 0.01 0.02 0.02 0.012 0.01 0.01 0.01 0.01 mg/L 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.001		0.005	0.001	0.398	0.002	0.013	0.403	0.002	0.005	0.002	0.014
mg/L 0.001			524	9	30	300	79	61	29	24	22	113
mg/L 0.001 0.001 -0.001 -0.003 -0.001	0.001		0.009	0.001	0.524 <0.001	0.148	0.132	0.628	0.891	0.298	0.121	1.22 <0 0001
mg/L 0,001 0,001 0,001 0,006 0,007 0,001	0.00		<0.001	<0.001	<0.01	<0.001	0.028	<0.1	0.001	0.01	0.001	<0.001
mg/L 0.01 0.011	0.001 0.002		9000	0.008	0.575	0.008	<0.01	0.611	0.02	0.008	0.013	0.049
mg/L 0.01 0.0016 0.01 0.0006 0.1 0.00	0.01		1.59	0.54	1.38	0.38	68.8	54.1	9.0	10.2	60.0	1.02
mg/L 0.001 0.07 0.001 < 0.01 < 0.01 < 0.01 < 0.001 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.01		40 U	2 <0.01	2 0 1	12	12	7 \	10.0>	20 0>	4 00 00	ر د0 01
mg/L 0.01 0.1 0.1 0.1 0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.	0.001 0.00005 0.1		<0.001	<0.001	<0.01	H	<0.01	<0.1	<0.001	<0.001	<0.001	<0.001
mg/L 0.01 0.006** 2*** 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 <	0.001		<0.001	<0.001	<0.01	_	<0.01	<0.1	<0.001	<0.001	<0.001	<0.001
1911 2 2 2 2 2 2 2 2 2	0.07		0.01	0.07	4.55		<0.1	0.627	0.007	<0.01	0.07	0.07
19/1 2												
Light 2 <td>4</td> <td></td> <td>7 7</td> <td><22</td> <td>²2</td> <td>7 7</td> <td><2></td> <td>²2</td> <td>²2</td> <td>7 7</td> <td>7 7</td> <td>²2</td>	4		7 7	<22	² 2	7 7	<2>	² 2	² 2	7 7	7 7	² 2
1gg/L 2 <2	2 2		42	<2>	<2>	25 45	<2>	<2 <2	<22	7 %	7 7	<2 <
1991. 2 <2 <2 <2 <2 <2 <2 <2								-				
7 7 7 7 7 NAIL 2	4		7 7	2 0	7 7	7 7	2 (7	2 0	2 7	0 9	7 7	2 7
			9	75	7	7	7	7,	7.	7	7	75

Page 2 of 4

ChemName	Units		ANZECC 2000				SDG ANZECC 1992	EM1211100	EM1211100	EM1211100	EM1211100	EM1211100	EM1211100	EMIZITIOO	EM1211100	EM1211100	EM1211100
			2000 Fresh Water (95%)	Неак	Agriculture/ Irrigation	Stock Watering	Primary Contact Recreation										
Aldrin Marin + Diolegia	Щ			0.0		-	-	² ²	<2	<2	7 7	42	<2>	7 7 7	7 7	7 7	<2
	ug/L 2			2				<2>	<2	<2	7 7	<2>	<2>	<22	7 7	<2>	<2
	4							7 7	7 7	7 7 7	7 7	2 7	7 7	7 7 7	7 7	0, 6	7 7
	ug/L 4		0.01	6		3	3	<4	<4	4>	42	<4	<4	4>	4 4	4 42	<4
	ug/L 4					7	7	4>	4>	42	4 (4>	4>	42	4 (4 (4>
	ug/L 2					-	-	<2>	<2 <2	× 5×	7 %	<2 <2	<2>	<2>	7 7 7	<2	<2>
	ug/L 2							7 7	7 2 5	7 7	7 7	7 7	7 75	7 7	27 57	2 7	7 75
Endrin	ug/L 2		0.02			-	+	7. 7. 7.	<2>	<2>	7 0	² 2 ×	<2 <2	4 < 2 < < < < < < < < < < < < < < < < <	7 %	25	<2 <2
	µg/L 2		0.2	10		10	10	² 2	<25 20 20 20 20 20 20 20 20 20 20 20 20 20	25 0	27 9	42	² 2	² ²	27	27 (7	² 2
	ug/L 2		0.09	0.3		2	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	^2 ^2	<2 <2 <	7 7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	^2 ^2	<2 <2 <2	7 7	7 7	^2 ^2
	Щ			C		0,7	4	ç	(,	Ç	ç	ç	ς,	ç	ç	Ç
	щ		0.01	10		2 2	2	<2>	<2	<2	<2	<2>	<2	<2	<2><2	<2	<2
	mg/L 0.002	2				4	4	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Dichlorvos	ug/L 2		0.01	4 10		20 20	20	2 0	V V	7 7	2 0	24 65	2 0	7 7	9 9	2 2	2 0
	Ц		0.15	7		100	100	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	\perp			4 1		9	9	V 52	V V V	V V V	0 0	7 5	V 22	\$ \$ \$	0 0	0 0	V 52
Malathion	ug/L 2		0.05	, 20		100	100	7,5	<2>	<2>	7 7	² / ₂	<2>	<2>	7 %	<2><2	<2 <2 <2
thiofos	Ц							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	mg/L 0.0001	-		0.0002#24			0.002#25		-	-	-	-	,	0.0579		1.2.1	
П	1							>4	>4	*	42	>4	>4	4>	42	2	>4
Ť		2		15			0.004#25							<0.2		11	
OS	mg/L 0.00002	72		0.0002#24			0.002#25							0.139		3.32	
PAH 7 12-dimethylbenz(a)anthracene	101							62	62	62	0	62	62	62	0	0	62
PAH/Phenols												-		-	-		
2,4-dimethylphenol	ug/L 2							7 7	2 7	7 7	7 7	7 7	7 7	7 7	7 7	7 7	7 7
2-methylnaphthalene	ng/L							7 7 7	7.7	<2	7 7	7 7 7	7.7	7 5 7	7 0	7 7	7.5
2-methylphenol	ug/L 2							7 7	2 2 2	7 75	0,0	7 7	7 75	2 5	0, 0	2 7	7 75
3-&4-methylphenol	ug/L 4							4>	42	44	3 4	42 42	4>	2× 4×	4 4	7 4	2× 4×
3-methylcholanthrene	ug/L 2							<2	<2	<2	<25	<2	<2	<2	2>	\$ 42	<2
Acenaphthene	ug/L 2							2 0	2 0	7 7	7 7	2 0	2 2	7 7	2 0	2 0	2 2
Acenaphthylene	ug/L 2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Acetophenone	hg/L 2							7 7	7 7	7 7	7 7	7 7 7	4 0	7 7	7 7	2 7	7 7
- Anninacene Benz(a)anthracene	ug/L 2							7.5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 %	7 7	<2 <2	42 < 22 < 22 < 22 < 23 < 24 < 24 < 24 <	7 %	2 2	7 7
Benzo(a) pyrene	ng/L			0.01		0.01	0.01	<2	<2	<2	<2	<2	<2	<2	2>	2>	<2
Benzo(g,h,i)perviene	ug/L 2							× × × × × × × × × × × × × × × × × × ×	44 00	× × × × × × × × × × × × × × × × × × ×	\$ 0	V 4	× × × × × × × × × × × × × × × × × × ×	<2	4 0	4 0	× × × × × × × × × × × × × × × × × × ×
Chrysene	ng/L							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Dibenz(a,h)anthracene Carcinogenic PAHs (as B(a)P TPF)	110/L 2							<2 84	<2 84 84	<2 <4 84	44 84 44 84	<2 84 84	<2 <2 <4 84	<2 <4 84	<4 84	<2 ×2 ×4 ×4 ×4 ×4 ×4 ×4 ×4 ×4 ×4 ×4 ×4 ×4 ×4	<2 <4.84
Carcinogenic PAHs (as B(a)P TPE, PEFx3)	ng/L							<14.52	<14.52	<14.52	<14.52	<14.52	<14.52	<14.52	<14.52	<14.52	<14.52
Fluoranthene	ug/L 2							2 0	V V	2 2	2 2	2 0	2 0	7 7	2 0	2 0	2 0
Indeno(1,2,3-c,d)pyrene	hg/L							<2>	<2	<22	2,5	<2>	<2	<22	2>	2> 9	<2>
Naprimalene PAHs (Sum of total)	ug/L 2		10					<2>	<2	<2>	<2	<22	13	<2	4 4	<2	<2
Phenanthrene	ug/L 2							<2	<2	<2	<2	<2	2	<2	<2	<2	<2
Phenol Pyrene	µg/L 2		320					<2 <2 <2	<2>	<2>	2 2	<2 <2 <2	<2 <2	<2 <2 <2	\$ \$ \$	7 7	<2>
Pesticides								ç	,	,	ç	ç	ç	ς,	ç	ç	ç
Pirimphos-ethyl	ug/L 2			0.5		-	-	<2>	<2>	<2>	7 7	<2>	<2>	<2>	7 7	7.5	<2>
Phthalates Bis(2-ethylhexyl) phthalate	ua/L 10			10				<10	<10	<10	<10	<10	175	<10	78	<10	<10
Butyl benzyl phthalate	ng/L							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Diethylphthalate Dimethyl phthalate	ug/L 2		3700					V 75	× × ×	\$ \$ \$	\$\\$\	2 %	V V V	V 22 V	2 2	2 0	V V V
Di-n-butyl phthalate	ug/L 2		26					7 7	2 ?	7 7	0, 0	7 7	7 7	7 42	27	<25 7	7 75
Polychlorinated Biphenyls	1,80							7,	75	7,	7.	7,	7.	75	7	75	75
PCBs (Sum of total)	ng/L 1					0.1	0.1			-	⊽			<u>^</u>	<u></u>	₹	₹
Solveins	-																

Page 3 of 4

Table B-1: Groundwater Laboratory Results

 Field ID
 BH4 200912
 BH4 200912
 BH5 200912
 GW/101 200912
 GW/103 200912
 GW/103 200912
 GW/103 200912
 GW/103 200912
 GW/103 200912
 GW/104 200912

ChemName	Onits	I DI	Dutch Criteria ANZECC 2000 2000 Fresh Water (95%)	ANZECC 2000 Fresh Water (95%)	ADWG 2011 Health	ANZECC 1992 Agriculture/ Irrigation	ANZECC 1992 Stock Watering	ANZECC 1992 Primary Contact Recreation										
Methyl Ethyl Ketone	ng/L	20							<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
2-hexanone (MBK)	ng/L	20							<50	<20	<50	<50	<50	<50	<50	<50	<50	<50
4-Methyl-2-pentanone	ng/L	20							<50	<20	<50	<50	<50	<50	<50	<50	<50	<50
Carbon disulfide	ng/L	2							<5	<5	<5	<5	<5	<5	<5	<5	\$	<5
Isophorone	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Vinyl acetate	ng/L	20							<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
SVOCs		-																
2-(acetylamino) fluorene	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
3.3-Dichlorobenzidine	na/L	2							<2	<2	<2	<2	<2	<2	<2	<2	\$	<2
4-(dimethylamino) azobenzene	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	2	<2
4-bromophenyl phenyl ether	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
4-chlorophenyl phenyl ether	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	42	<2
4-Nitroquinoline-N-oxide	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	\$	<2
Azobenzene	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bis(2-chloroethoxy) methane	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bis(2-chloroisopropyl) ether	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	42	<2
Carbazole	hg/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Dibenzofuran	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Hexachloropropene	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Methapyrilene	hg/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
N-nitrosomorpholine	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
N-nitrosopiperidine	ng/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
N-nitrosopyrrolidine	hg/L	4							4>	4>	4>	4>	4>	4>	4>	4>	4	<4
Phenacetin	na/L	2							<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Total Petroleum Hydrocarbons																		
60 - 90	ng/L	Г	50#26 / 600#27						<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
C10 - C14	hg/L	50 5	50#26 / 600#27						1380	<20	<50	<50	<50	<50	<50	<50	<50	<50
C15 - C28	ng/L		50#26 / 600#27						<100	<100	390	<100	<100	810	<100	390	310	<100
C29 - C36	ng/L	50 5	50#26 / 600#27						<50	<20	70	<50	<50	190	<50	150	<50	<50
C10 - C36 (sum)	ng/L								1380	<20	460	<50	<50	1000	<50	540	310	<50
Total Recoverable Hydrocarbons (NEPM 2010 Draft)	0 Draft)																	
C6-C10	ng/L	0.02							<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
>C10-C16	ng/L	0.1							1310	<100	<100	<100	<100	<100	<100	<100	<100	<100
>C16-C34	hg/L	0.1							<100	<100	380	<100	<100	870	<0.1	470	300	<100
>C34 - C40	ng/L	0.1							<100	<100	<100	<100	<100	150	<100	<100	<100	<100
>C10 - C40 (sum)	ng/L	0.1							1310	<100	380	<100	<100	1020	<100	470	300	<100
VOCs																		
cis-1,4-Dichloro-2-butene	ng/L	2							<5	<5	<5	<5	<5	<5	<5	<5>	\$2	<5
Pentachloroethane	ng/L	2							<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1.4-Dichloro-2-butene	na/L	2							V 25	V2	<5>	V2	V 25	<5	V 25	<5 <2	\$	<5

Commentation Compounds exist with different structure. Criterion for sum of them.

The guideline criterion for Raw water for drinking times 10 has been adopted (based on NHMRC 2008 Risks in Recreational Water, section 9.3.2)

See Tables 5.12, 6.14 ANZECC 1992

See Tables 5.12, 5.14 ANZECC 1992

See Table 5.14 ANZECC 1992

See Section 5.2.2 ANZECC 1992

See Table 5.14 ANZECC 1992

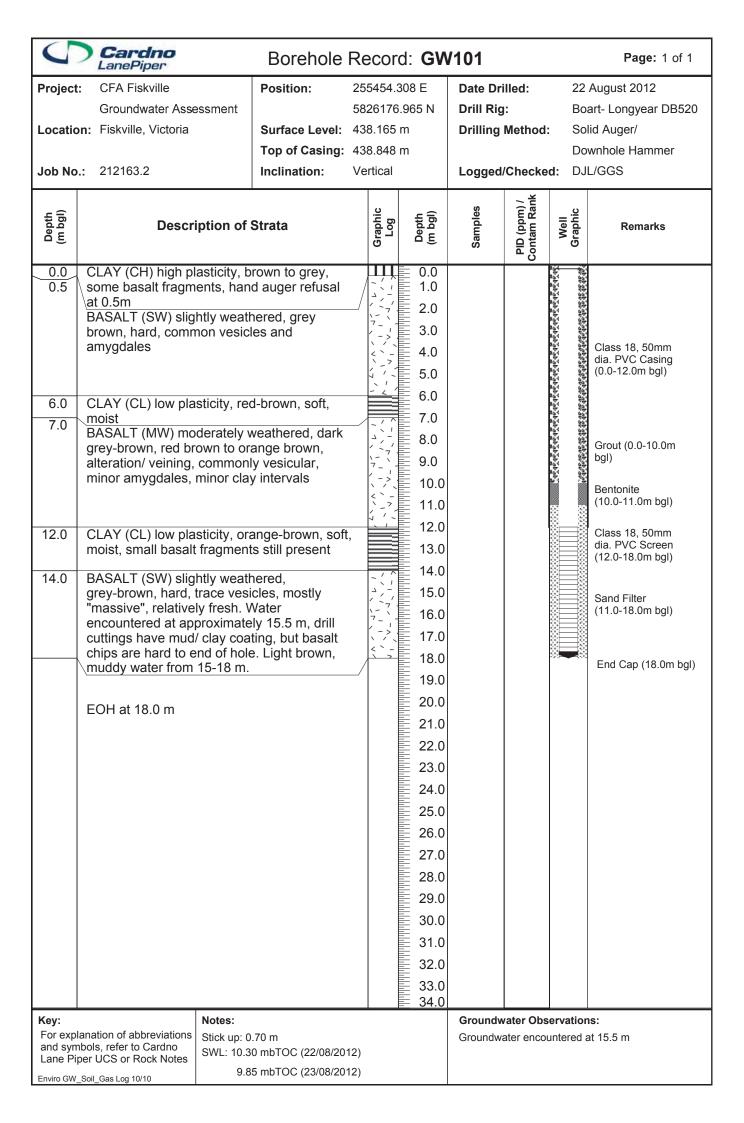
See Table 5.14 ANZECC 1992

See Table 5.14 ANZECC 1992

Despite Table 5.14 ANZECC 1992

Des

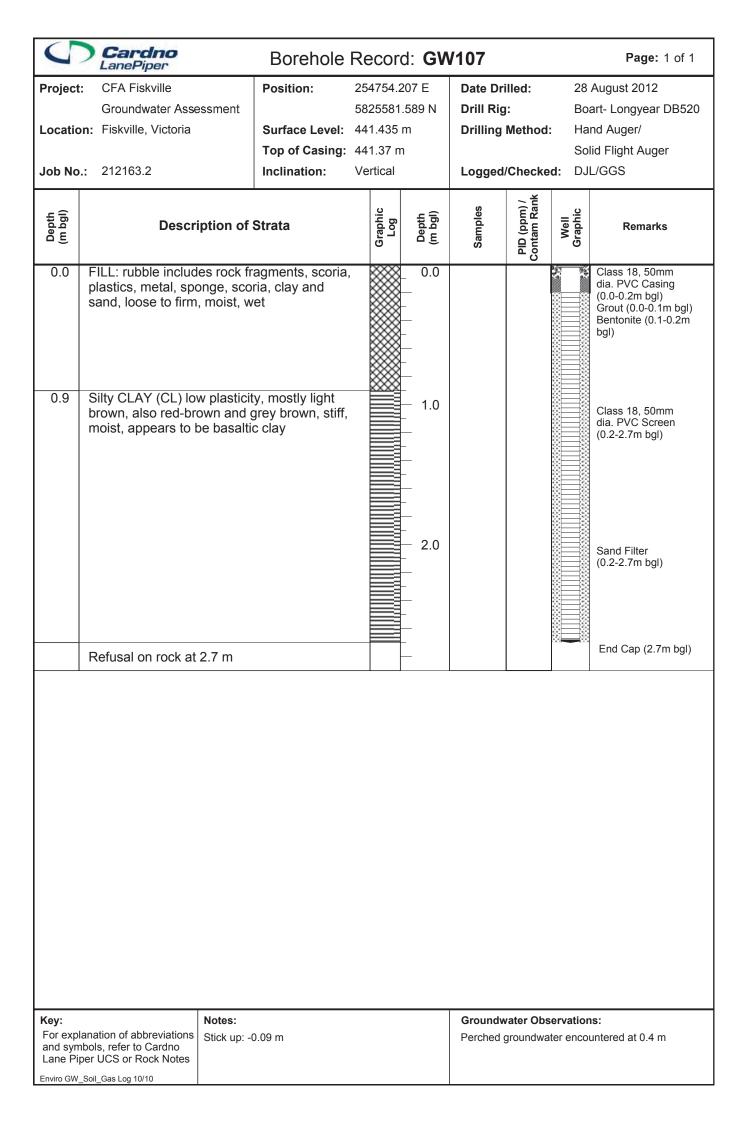
		SDG	EM1211100	EM1211100					EM1211100			EM1211100		
		Field_ID Date Sampled	GW107_200912_QC01_200912 20/09/201220/09/2012	QC01_200912 20/09/2012	RPD	GW110_200912 20/09/2012	QC03_200912	RPD	GW107_200912 20/09/2012	20/09/2012	RPD	GW110_200912 20/09/2012	QC04_200912 20/09/2012	RPD
ChemName	Units	EQL												
Inorganics														
Ammonia as N	hg/L	10	180.0	200.0	11	380.0	340.0	11	180.0	<10.0	179	380.0	270.0	34
Nitrate (as N)	mg/L	0.01 (Primary): 0.02 (Interlab)	0.04	0.02	29	0.34	0.34	0	0.04	<0.02	29	0.34	0.48	34
Nitrite (as N)	mg/L	0.01	<0.01	<0.01	0	0.02	0.03	40	<0.01			0.02		
Nitrogen (Total Oxidised)	mg/L	0.01	0.04	0.02	29	98:0	0.37	3	0.04			0.36		
pH (Lab)	pH_Units	s 0.01 (Primary): 0.1 (Interlab)	7.26	7.23	0	7.21	7.15	1	7.26	7.6	2	7.21	1.7	7
TDS	mg/L	10	780.0	0.069	12	434.0	0.808	60	780.0	970.0	22	434.0	0.086	77
Metals														
Aluminium (Filtered)	mg/L	0.01 (Primary): 0.05 (Interlab)	<0.01	0.02	29	0.02	0.02	0	<0.01	<0.05	0	0.02	<0.05	0
Antimony (Filtered)	mg/L	0.001 (Primary): 0.005 (Interlab)	<0.001	0.003	100	<0.001	<0.001	0	<0.001	<0.005	0	<0.001	<0.005	0
Arsenic (Filtered)	mg/L	0.001	0.002	0.002	0	0.001	<0.001	0	0.002	0.002	0	0.001	0.001	0
Barium (Filtered)	mg/L	0.001 (Primary): 0.02 (Interlab)	90.0	90.0	0	80.0	620.0	-	90.0	0.05	18	0.08	80.0	0
Beryllium (Filtered)	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.001	0	<0.001	<0.001	0	<0.001	<0.001	0
Boron (Filtered)	mg/L	0.05	90.0	90.0	0	90'0	90.0	18	90.0	90.0	0	0.06	90.0	0
Cadmium (Filtered)	mg/L	0.0001 (Primary): 0.0002 (Interlab)	<0.0001	<0.0001	0	<0.0001	<0.0001	0	<0.0001	<0.0002	0	<0.0001	<0.0002	0
Chromium (III+VI) (Filtered)	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.001	0	<0.001	<0.001	0	<0.001	<0.001	0
Cobalt (Filtered)	mg/L	0.001	0.014	0.014	0	0.003	0.003	0	0.014	0.012	15	0.003	0.004	29
Copper (Filtered)	mg/L	0.001	0.002	0.002	0	600.0	800.0	12	0.002	0.001	29	600.0	900'0	40
Iron (Filtered)	mg/L	0.05	2.19	2.49	13	<0.05	<0.05	0	2.19	2.6	17	<0.05	0.1	29
Lead (Filtered)	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.001	0	<0.001	<0.001	0	<0.001	<0.001	0
Lithium (Filtered)	mg/L	0.001	0.002	0.001	67	0.002	0.001	67	0.002			0.002		
Manganese (Filtered)	mg/L	0.001 (Primary): 0.005 (Interlab)	0.891	0.887	0	0.121	0.117	3	0.891	1.1	21	0.121	0.14	15
Mercury (Filtered)	mg/L	0.0001	<0.0001	<0.0001	0	<0.0001	<0.0001	0	<0.0001	<0.0001	0	<0.0001	<0.0001	0
Molybdenum (Filtered)	mg/L	0.001 (Primary): 0.005 (Interlab)	0.001	0.001	0	0.001	0.001	0	0.001	<0.005	0	0.001	<0.005	0
Nickel (Filtered)	mg/L	0.001	0.02	0.02	0	0.013	0.014	7	0.02	0.016	22	0.013	0.012	8
Selenium (Filtered)	mg/L	0.01 (Primary): 0.001 (Interlab)	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.001	0	<0.01	0.002	0
Silver (Filtered)	mg/L	0.001 (Primary): 0.005 (Interlab)	<0.001	<0.001	0	<0.001	<0.001	0	<0.001	<0.005	0	<0.001	<0.005	0
Thallium (Filtered)	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.001	0	<0.001	<0.001	0	<0.001	<0.001	0
Vanadium (Filtered)	mg/L	0.01 (Primary): 0.005 (Interlab)	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.005	0	<0.01	<0.005	0
Zinc (Filtered)	mg/L	0.005 (Primary): 0.001 (Interlab)	0.007	0.008	13	0.015	0.013	14	0.007	900.0	15	0.015	0.01	40

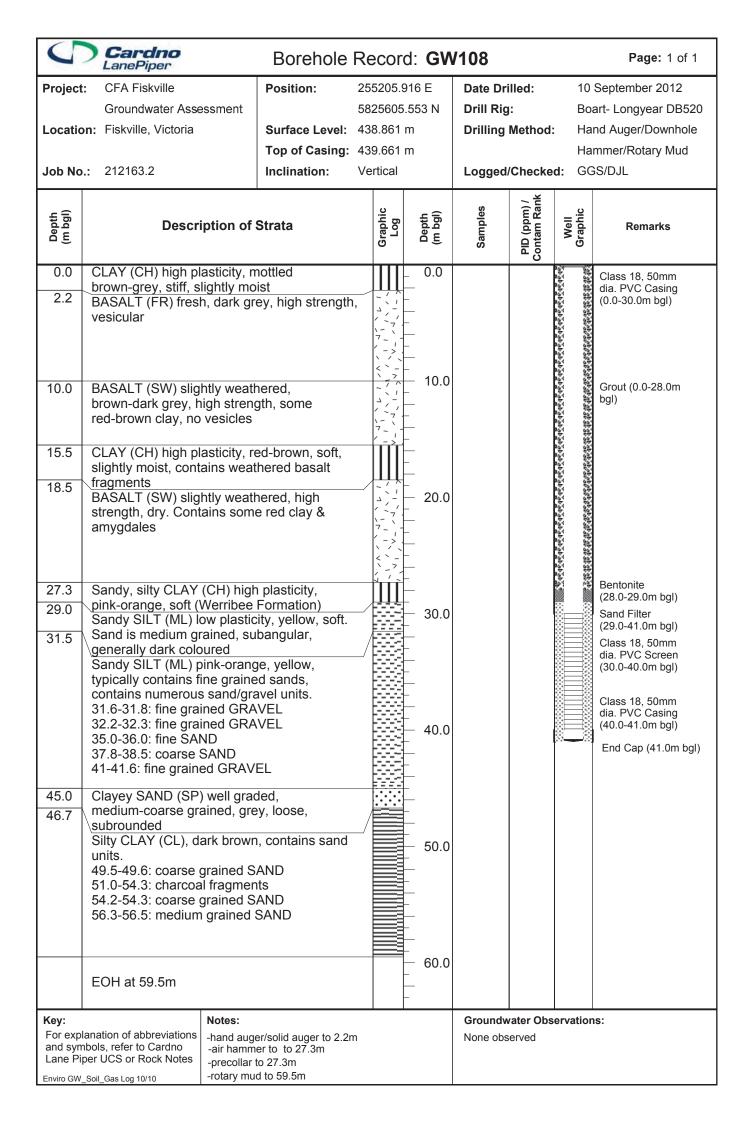

Page 1 of 1

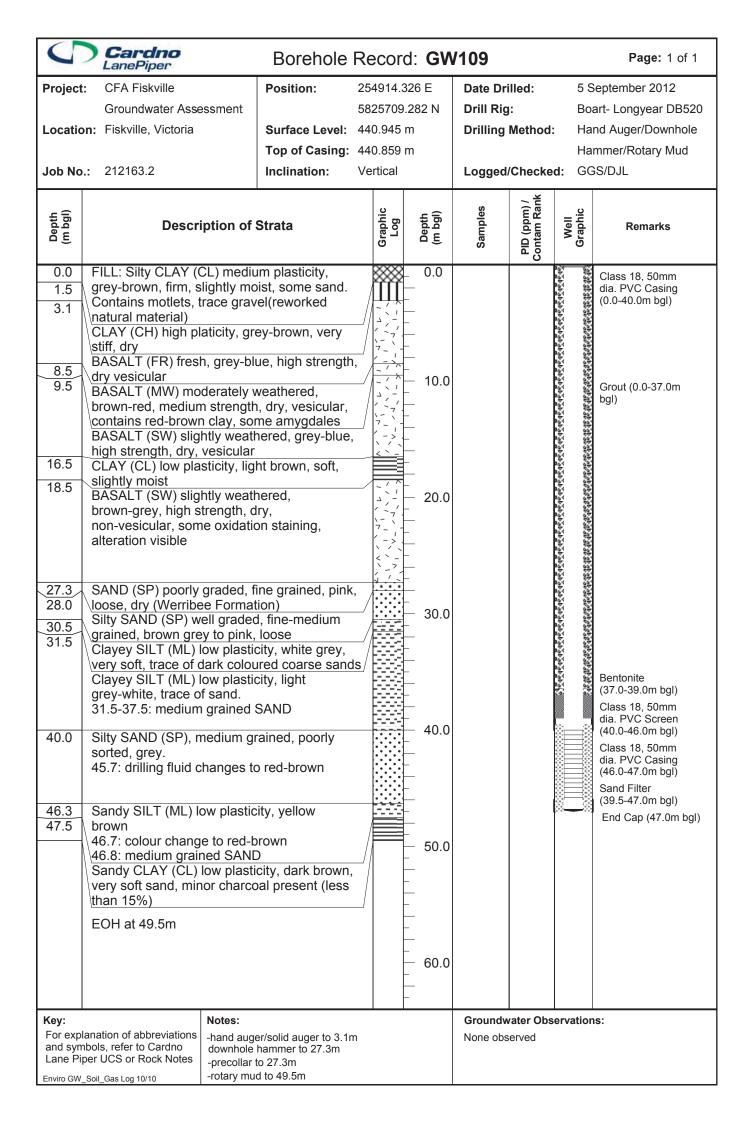
Appendix C 35 Pages

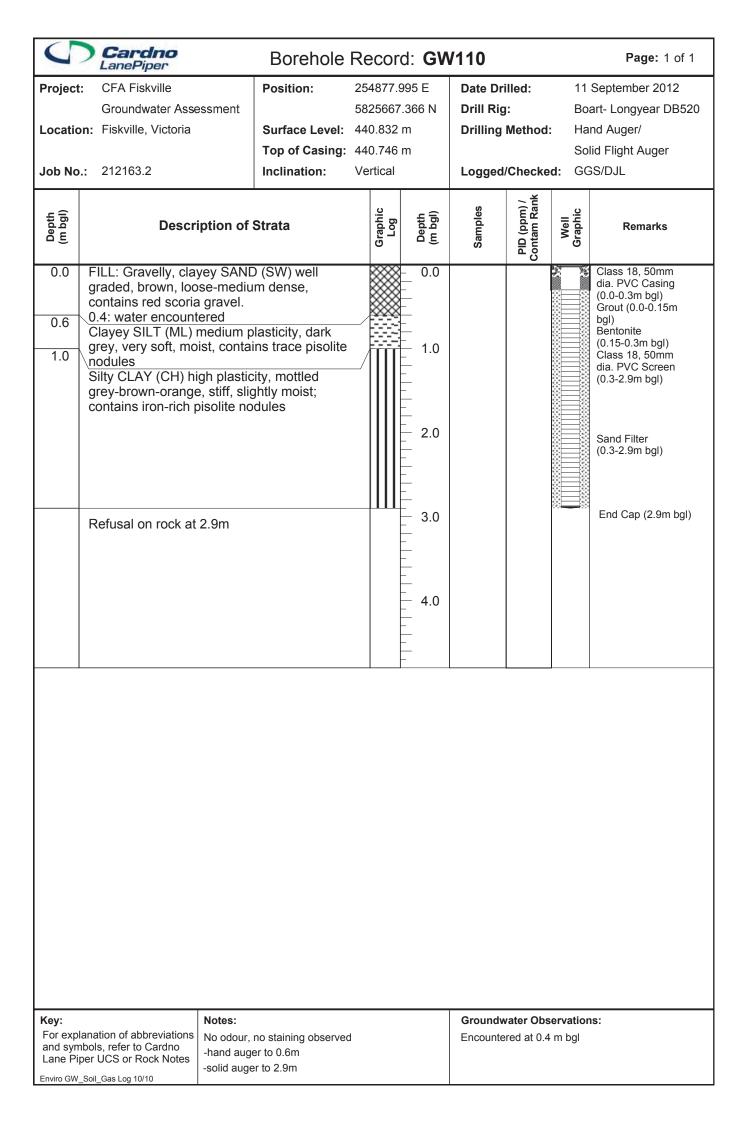
Bore Construction Details

Groundwater Bore Logs GW101 to GW111
Cardno Lane Piper UCS
Bore Construction Details
MSDS for AMC Bio-Vis Xtra
Bore Construction Licence


	Cardno LanePiper	Borehole R	ecord:	GW	/102			Page: 1 of 1	
roject: CFA Fiskville Groundwater Assessment ocation: Fiskville, Victoria ob No.: 212163.2		Surface Level: 44 Top of Casing: 44	5826117.924 N Surface Level: 441.547 m Top of Casing: 442.225 m			lled: : Method 'Checke	Bo : So Do	Downhole Hammer	
Depth (m bgl)	Descripti	on of Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Rank	Well Graphic	Remarks	
1.5	CLAY (CH), residual to brown-redbrown, soft, weathered basalt graves BASALT (Fr) fresh-slivesicles, little to no classic little to no c	wet, contains rels ghtly weathered, no ay fractures		0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0				Class 18, 50mm dia. PVC Casing (0.0-17.5m bgl) Grout (0.0-15.5m bgl)	
19.5	no vesicles			15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0				Bentonite (15.5-16.5m bgl) Class 18, 50mm dia. PVC Screen (17.5-23.5m bgl) Sand Filter (16.5-23.5m bgl)	
	SAND (SP) poorly gragrained, loose, slightly Werribee Formation) EOH at 25.0 m			23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0				End Cap (23.5m bgl	
and symb		tes: ck up: 0.65 m		34.0	Groundw Dry at tim Approxima	e of insta	llation	ns: 30 pm (23/08/2012)	


J	Cardno LanePiper		Borehole	Record	d: GW	/103			Page: 1 of 1
Project: Location Job No.	Groundwater Assen: Fiskville, Victoria	ssment	Position: Surface Level: Top of Casing: Inclination:		15 n	Date Dri Drill Rig Drilling	: Method	Bo : So Do	August 2012 art- Longyear DB520 lid Auger/ wnhole Hammer GS/DJL
Depth (m bgl)	Descri	ption of S	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Rank	Well Graphic	Remarks
0.0	CLAY(CH) high pla brown, soft, wet, co fragments				0.0 1.0 2.0			04 00 00 00 00 00 00 00 00 00 00 00 00 0	
3.0	BASALT (MW) mored-brown, high str	ength, dry		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0				Class 18, 50mm dia. PVC Casing (0.0-23.0m bgl) Grout (0.0-21.0m bgl)
14.7	BASALT (Fr), blueno vesicles, minor				15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0				1
27.5 29.0 30.5	CLAY (CL) low plas yellow-brown, sligh fragments CLAY/SILT (ML) lo loose, dry, fine gra Werribee Formatio Silty SAND (SM) w red-yellow EOH at 31.5 m	w plasticit w plasticit lined sand n)	y, red-brown, (probable		28.0 29.0 30.0 31.0 32.0 33.0 34.0				End Cap (29.0m bgl)
and sym	anation of abbreviations bols, refer to Cardno per UCS or Rock Notes Soil_Gas Log 10/10	Notes: Stick up: 0.4	55 m	ı E	. · 04.0	Groundw None obs		servation	ns:


J	Cardno LanePiper	Borehole Re	ecord:	GW	/104			Page: 1 of 1
Project Location	Groundwater Assessn on: Fiskville, Victoria	Surface Level: 43 Top of Casing: 43			Date Dri Drill Rig Drilling Logged/	: Method	Bo : So Do	August 2012 art- Longyear DB520 lid Auger/ wnhole Hammer GS/DJL
Depth (m bgl)		on of Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Rank	Well Graphic	Remarks
1.9 1.5 16.0 18.5	low strength, dry, contred- orange brown cla CLAY (CH) high plasti minor basalt fragment BASALT (MW) moder medium strength, dry, Sandy CLAY (CH) me loose, dry, minor weat (probable Werribee Fo Clayey SAND (SP), po	weathered, orange-red, rains iron nodules, high y content licity, orange-red, contains amygdales redium plasticity, orange, thered basalt fragments ormation) orly graded, fine	ALLEMANDE MANDE MA	0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0		8		Class 18, 50mm dia. PVC Casing (0.0-14.0m bgl) Grout (0.0-12.0m bgl) Bentonite (12.0-13.0m bgl) Class 18, 50mm dia. PVC Screen (14.0-26.0m bgl) Sand Filter (13.0-26.0m bgl)
Key:	\grained, pink-orange, EOH at 29.0 m	tes:		31.0 32.0 33.0 34.0	Groundw	ater Obs	Servation	ns.
For expl and sym Lane Pi		tes: ck up: 0.72 m			None obs		oci valiUl	19.


	Cardno LanePiper		Borehole F	Record	d: GW	/105			Page: 1 of 1	
Project: CFA Fiskville Groundwater Assessment Location: Fiskville, Victoria Job No.: 212163.2		essment	Position: 254739.620 E 5825754.738 N Surface Level: 441.775 m Top of Casing: 441.639 m Inclination: Vertical			Date Drill Rig Drilling Logged	ı: Method	Bo So Do	27 August 2012 Boart- Longyear DB520 Solid Auger/ Downhole Hammer DJL/GGS	
Depth (m bgl)	Descri	iption of S	Strata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Rank	Well Graphic	Remarks	
0.7 1.9 1.9 1.9	FILL: grey-brown to comprises sand, groon 1.9 m Silty CLAY (CI) me or brown, firm to stime to state the salt of t	ravel and or edium plas iff, moist, phtly weath vesicular reen, relate rown to ligaty texture sticity, bro	clay. Hand auger ticity, light brown probably ered, mottled ively massive, y, minor limonite th brown, high e (more fissile) wn, light brown	- 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0				Class 18, 50mm dia. PVC Casing (0.0-17.0m bgl) Grout (0.0-15.0m bgl) Bentonite (15.0-16.0m bgl)	
27.0	BASALT (MW) moderate to high line and silt, light brown soft, moist, minor how weribee Formation at 28.0 m	ght brown, monite sta Y (SC), fin n to red-br nard fragm	hard, dry, ining e grained sand own, mostly		20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0				Class 18, 50mm dia. PVC Screen (17.0-26.0m bgl) Sand Filter (16.0-26.0m bgl) End Cap (26.0m bgl)	
and symbo ane Pipe	ation of abbreviations ols, refer to Cardno r UCS or Rock Notes oll_Gas Log 10/10	Notes: Stick up: -0	.16 m		32.0 33.0 34.0	Groundw Minor gro			ns: tered at 21.0 m	

	Cardno LanePiper		Borehole	Recor	d: GW	/106			Page: 1 of 1
Project: CFA Fiskville Groundwater Assessment Location: Fiskville, Victoria Job No.: 212163.2		ssment s	Position: 254726.508 E 5825700.149 N Surface Level: 441.525 m Top of Casing: 441.438 m Inclination: Vertical		Date Drilled: Drill Rig: Drilling Method: Logged/Checked:		Bo So Do	28 August 2012 Boart- Longyear DB520 Solid Auger/ Downhole Hammer DJL/GGS	
Depth (m bgl)	Descrip	otion of St	rata	Graphic Log	Depth (m bgl)	Samples	PID (ppm) / Contam Rank	Well Graphic	Remarks
li to	Silty CLAY (CH) hig ght brown, soft to fi opsoil to 1.0 m, bas	irm, moist,	basaltic		0.0			20 00 00 00 00 00 00 00 00 00 00 00 00 0	Class 18, 50mm dia. PVC Casing (0.0-18.5m bgl)
9	uger to 2.1 m BASALT (SW) slight rey-brown, hard, di 5-13: fresh interval,	ry, highly v	esicular		3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0				Grout (0.0-16.5m bgl)
1 to	3-15: minor to mod 5-17: high limonite exture common 7-18: very clayey in ommon basalt frag	content, s	aty/fissile	7/\ <\\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	12.0 13.0 14.0 15.0 16.0 17.0			Sabapanapanapanapanapanapanapanapanapanap	Bentonite (16.5-17.5m bgl)
	CLAY (CL) low plas ematitic clay, soft,		rown,		18.0 19.0 20.0				Class 18, 50mm dia. PVC Screen (18.5-24.5m bgl)
2 b (BASALT (MW) 10.5-21.5: moderate brown to red brown, hematite), minor ve 11.5-25.5: brown to monitic alteration, s	, ȟard, high esicles dark brow	ly altered	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	21.0 22.0 23.0 24.0 25.0				Sand Filter (17.5-24.5m bgl) End Cap (24.5m bgl)
s	Sandy CLAY (SC), the and, light brown to the rm, moist (probable control of the c	orange-br	own, loose to		26.0 27.0 28.0				
E	OH at 27.0 m				29.0 30.0 31.0 32.0 33.0 34.0				
and symbo	ation of abbreviations ls, refer to Cardno UCS or Rock Notes	Notes:			07.0	Groundw No groun			

Cardno Borehole Record: GW111 Page: 1 of 1 LanePiper 254862.124 E **Date Drilled:** CFA Fiskville Position: 11 September 2012 Project: Groundwater Assessment 5825470.457 N Drill Rig: Boart- Longyear DB520 Location: Fiskville, Victoria Surface Level: 441.054 m **Drilling Method:** Hand Auger/ Top of Casing: 440.975 m Solid Flight Auger Job No.: 212163.2 Inclination: Vertical GGS/DJL Logged/Checked: PID (ppm) / Contam Rank Graphic Log Well Graphic Samples Depth (m bgl) Depth (m bgl) **Description of Strata** Remarks Class 18, 50mm dia. PVC Casing 0.0 Gravelly CLAY (CH) high plasticity, dark red, 0.0 soft, slightly moist, gravel is crushed rock (0.0-0.3m bgl) 0.4: Increased moisture Grout (0.0-0.2m bgl) Bentonite (0.2-0.3m bgl) 1.0 Class 18, 50mm dia. PVC Screen (0.3-4.5m bgl) 2.0 Sand Filter (0.3-4.5m bgl) 2.5 Silty CLAY (CH) high plasticity, mottled grey-brown, firm, slightly moist, trace pisolite nodules 3.0 4.0 End Cap (4.5m bgl) Refusal on rock at 4.5m Key: Notes: **Groundwater Observations:** For explanation of abbreviations No odour, no staining observed No groundwater encountered and symbols, refer to Cardno Lane Piper UCS or Rock Notes Enviro GW_Soil_Gas Log 10/10

Unified Classification System (Environmental)

(in accordance with AS1726)

PARTICLE SIZES

7711177022 07220						
TERM	SIZE (mm)					
BOULDER	>200					
COBBLE	60 to 200					
GRAVEL						
Coarse	20 to 60					
Medium	6 to 20					
Fine	2 to 6					
SAND						
Coarse	0.6 to 2					
Medium	0.2 to 0.6					
Fine	0.06 to 0.2					
SILT	0.002 to 0.06					
CLAY	< 0.002					

COHESIVE SOILS

TERM	UNDRAINED SHEAR STRENGTH (kPa)				
Very Soft	0 to 12.5				
Soft	12.5 to 25				
Firm	25 to 50				
Stiff	50 to 100				
Very Stiff	100 to 200				
Hard	≥ 200				

COHESIONLESS SOILS

TERM	'N' (SPT) VALUE (blows / 300mm)	RELATIVE DENSITY (%)	ANGLE SHEAR RESISTANCE (degrees)
Very Loose	0 to 4	< 15	25 to 30
Loose	4 to 10	15 to 35	27 to 32
Medium Dense	10 to 30	35 to 65	30 to 35
Dense	30 to 50	65 to 85	35 to 40
Very Dense	> 50	≥ 85	38 to 43

STRUCTURE

TERM	SIZE OF BLOCKS (mm)
Blocky	> 60
Cloddy	20 to 60
Nutty	6 to 20
Granular	0.6 to 6
Prismatic	Stated
Shattered	< 10

SAMPLES

BS Bulk sample Disturbed sample

U(n) Undisturbed tube sample ('n' denotes internal dia in mm)

Environmental Soil Sample (Borehole No./Depth) BH3/1.0 =

Undisturbed tube recovery \square Undisturbed tube non-recovery

Headspace vial Н

CONTAMINATION RANKING

V Visual evidence of contamination 0 Olfactory evidence of contamination

No odour or visual evidence of contamination 0 Slight odour or visual evidence of contamination 2 Odour or visual evidence of contamination

Obvious visual evidence/strong odour of contamination

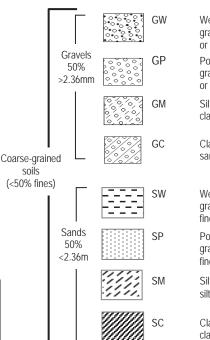

FIELD EQUIPMENT

Photo ionization detector PID Combustible gas detector CGD

IDENTIFICATION OF SOILS

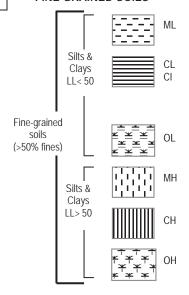
COARSE GRAINED SOILS

Well graded gravels and gravel-sand mixtures, little or no fines

Poorly graded gravels and gravel-sand mixtures, little or no fines

Silty gravels and gravel- sandclay mixtures

Clayey gravels, gravelsand-clay mixture


Well graded sands and gravelly sands, little or no

Poorly graded sands and gravelly sands, little or no fines

Silty sand, sandy silt mixture

Clayey sands, sandy clay mixtures

FINE GRAINED SOILS

Inorganic silts, very fine sands, rock flour, silty or clayey fine sands of low plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays

Organic silts and organic silty clays of low plasticity

Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts of high plasticity

Inorganic clays of high plasticity, gravelly clays, sandy clays, silty clays

Organic clays and silts of medium to

high plasticity

Peat and other highly organic soils

GROUNDWATER

Highly Organic

Soils

GW Groundwater depth (m) or level (RL)

Pt

Below ground level bgl Standing water level swl

Bore ID	GW101	GW102	GW103
Bore Location	North-east corner of site	North-west part of site	Central west boundary
Easting	255454.308	254526.104	254043.809
Northing	5826176.965	5826117.924	5825894.15
MGA Zone	55	55	55
RL GL (m AHD)	438.165	441.547	446.233
RL ToC (m AHD)	438.848	442.225	446.785
RL top protective casing (m AHD)	438.952	442.320	446.901
Survey Date	27/08/2012	27/08/2012	27/08/2012
Survey by	Think Spatial	Think Spatial	Think Spatial
Registered Bore No.	WRK070670	WRK070671	WRK070672
Date Drilled	22/08/2012	23/08/2012	24/08/2012
Designed/supervised by - Company	Cardno Lane Piper	Cardno Lane Piper	Cardno Lane Piper
Designed/supervised by - Name	DJ Louwrens	DJ Louwrens	DJ Louwrens
Drilling Company	South West Drilling	South West Drilling	South West Drilling
Driller Name	Phil Maule	Phil Maule	Phil Maule
Method	DHH	DHH	DHH
Aquifer Unit	Basalt	Basalt	Basalt
riquilet etilit	Dasait	Dagait	Dasait
Drilled Depth (m)	18.0	25.0	31.5
Screen Top (m bgl)	12.0	17.5	23.0
Screen Bottom (m bgl)	18.0	23.5	29.0
Screen Type	Factory slotted (0.4 mm)	Factory slotted (0.4 mm)	Factory slotted (0.4 mm)
Collar Cement Grout (to m bgl)	10.0	15.5	21.0
Bentonite Seal - Top (m bgl)	10.0	15.5	21.0
Bentonite Seal - Bottom (m bgl)	11.0	16.5	22.0
Filter Pack - Top (m bgl)	11.0	16.5	22.0
Filter Pack - Bottom (m bgl)	18.0	23.5	29.0
Filter Pack Material	8/16 Graded sand	8/16 Graded sand	8/16 Graded sand
Casing & Screen Spec	50 mm uPVC (Class18)	50 mm uPVC (Class18)	50 mm uPVC (Class18)
PVC Casing Stick-up (m agl)	0.683	0.678	0.552
Protective Cover Type	Monument stand pipe	Monument stand pipe	Monument stand pipe
Bore Development Date	28/08/2012	_	-
Development Method	Airlift	_	-
Estimated Volume Removed (litre)	50	_	-
Developed Groundwater Description	Turbid (light brown)	-	-
Potential Contamination Observations	None	-	-
SWL (m bTOC)	10.14	Dry	28.65
SWL (m bgl)	9.46	Dry	28.10
SWL Date	28/08/2012	28/08/2012	28/08/2012

Bore ID	GW104	GW105	GW106
Bore Location	Central-east of site	Props Area	Fuel ASTs
Easting	255205.957	254739.620	254726.508
Northing	5825603.34	5825754.738	5825700.149
MGA Zone	55	55	55
RL GL (m AHD)	438.885	441.775	441.525
RL ToC (m AHD)	439.609	441.639	441.438
RL top protective casing (m AHD)	439.691	441.802	441.564
Survey Date	20/09/2012	20/09/2012	20/09/2012
Survey by	Think Spatial	Think Spatial	Think Spatial
Registered Bore No.	WRK070673	WRK070674	WRK070675
Date Drilled	24/08/2012	27/08/2012	28/08/2012
Designed/supervised by - Company	Cardno Lane Piper	Cardno Lane Piper	Cardno Lane Piper
Designed/supervised by - Name	DJ Louwrens	DJ Louwrens	DJ Louwrens
Drilling Company	South West Drilling	South West Drilling	South West Drilling
Driller Name	Phil Maule	Phil Maule	Phil Maule
Method	Downhole Hammer	Downhole Hammer	Downhole Hammer
Aquifer Unit	Basalt	Basalt	Basalt
Drilled Depth (m)	29.0	28.0	27.0
Screen Top (m bgl)	14.0	17.0	18.5
Screen Bottom (m bgl)	26.0	26.0	24.5
Screen Type	Factory slotted (0.4mm)	Factory slotted (0.4mm)	Factory slotted (0.4mm)
Collar Cement Grout (to m bgl)	12.0	15.0	16.5
Bentonite Seal - Top (m bgl)	12.0	15.0	16.5
Bentonite Seal - Bottom (m bgl)	13.0	16.0	17.5
Filter Pack - Top (m bgl)	13.0	16.0	17.5
Filter Pack - Bottom (m bgl)	29.0	26.0	24.5
Filter Pack Material	8/16 Graded sand	8/16 Graded sand	8/16 Graded sand
Casing & Screen Spec	50 mm uPVC (Class18)	50 mm uPVC (Class18)	50 mm uPVC (Class18)
PVC Casing Stick-up (m agl)	0.724	-0.136	-0.087
Protective Cover Type	Monument stand pipe	Flush-mounted gatic	Flush-mounted gatic
Bore Development Date	-	-	-
Development Method	-	-	-
Estimated Volume Removed (litre)	-	-	-
Developed Groundwater Description	-	-	-
Potential Contamination Observations	-	-	-
SWL (m bTOC)	Dry	25.07	Dry
SWL (m bgl)	Dry	25.23	Dry
SWL Date	28/08/2012	28/08/2012	-

Bore ID	GW107	GW108	GW109
Bore Location	Service Station Prop	Central East of Site	East of FL PAD
Easting	254754.207	255205.916	254914.326
Northing	5825581.589	5825605.553	5825709.282
AMG Zone	55	55	55
RL GL (m AHD)	441.435	438.861	440.945
RL TOC (m AHD)	441.37	439.661	440.859
RL top protective casing (m AHD)	441.456	439.823	440.972
Survey Date	20/09/2012	20/09/2012	20/09/2012
Survey by	Think Spatial	Think Spatial	Think Spatial
Registered Bore No.	WRK070676	WRK070677	WRK070678
Date Drilled	28/08/2012	11/09/2012	5/09/2012
Designed/supervised by - Company	Cardno Lane Piper	Cardno Lane Piper	Cardno Lane Piper
Designed/supervised by - Name	DJ Louwrens	DJ Louwrens	DJ Louwrens
Drilling Company	South West Drilling	South West Drilling	South West Drilling
Driller Name	Phil Maule	Jason Morrison	Jason Morrison
Method	Hand-auger	Downhole Hammer/ Rotary Mud	Downhole Hammer/ Rotary Mud
Aquifer Unit	Clay / Fill	Sand / Silt	Sand / Silt
Drilled Depth (m)	2.7	59.5	49.5
Screen Top (m bgl)	0.2	30	40
Screen Bottom (m bgl)	2.7	40	46
Screen Type	Factory slotted (0.4mm)	Factory slotted (0.4mm)	Factory slotted (0.4mm)
Collar Cement Grout (to m bgl)	0.1	28	37
Bentonite Seal - Top (m bgl)	0.1	28	37
Bentonite Seal - Bottom (m bgl)	0.2	29	39
Filter Pack - Top (m bgl)	0.2	29	39
Filter Pack - Bottom (m bgl)	2.7	41	47
Filter Pack Material	8/16 Graded sand	8/16 Graded sand	8/16 Graded sand
Casing & Screen Spec	50 mm uPVC (Class18)	50 mm uPVC (Class18)	50 mm uPVC (Class18)
PVC Casing Stick-up (m agl)	-0.065	0.800	-0.086
Protective Cover Type	Flush-mounted gatic	Monument stand pipe	Flush-mounted gatic
Bore Development Date	28/08/2012	-	-
Development Method	Bailer	-	-
Estimated Volume Removed (litre)	24	-	-
Developed Groundwater Description	Turbid; light brown	-	-
Potential Contamination Observations	None	-	-
SWL (m bTOC)	0.49	40.935	46.705
SWL (m bgl)	0.40	40.135	46.791
SWL Date	28/08/2012	20/09/12	20/09/12

Bore ID	GW110	GW111	
Bore Location	South of FL PAD	South-east of Dam 2	
Easting	254877.995	254862.124	
Northing	5825667.366	5825470.457	
AMG Zone	55	55	
RL GL (m AHD)	440.832	441.054	
RL TOC (m AHD)	440.746	440.975	
RL top protective casing (m AHD)	440.843	441.069	
Survey Date	20/09/2012	20/09/2012	
Survey by	Think Spatial	Think Spatial	
Registered Bore No.	WRK070679	WRK070680	
Date Drilled	11/09/2012	11/09/2012	
Designed/supervised by - Company	Cardno Lane Piper	Cardno Lane Piper	
Designed/supervised by - Name	DJ Louwrens	DJ Louwrens	
Drilling Company	South Western Drilling	South Western Drilling	
Driller Name	Jason Morrison	Jason Morrison	
Method	Hand-auger/ Solid Auger	Hand-auger/ Solid Auger	
Aquifer Unit	Basalt	Basalt	
Drilled Depth (m)	2.7	2.7	
Screen Top (m bgl)	0.2	0.2	
Screen Bottom (m bgl)	2.7	2.7	
Screen Type	Factory slotted (0.4mm)	Factory slotted (0.4mm)	
Collar Cement Grout (to m bgl)	0.1	0.1	
Bentonite Seal - Top (m bgl)	0.1	0.1	
Bentonite Seal - Bottom (m bgl)	0.2	0.2	
Filter Pack - Top (m bgl)	0.2	0.2	
Filter Pack - Bottom (m bgl)	2.7	2.7	
Filter Pack Material	8/16 Graded sand	8/16 Graded sand	
Casing & Screen Spec	50 mm uPVC (Class18)	50 mm uPVC (Class18)	
PVC Casing Stick-up (m agl)	-0.086	-0.079	
Protective Cover Type	Flush-mounted gatic	Flush-mounted gatic	
Bore Development Date	-	-	
Development Method	-	-	
Estimated Volume Removed (litre)	-	-	
Developed Groundwater Description	-	-	
Potential Contamination Observations	-	-	
SWL (m bTOC)	0.49	3.985	
SWL (m bgl)	0.40	4.064	
SWL Date	11/09/2012	20/09/2012	

Bore ID	внз	BH4	BH5
Bore Location	Near South-west corner	Near central-north boundary	Near central-north boundary
Easting	254085.093	254761.039	254761.134
Northing	5825436.43	5826135.196	5826137.568
MGA Zone	55	55	55
RL GL (m AHD)	440.096	442.72	442.74703
RL ToC (m AHD)	440.524	443.168	443.15386
RL top protective casing (m AHD)	440.642	443.267	443.26224
Survey Date	20/09/2012	20/09/2012	20/09/2012
Survey by	Think Spatial	Think Spatial	Think Spatial
Registered Bore No.	Not known	Not known	Not known
Date Drilled	9/09/1996	10/09/1996	11/09/1996
Designed/supervised by - Company	Coffey	Coffey	Coffey
Designed/supervised by - Name	Not known	Not known	Not known
Drilling Company	Not known	Not known	Not known
Driller Name	Not known	Not known	Not known
Method	DHH	DHH	Hand-auger
Aquifer Unit	Basalt	Basalt	Clay
Drilled Depth (m)	21.0	20.0	1.8
Screen Top (m bgl)	15.0	14.0	0.8
Screen Bottom (m bgl)	21.0	20.0	1.8
Screen Type	Factory slotted (0.3mm)	Factory slotted (0.3mm)	Factory slotted (0.3mm)
Collar Cement Grout (to m bgl)	11.7 (backfill)	4.6 (backfill)	0.2
Bentonite Seal - Top (m bgl)	11.7	4.6	0.2
Bentonite Seal - Bottom (m bgl)	12.1	5.3	0.4
Filter Pack - Top (m bgl)	12.1	5.3	0.4
Filter Pack - Bottom (m bgl)	21.0	20.0	1.8
Filter Pack Material	8/16 Graded sand	8/16 Graded sand	8/16 Graded sand
Casing & Screen Spec	50 mm uPVC (Class18)	50 mm uPVC (Class18)	50 mm uPVC (Class18)
PVC Casing Stick-up (m agl)	0.428	0.448	0.407
Protective Cover Type	Monument stand pipe	Monument stand pipe	Monument stand pipe
Bore Development Date	-	-	-
Development Method	-	=	-
Estimated Volume Removed (litre)	-	<u>-</u>	-
Developed Groundwater Description	-	-	-
Potential Contamination Observations	-	-	-
SWL (m bTOC)	20.78	18.87	1.31
SWL (m bgl)	20.35	18.42	0.903
SWL Date	28/08/2012	28/08/2012	20/09/12

Hazard Alert Code: LOW

Chemwatch Material Safety Data Sheet Issue Date: 29-Aug-2012 X9317SP

CHEMWATCH 7176-83 Version No:2.1.1.1 Page 1 of 6

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

AMC Bio-Vis Xtra

PRODUCT USE

Drilling fluids compound; drilling viscosifier.

SUPPLIER

Company: AMC Address: PO Box 1141 Osborne Park WA, 6916 Australia

Telephone: +61 8 9445 4000

Emergency Tel: Australia - 1800 039 008 or +613

9573 3112

Emergency Tel:International - +800 24 36 22 55 or +613 9573 3112 if the Toll Free number is not

supported in your country Fax: +61 8 9445 4040 Company: AMC Address: 5 Pitino Court Osborne Park

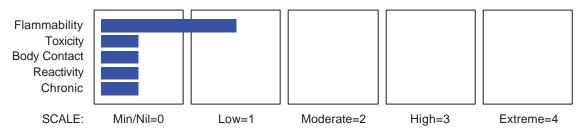
WA, 6017 Australia

Telephone: +61 8 9445 4000

Emergency Tel:Australia - 1800 039 008 or +61 3

9573 3112

Emergency Tel: International - +800 24 36 22 55 or +61 3 9573 3112 if Toll Free number is not


supported in your country Fax: +61 8 9445 4040

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE

NON-HAZARDOUS SUBSTANCE. NON-DANGEROUS GOODS. According to NOHSC Criteria, and ADG Code.

CHEMWATCH HAZARD RATINGS

RISK

•None under normal operating conditions.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME CAS RN % polysaccharide polymers blend 100

Hazard Alert Code: LOW

Chemwatch Material Safety Data Sheet Issue Date: 29-Aug-2012

X9317SP

CHEMWATCH 7176-83 Version No:2.1.1.1 Page 2 of 6

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- · Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.

FYF

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.

FIRE/EXPLOSION HAZARD

- Solid which exhibits difficult combustion or is difficult to ignite.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture
 with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion.
- Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited; once initiated larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.

FIRE INCOMPATIBILITY

· Avoid reaction with oxidising agents.

HAZCHEM

None

Hazard Alert Code: LOW

Chemwatch Material Safety Data Sheet Issue Date: 29-Aug-2012

X9317SP

CHEMWATCH 7176-83 Version No:2.1.1.1 Page 3 of 6

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- · Wear impervious gloves and safety glasses.
- Use dry clean up procedures and avoid generating dust.

Slippery when wet.

MAJOR SPILLS

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- · Control personal contact with the substance, by using protective equipment and dust respirator.
- Prevent spillage from entering drains, sewers or water courses.

Slippery when wet.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Limit all unnecessary personal contact.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with incompatible materials.

SUITABLE CONTAINER

Multi-ply paper bag with sealed plastic liner or heavy gauge plastic bag.

NOTE: Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against sliding or collapse.

- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.

STORAGE INCOMPATIBILITY

Avoid contamination of water, foodstuffs, feed or seed.

• Avoid reaction with oxidising agents.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

MATERIAL DATA

AMC BIO-VIS XTRA: Not available

PERSONAL PROTECTION

Hazard Alert Code: LOW

Chemwatch Material Safety Data Sheet Issue Date: 29-Aug-2012

X9317SP

CHEMWATCH 7176-83

Version No:2.1.1.1

Page 4 of 6

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

RESPIRATOR

•Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

EYE

- · Safety glasses with side shields
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent].

HANDS/FEET

■ The selection of the suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc.

OTHER

■ No special equipment needed when handling small quantities.

OTHERWISE:

- Overalls.
- Barrier cream.
- Eyewash unit.

ENGINEERING CONTROLS

■ Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE

Cream coloured odourless powder; partly soluble in water.

PHYSICAL PROPERTIES

State	Divided Solid	Molecular Weight	Not Applicable
Melting Range (°C)	Not Available	Viscosity	Not Applicable
Boiling Range (°C)	Not Applicable	Solubility in water (g/L)	Partly Miscible
Flash Point (°C)	Not Applicable	pH (1% solution)	Not Available
Decomposition Temp (°C)	Not Available	pH (as supplied)	Not Applicable
Autoignition Temp (°C)	Not Available	Vapour Pressure (kPa)	Not Applicable

Hazard Alert Code: LOW

Chemwatch Material Safety Data Sheet Issue Date: 29-Aug-2012

X9317SP

CHEMWATCH 7176-83 Version No:2.1.1.1 Page 5 of 6 Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

Not Available Upper Explosive Limit (%) Specific Gravity (water=1) 1.55- 1.60 Lower Explosive Limit (%) Not Available Relative Vapour Density Not Applicable (air=1)

Volatile Component (%vol) Not Available **Evaporation Rate** Not Applicable

Section 10 - STABILITY AND REACTIVITY

Section 11 - TOXICOLOGICAL INFORMATION

CONDITIONS CONTRIBUTING TO INSTABILITY

■ Product is considered stable and hazardous polymerisation will not occur. For incompatible materials - refer to Section 7 - Handling and Storage.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (eg. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

■ Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

■ The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

INHALED

■ The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

CHRONIC HEALTH EFFECTS

■ Principal routes of exposure are by accidental skin and eye contact and inhalation of generated dusts. Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

TOXICITY AND IRRITATION

Not available. Refer to individual constituents.

Section 12 - ECOLOGICAL INFORMATION

May be harmful to fauna if not disposed of according to Section 13 and legislative requirements. [AMC]

Ecotoxicity

Ingredient Persistence: Persistence: Air Bioaccumulation Mobility Water/Soil

Chemwatch Material Safety Data Sheet Issue Date: 29-Aug-2012

X9317SP

Hazard Alert Code: LOW

CHEMWATCH 7176-83 Version No:2.1.1.1 Page 6 of 6 Section 12 - ECOLOGICAL INFORMATION

AMC Bio- Vis Xtra No Data No Data No Data No Data No Data Available Available Available

Section 13 - DISPOSAL CONSIDERATIONS

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

Section 14 - TRANSPORTATION INFORMATION

HAZCHEM:

None (ADG7)

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: UN, IATA, IMDG

Section 15 - REGULATORY INFORMATION

POISONS SCHEDULE

None

REGULATIONS

No data for AMC Bio-Vis Xtra (CW: 7176-83)

Section 16 - OTHER INFORMATION

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 29-Aug-2012 Print Date: 10-Jan-2013

This is the end of the MSDS.

Printed on: 15 Aug 2012 9:01:38 am

COPY OF RECORD IN THE VICTORIAN WATER REGISTER LICENCE TO CONSTRUCT WORKS

under Section 67 of the Water Act 1989

The information in this copy of record is as recorded at the time of printing. Current information should be obtained by a search of the register. The State of Victoria does not warrant the accuracy or completeness of this information and accepts no responsibility for any subsequent release, publication or reproduction of this information.

This licence does not remove the need to apply for any authorisation or permission necessary under any other Act of Parliament with respect to anything authorised by the works licence.

Water used under this licence is not fit for any use that may involve human consumption, directly or indirectly, without first being properly treated.

This licence is not to be interpreted as an endorsement of the design and/or construction of any works (including dams). The Authority does not accept any responsibility or liability for any suits or actions arising from injury, loss, damage or death to person or property which may arise from the maintenance, existence or use of the works.

Each person named as a licence holder is responsible for ensuring all the conditions of this licence are complied with.

This licence authorises its holders to construct the described works, subject to the conditions.

Licence Holder(s)

COUNTRY FIRE AUTHORITY of 8 LAKESIDE DR BURWOOD EAST VIC 3151

Licence Contact Details

COUNTRY FIRE AUTHORITY 8 LAKESIDE DR BURWOOD EAST VIC 3151

Licence Details

Expiry date 13 Aug 2013

Status Active

Authority Southern Rural Water
Name of waterway or aquifer UNC-Unincorporated
Water system Unincorporated (GMU)

Copy of Record

Printed on: 15 Aug 2012 9:01:38 am Works Licence ID:WLE055602 Page 1 of 12

Summary of Licensed Works

The details in this section are a summary only. They are subject to the conditions specified in this licence.

Works ID	Works type	Use of water
WRK070670	Bore	Observation or investigation
WRK070671	Bore	Observation or investigation
WRK070672	Bore	Observation or investigation
WRK070673	Bore	Observation or investigation
WRK070674	Bore	Observation or investigation
WRK070675	Bore	Observation or investigation
WRK070676	Bore	Observation or investigation
WRK070677	Bore	Observation or investigation
WRK070678	Bore	Observation or investigation
WRK070679	Bore	Observation or investigation
WRK070680	Bore	Observation or investigation
WRK070681	Bore	Observation or investigation
WRK070682	Bore	Observation or investigation
WRK070683	Bore	Observation or investigation
WRK070684	Bore	Observation or investigation
WRK070685	Bore	Observation or investigation
WRK070686	Bore	Observation or investigation

Description of Licensed Works

WORKS ID WRK070670

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 1 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070671

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Copy of Record

Printed on: 15 Aug 2012 9:01:38 am Works Licence ID:WLE055602 Page 2 of 12

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 1 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070672

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 1 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070673

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Copy of Record

Printed on: 15 Aug 2012 9:01:38 am Works Licence ID:WLE055602 Page 3 of 12

Land description

Volume 9503 Folio 693 Lot 1 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070674

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 1 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070675

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 2 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070676

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 2 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070677

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 2 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070678

Copy of Record

Printed on: 15 Aug 2012 9:01:38 am Works Licence ID:WLE055602 Page 5 of 12

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 2 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070679

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 3 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070680

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Copy of Record

Printed on: 15 Aug 2012 9:01:38 am Works Licence ID:WLE055602 Page 6 of 12

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 3 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070681

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 3 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070682

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 3 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070683

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 4 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070684

Works type Bore

Works subtype Drilled bore
Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Easting Northing Zone MGA

Nil

Land description

Volume 9503 Folio 693 Lot 4 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070685

Works type Bore

Drilled bore Works subtype Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Zone MGA Easting Northing

Nil

Land description

Volume 9503 Folio 693 Lot 4 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Description of Licensed Works

WORKS ID WRK070686

Works type Bore

Works subtype Drilled bore Maximum depth 100.000 metres

Extraction Details

Use of water Observation or investigation

Works location

Northing Zone MGA Easting

Nil

Land description

Volume 9503 Folio 693 Lot 4 of Plan TP845669K

Property address

4549 GEELONG - BALLAN ROAD, FISKVILLE, VIC 3342

Related Instruments

Related entitlements Nil **Related water-use entities** Nil

Application History

Reference Type Status Lodged date Approved date Recorded date

WLI014780 Issue Approved 13 Aug 2012 15 Aug 2012

Copy of Record

Printed on: 15 Aug 2012 9:01:38 am Works Licence ID:WLE055602 Page 10 of 12

Conditions

Licence WLE055602 is subject to the following conditions:

Siting and construction

- The bore must be constructed on the land described in the licence, at coordinates E: 255230.0, N: 5825430.0, Zone: 55.
- The bore(s) must be drilled at the location specified in the application approved by the Authority, but if after drilling a bore is considered unsatisfactory, a replacement bore may be drilled at an alternative site no greater than 20 metres from the authorised site and no closer to neighbouring bores or nearby waterways, or as authorised by the Authority before the commencement of drilling.

Preventing pollution

- 3 All earthworks must be carried out, and all drilling fluids and waters produced during construction and development must be disposed of, in ways that avoid contaminating native vegetation, waterways, aquifers, the riparian environment, the riverine environment or other people's property.
- 4 Construction must stop immediately if the Authority reasonably believes that fuel, lubricant, drilling fluid, soil or water produced during construction and development is at risk of being spilled into native vegetation, waterways, aquifers, the riparian environment, the riverine environment or other people's property.
- The licence holder must construct and maintain bund walls, in accordance with the timeframe, specifications, guidelines or standards prescribed by the Authority, to prevent fuel, lubricant, drilling fluid, soil or water produced during construction and development from being spilled into native vegetation, waterways, aquifers, the riparian environment, the riverine environment or other people's property.

Construction standards

The bore(s) must be constructed, and where relevant decommissioned, in accordance with the Minimum Construction Requirements for Water Bores in Australia, Edition 3.

Drilling licence and supervision requirements

- 7 The bore(s) must be constructed by, or under the direct supervision of, a driller licensed under the Water Act 1989 and endorsed as a Class 1, 2, or 3 driller, with appropriate endorsements.
- 8 The licence holder must ensure that the licensed driller notifies the Authority's Drilling Inspector at least one day prior to work commencing on any grouting operations and must not proceed with the work unless authorised by the Drilling Inspector.

Bore completion report

- 9 The licence holder must ensure that the licensed driller sends a Bore Completion Report to the Authority within twenty-eight working days of the bore(s) being completed.
- 10 The works referred to in the licence must not be made operational until the Authority acknowledges receipt of an acceptable Bore Completion Report.
- 11 The works referred to in the licence must not be made operational until the licence holder sends a water sample to the laboratory nominated by the Authority.

Protecting water resources

- 12 No more than 17 bore(s) may be brought to final development under this licence.
- 13 At the completion of drilling, and before the drilling rig leaves the site, all but 17 bore(s) must be decommissioned so as to eliminate physical hazards, conserve aquifer yield, prevent groundwater contamination and prevent the intermingling of desirable and undesirable waters.

Protecting water quality

- 14 The bore(s) must be constructed so as to prevent aquifer contamination caused by vertical flow outside the casing.
- 15 If two or more aquifers are encountered, the bore(s) must be constructed to ensure that an

- impervious seal is made and maintained between each aquifer to prevent aquifer connection through vertical flow outside the casing; under no circumstances are two or more aquifers to be screened within the one bore or in any other manner to allow connection between them.
- Boreheads must be constructed, to ensure that no flood water, surface runoff or potential subsurface contaminated soakage can enter the bore or bore annulus.
- 17 Drilling must not exceed the maximum depth unless the Authority approves, in advance, drilling beyond this depth.

Protecting other water users

- 18 The diameter of the bore-casing must not exceed 50 millimetres.
- 19 The licence holder must, at the licence-holder's expense, if required by the Authority, conduct a pumping test and obtain a hydrogeological report, to the Authority's specification, on the potential for bore operation to interfere with any bore, aquifer, groundwater dependent ecosystem or waterway.

Fees and charges

20 The licence holder must, when requested by the Authority, pay all fees, costs and other charges under the Water Act 1989 in respect of this licence.

END OF COPY OF RECORD

Copy of Record

Printed on: 15 Aug 2012 9:01:38 am Works Licence ID:WLE055602 Page 12 of 12

Appendix D 3 Pages

Survey Report

SURVEY REPORT

24th September 2012

David Louwrens Cardno Lane Piper Building 2, 154 Highbury Road Burwood, Victoria 3125

RE: CFA Fiskville Groundwater Bore Survey

Dear David,

The results of the surveying conducted on Monday 27th August and Thursday 20th September at the CFA Training Facility in Fiskville are as follows:

Point	AHD RL (m)	Notes
GW101-NS	438.165	Natural Surface
GW101-PVC	438.848	Top of PVC Pipe
GW101-Standpipe	438.952	Top of standpipe
GW102-NS	441.547	Natural Surface
GW102-PVC	442.225	Top of PVC Pipe
GW102-Standpipe	442.32	Top of standpipe
GW103-NS	446.233	Natural Surface
GW103-PVC	446.785	Top of PVC Pipe
GW103-Standpipe	446.901	Top of standpipe
GW104_NS	438.885	Natural Surface
GW104_PVC	439.609	Top of PVC Pipe
GW104_Standpipe	439.691	Top of standpipe
GW105_NS	441.775	Natural Surface
GW105_PVC	441.639	Top of PVC Pipe
GW105_Cover	441.802	Top of Cover
GW106_NS	441.525	Natural Surface
GW106_PVC	441.438	Top of PVC Pipe
GW106_Cover	441.564	Top of Cover
GW107_NS	441.435	Natural Surface
GW107_PVC	441.370	Top of PVC Pipe
GW107_Cover	441.456	Top of Cover
GW108_NS	438.861	Natural Surface
GW108_PVC	439.661	Top of PVC Pipe
GW108_Standpipe	439.823	Top of standpipe

GW109_NS	440.945	Natural Surface
GW109_PVC	440.859	Top of PVC Pipe
GW109_Cover	440.972	Top of Cover
GW110_NS	440.832	Natural Surface
GW110_PVC	440.746	Top of PVC Pipe
GW110_Cover	440.843	Top of Cover
GW111_NS	441.054	Natural Surface
GW111_PVC	440.975	Top of PVC Pipe
GW111_Cover	441.069	Top of Cover
BH3-NS	440.096	Natural Surface
BH3-PVC	440.524	Top of PVC Pipe
BH3-Standpipe	440.642	Top of standpipe
BH4-NS	442.720	Natural Surface
BH4-PVC	443.168	Top of PVC Pipe
BH4-Standpipe	443.267	Top of standpipe
BH5-NS	442.747	Natural Surface
BH5-PVC	443.1539	Top of PVC Pipe
BH5-Standpipe	443.2622	Top of standpipe

Table 1: Levelled Heights

The horizontal coordinates of the boreholes (determined via GNSS) were:

Point	Easting	Northing
GW101	255454.308	5826176.965
GW102	254526.104	5826117.924
GW103	254043.809	5825894.150
GW104	255205.957	5825603.340
GW105	254739.620	5825754.738
GW106	254726.508	5825700.149
GW107	254754.207	5825581.589
GW108	255205.916	5825605.553
GW109	254914.326	5825709.282
GW110	254877.995	5825667.366
GW111	254862.124	5825470.457
вн3	254085.093	5825436.430
BH4	254761.039	5826135.196
BH5	254761.134	5826137.568

Table 2: Borehole Coordinates (MGA94 Zone 55)

Please feel free to contact me if you have any questions.
Yours Sincerely,
Simon Fuller

Appendix E 75 Pages

Laboratory Reports & Chain of Custody Records

Chain of Custody Records
ALS Report No. EM1211100
mgt-LabMark Report No. 352941-W
Data Quality Validation Report

ab for 21/09 Samples sent to Ru CA × Nicro N Date #w Colbur (2 ESKIES) χ χ 0133 Sheet Analysis Aetals (22) X × × X X χ × χ X χ y Χ X Axager (as) |xcyanide 30Hes#2 xxmals × \succ X X X. X Х X X Sample preservation Telephone: +61-3-8549 9600 Environmental Division EM1211100 HO3/HCI B Nork Order Melbourne (As part of ALS guete 1D: ME/A+1/12-12 Sampler name: (prior and sign Other (Specify) Sample Matrix lios Vater 2 6:40pm (5) (5) S.138m 5:45m 11:504 4.28cm 11:20m 2:296 3.85% \$ \$ \$ 8.55M 2.PM 7 Sampling 500/02 6/92 Date ampler: I attest that the proper field sampling proceedures were used during the collection of these sample Sarah Hodgeson ALS (03)85499600 CC: david.louwrens@cardno.com.au 608 2xgreen plo 1xgreen plo 2xments Zxvials, " TAPE 2xGreen plastic ixpupe 2xmetals 1xCrixcyanide 2xorals, x server Bothes #2 Container Bothes# 9 OF1 300 Ţ Bathes # ٥ 1 ż FISKVILLE XVia ï à بر ż ÷ Address: Building 2, 154 Highbury Rd, Burwood, Vic, 3125 Laboratory ID Mobile: -aboratory (name, phone, fax no & contact person) marcus.boyd@cardno.com.au & Phone: 03 9888 0100 Fax: 03 9808 3511 Chain of Custody Project Number: 212(63.2 Cardno ALS 418005 aco7-2009 aco6-200912 GW103_200912 QC05_200912 QC03-200912 QC01-200912 GUIDE 200912 GW 106-200912 Sample ID GUIDI-200912 nquished by: (print and signatur SH45-200912 47111-200912 Name: MARCUS 3H3-200912 BH4-200912 lacus 8000 Email:

In accordance with your acceptance of our standard or customised Terms of Agreement

between Cardno Lane Piper Pty Ltd and Service or Equipment Providers

OF3.01 Chain of Custody 1 Ammania, Nitrade, TDS, PH, Major Ians

then: fluoride, nitrite, chilonide

Page 1 of 1 Printed 19/09/2012

& GWIDG_200912: Analysis preference if insufficient sample in Green Bottle: Please circle Turn around time: (24 hour/48 hour/5 days)

Please supply results electronically in spreadsheet and ESDAFFILE

Approved 3 May 2044 Revision 2

C Chain of Custody

Sample Matrix Sample	Analysi	ad	οΤ ,Ι	N ss	noįsiVi	EC KM, Amn	NT-01 8 EA015H NT-8: T NT-8: T	X			X X X X X X							20/49/1C	(Frint and signature) Date 2, (4/N) Time 50	Time 70/9/17	re) Date / Time Ruc(Au
	Sample Matrix Sample preservation					cs	Soil Sludge Compos Ice brick	×			X							Sampler name: (print and signature)	Beceived by/Counterfu		
	28	040 200	73	CC: david.louwrens@cardno.com.au	ISKVILLE	Sarah Hodgeson ALS (03)85499600	Samplir	K	plastic,	1× (2) 1× (2) 2× 2× 2 1× 1× 2×	xamber, 20/9	glastic !	1xpuple xneed		· ·			used during the collection of these samples.		Dails / S) Date (

Page 1 of 1 Printed 19/09/2012

QF3.01 Chain of Custody1.

Revision 2 Approved 3 May 2011

Ranil Weerakkody

From:

on behalf of Samples Melbourne

To:

Sarah Hodgson

Subject:

EM1211100

Hi Sarah,

For the attached COC, there are some issues:

- i) Received 2 Unspecified metals bottles for sample QC05 (sample 3)
- ii) Received one extra vial labelled as QCO2, but received only one vial for sample QC01.(sample 1)
 - iii) We have not received a hexachrom bottle for sample GW103 (sample 10)
- (iV) There are some samples received with 2 filtered bottles, others received with 2 total bottles and also samples received with a filtered and a total bottle.

Can you please check with the client regarding these issues.

Regards, Bharathi.

Environmental Division

CERTIFICATE OF ANAL YSIS

Work Order	: EM1211100	Page	: 1 of 23
Client	CARDNO LANE PIPER PTY LTD	Laboratory	: Environmental Division Melbourne
Contact	: MR MARCUS BOYD (Cardno)	Contact	: Sarah Hodgson
Address	: 154 HIGHBURY ROAD	Address	: 4 Westall Rd Springvale VIC Australia 3171
	BURWOOD VIC, AUSTRALIA 3125		
E-mail	: marcus.boyd@cardno.com.au	E-mail	: sarah.hodgson@alsenviro.com
Telephone	: +61 03 98880100	Telephone	: 03 8549 9652
Facsimile	: +61 03 98083511	Facsimile	: 03 8549 9626
Project	: 212163 2	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number			
C-O-C number		Date Samples Received	: 21-SEP-2012
Sampler	: MB	Issue Date	: 03-OCT-2012
Site	: Fiskville		
		No. of samples received	: 17
Quote number	: ME/441/12	No. of samples analysed	15
This report singulation	This senort supercedes any previous report(s) with this reference Desults apply to the cample(s) as submitted All pages of this report have been charked and approve	pottimulia ac (a)olumea	Jayoung has helped about by and and all the second IN

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

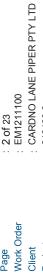
This Certificate of Analysis contains the following information:

- General Comments
 - Analytical Results
- Surrogate Control Limits

	has been		
	signing		
	Electronic		tegory
	below.		Accreditation Category
	indicated		Accredi
	signatories		
	authorized	art 11.	
	the	FR P	
	by	21 C	,
	signed	cified in	Position
	has been electronically signed by the authorized signatories indicated below. Electronic signing has been	vliance with procedures specified in 21 CFR Part 11.	
	peen	e with	
	has	pliance	
Signatories	his document	carried out in compl	ories
Sign	This	carried	Signatories

Melbourne Inorganics Melbourne Inorganics Melbourne Inorganics

Melbourne Organics Sydney Organics


Senior Inorganic Chemist	Metals Team Leader	Senior LCMS Chemist	Senior Semivolatile Instrument Chemist	Senior Inorganic Instrument Chemist
Dilani Fernando	Eric Chau	Lana Nguyen	Nancy Wang	Nikki Stepniewski

WORLD RECOGNISED
ACCREDITATION

Environmental Division Melbourne Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171 Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

2121632 Project

General Comments

APHA, AS and NEPM. In house The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key:

^ = This result is computed from individual analyte detections at or above the level of reporting

EG020F: Sample EM1211100-009, 010 and 014 have been diluted due to sample matrix and LORs have been raised accordingly

EG035F 100x dilution has been applied for EM121100#14 due to sample matrix, LOR has been raised accordingly.

EG035F 10x dilution has been applied for EM121100#9 due to sample matrix, LOR has been raised accordingly.

EK026SF: EM1211100-009 required dilution prior to analysis due to matrix interferences. LOR values have been adjusted accordingly.

EK040P: EM1211100-#9 & #14 have been diluted x10 due to sample matrix for Fluoride analysis.

EP075: 'Sum of PAH' is the sum of the USEPA 16 priority PAHs

EP231: PFOA & PFOS results are reported as an aggregate of linear and branched isomers. Matrix spike recovery for PFOS not determined due to high background level of target analyte.

For samples where a filtered metals bottle was not received they were filtered through a 0.45um filter prior to the dissolved metals analysis from the nautral plastic bottle.

lonic Balance out of acceptable limits for EM1211100 #12 due to analytes not quantified in this report.

Ionic balances were calculated using: major anions - chloride, alkalinity and sulfate; and major cations - calcium, magnesium, potassium and sodium.

Perchlorate and PFOS/PFOA analysis conducted by ALS Sydney, NATA accreditation no. 825, site no 10911.

Samples have been received with limited time to adhere to recommended analytical holding times for hexavalent chromium. Results should be scrutinised accordingly.

TDS by method EA-015 for EM1211100 #9 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper

Page Work Order Client

: 3 of 23 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Project

Analytical Results

•		i						
Sub-Matrix: WATER		Clie	Client sample ID	QC01_200912	QC03_200912	QC05_200912	QC06_200912	QC09_200912
	D	ent samplir	Client sampling date / time	20-SEP-2012 15:45	20-SEP-2012 17:45	20-SEP-2012 18:40	20-SEP-2012 08:30	20-SEP-2012 08:30
Compound	CAS Number	LOR	Unit	EM1211100-001	EM1211100-002	EM1211100-003	EM1211100-005	EM1211100-006
EA005: pH								
pH Value		0.01	pH Unit	7.23	7.15			
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C	GIS-210-010	10	mg/L	069	808	-		
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	<0.01		
Antimony	7440-36-0	0.001	mg/L	0.003	<0.001	<0.001		
Arsenic	7440-38-2	0.001	mg/L	0.002	<0.001	<0.001		
Barium	7440-39-3	0.001	mg/L	090'0	0.079	<0.001		
Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	<0.001		
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001		
Cobalt	7440-48-4	0.001	mg/L	0.014	0.003	<0.001		
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001		
Copper	7440-50-8	0.001	mg/L	0.002	0.008	<0.001		
Manganese	7439-96-5	0.001	mg/L	0.887	0.117	<0.001		
Nickel	7440-02-0	0.001	mg/L	0.020	0.014	<0.001		
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001		-
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01		
Zinc	7440-66-6	0.005	mg/L	0.008	0.013	<0.005	-	
Lithium	7439-93-2	0.001	mg/L	0.001	0.001	<0.001		-
Molybdenum	7439-98-7	0.001	mg/L	0.001	0.001	<0.001	-	-
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	-	-
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	<0.001	-	1
Thallium	7440-28-0	0.001	mg/L	<0.001	<0.001	<0.001	-	
Boron	7440-42-8	0.05	mg/L	90:0	0.05	<0.05	-	
Iron	7439-89-6	0.05	mg/L	2.49	<0.05	<0.05		
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001		
EK055G: Ammonia as N by Discrete Analyse	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.20	0.34			
EK057G: Nitrite as N by Discrete Analyser	er							
Nitrite as N		0.01	mg/L	<0.01	0.03	-	-	-
EK058G: Nitrate as N by Discrete Analyser	ser							
Nitrate as N	14797-55-8	0.01	mg/L	0.02	0.34	-	-	-
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.02	0.37			
EP080/071: Total Petroleum Hydrocarbons	us							

A Campbell Brothers Limited Company

: 4 of 23 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Page Work Order Project Client

Analytical Results

Sub-Matrix: WATER		Client sample ID	QC01_200912	QC03_200912	QC05_200912	QC06_200912	QC09_200912
	Client san	Client sampling date / time	20-SEP-2012 15:45	20-SEP-2012 17:45	20-SEP-2012 18:40	20-SEP-2012 08:30	20-SEP-2012 08:30
Compound CAS Numb	CAS Number LOR	Unit	EM1211100-001	EM1211100-002	EM1211100-003	EM1211100-005	EM1211100-006
EP080/071: Total Petroleum Hydrocarbons - Continued							
C6 - C9 Fraction	20	hg/L	1	-	1	<20	<20
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft	2010 Draft						
C6 - C10 Fraction	20	hg/L	-			<20	<20
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4 17060-07-0	7-0 0.1	%	1	-	1	91.9	97.6
Toluene-D8 2037-26-5	3-5 0.1	%	1	-	1	83.2	85.2
4-Bromofluorobenzene 460-00-4	0.1	%				7.07	7.0.7

 Page
 : 5 of 23

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163 2

Analytical Results

iaiyucai nesulis

20-SEP-2012 14:29 EM1211100-011 BH3_200912 <0.001 <0.0001 <0.001 <0.001 <0.001 <0.001 0.010 0.002 0.00 900.0 0.005 <0.001 6830 3790 <0.01 0.017 000 000 524 495 V V 158 13 20-SEP-2012 14:00 GW103 200912 EM1211100-010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.0010 < 0.010 <0.10 0.065 0.132 0.028 3130 7.90 1920 308 26 79 495 308 V V 28 868 12 20-SEP-2012 11:50 EM1211100-009 BH5 200912 <0.0010 <0.010 <0.010 0.160 0.842 0.020 0.986 0.163 0.575 0.037 0.524 0.165 2690 3240 0.51 4.55 11 264 264 704 30 501 V 8 20-SEP-2012 11:20 EM1211100-008 BH4_200912 <0.001 <0.0001 <0.001 <0.001 <0.001 0.004 <0.001 0.005 0.001 0.008 <0.001 <0.001 <0.01 0.007 662 125 268 268 V V 12 40 9 8 20-SEP-2012 10:45 GW101_200912 EM1211100-007 <0.0001 <0.001 0.194 <0.001 0.003 <0.001 0.008 <0.001 0.002 0.148 <0.01 6850 7.77 4530 512 103 300 821 12 74 ž Client sample ID Client sampling date / time pH Unit mS/cm mg/L Unit mg/L mg/L 0.0001 LOR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.001 0.01 0.01 10 GIS-210-010 14808-79-8 7439-93-2 1 1 16887-00-6 7440-43-9 7440-47-3 7439-98-7 CAS Number 3812-32-6 71-52-3 7440-70-2 7439-95-4 7440-23-5 7440-09-7 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-48-4 7440-50-8 7439-96-5 7440-02-0 7439-92-1 7440-62-2 7440-66-6 DMO-210-001 ED041G: Sulfate (Turbidimetric) as SO4 2- by DA EG020F: Dissolved Metals by ICP-MS ED045G: Chloride Discrete analyser ED093F: Dissolved Major Cations ED037P: Alkalinity by PC Titrator Bicarbonate Alkalinity as CaCO3 EA015: Total Dissolved Solids Total Dissolved Solids @180°C Carbonate Alkalinity as CaCO3 Electrical Conductivity @ 25°C Hydroxide Alkalinity as CaCO3 Sulfate as SO4 - Turbidimetric Total Alkalinity as CaCO3 EA010: Conductivity Sub-Matrix: WATER Molybdenum Magnesium EA005: pH Aluminium Manganese Potassium Chromium Compound Beryllium Vanadium Antimony pH Value Cadmium Chloride Calcium Sodium Arsenic Barinm Copper Lithium Cobalt Nickel Lead

A Campbell Brothers Limited Compan

Page Work Order Project Client

: 6 of 23 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Analytical Results

Sub-Matrix: WATER		Clie	Client sample ID	GW101_200912	BH4_200912	BH5_200912	GW103_200912	BH3_200912
	CI	ent samplii	Client sampling date / time	20-SEP-2012 10:45	20-SEP-2012 11:20	20-SEP-2012 11:50	20-SEP-2012 14:00	20-SEP-2012 14:29
Compound	CAS Number	LOR	Unit	EM1211100-007	EM1211100-008	EM1211100-009	EM1211100-010	EM1211100-011
EG020F: Dissolved Metals by ICP-MS - Continued	nued							
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.10	<0.10	<0.01
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	<0.010	<0.010	<0.001
Thallium	7440-28-0	0.001	mg/L	<0.001	<0.001	<0.010	<0.010	<0.001
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.32	<0.10	0.07
Iron	7439-89-6	0.05	mg/L	0.71	90.0	338	0.56	<0.05
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0010	<0.0001	<0.0001
EG050F: Dissolved Hexavalent Chromium								
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK026SF: Total CN by Segmented Flow Analyser	alyser							
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	<0.040		<0.004
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.1	0.3	1.1	0.5	0.1
EK055G: Ammonia as N by Discrete Analyser	je.							
Ammonia as N	7-14-41-7	0.01	mg/L	0.07	0.04	0.10	<0.01	0.08
EK057G: Nitrite as N by Discrete Analyser								
Nitrite as N		0.01	mg/L	<0.01	<0.01	0.02	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analyser								
Nitrate as N	14797-55-8	0.01	mg/L	0.67	0.12	0.01	<0.01	21.1
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser	Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.67	0.12	0.03	<0.01	21.1
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	e Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	7:0	5.9	1.0	0.4
EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser	y Discrete An	alyser						
↑ Total Nitrogen as N		0.1	mg/L	0.7	8.0	5.9	1.0	21.5
EK067G: Total Phosphorus as P by Discrete Analyser	Analyser							
Total Phosphorus as P		0.01	mg/L	0.38	0.54	1.38	68.8	1.59
EN055: Ionic Balance								
Total Anions	-	0.01	med/L	65.4	6.73	27.4	31.8	68.7
Total Cations	-	0.01	med/L	65.8	6.13	25.1	29.6	72.2
Ionic Balance	-	0.01	%	0.36	4.73	4.57	3.61	2.50
EP066: Polychlorinated Biphenyls (PCB)								
Total Polychlorinated biphenyls		-	hg/L	\	^	\ <u>\</u>	\	<u>۲</u>
EP074A: Monocyclic Aromatic Hydrocarbons	S							
Benzene	71-43-2	-	hg/L	₹	₹	₹	>	<u>^</u>

A Campbell Brothers Limited Company

CARDNO LANE PIPER PTY LTD EM1211100 7 of 23 Work Order Client

2121632 Project

Analytical Results

20-SEP-2012 14:29 EM1211100-011 BH3_200912 <50 <50 220 <50 <50 <50 <50 <50 2 <5 2 × 2 <5 5 5 2 2 2 2 5 \$ 2 2 2 ×5 v 2 2 <5 20-SEP-2012 14:00 GW103 200912 EM1211100-010 <50 <50 <50 <50 <50 <50 <50 <50 <50 **2** < 5 \$ \$ **2** \$ Ÿ **%** 2 \$ **%** 5 5 5 \$ \$ 2 5 20-SEP-2012 11:50 EM1211100-009 BH5 200912 <50 <50 ²20 <50 <50 <50 <50 <50 5 3 2 **2 2** \$ **2** \$ \$ **2 2 2** \$ Ÿ \$ 5 \$ \$ \$ \$ 20-SEP-2012 11:20 EM1211100-008 BH4_200912 <50 <50 <50 <50 <50 <50 **2** <50 5 <50 5 5 7 22 Λ 5 5 5 5 5 \$ \$ \$ \$ \$ \$ ۷₅ 20-SEP-2012 10:45 GW101_200912 EM1211100-007 <50 <50 <50 <50 <50 <50</p>
<50</p>
<50</p> <50 ů 5 3 5 < 5 5 \$ Ŝ \$ \$ <5 5 Ŝ 5 × 5 < 5 Client sample ID Client sampling date / time hg/L hg/L hg/L hg/L hg/L µg/L hg/L LOR 50 2 20 50 20 2 2 2 2 50 2 2 2 2 50 20 2 2 2 N 2 α 2 2 2 2 2 135-98-8 95-63-6 104-51-8 78-93-3 75-15-0 75-71-8 74-87-3 74-83-9 75-35-4 103-65-1 108-10-1 CAS Number EP074A: Monocyclic Aromatic Hydrocarbons - Continued 108-88-3 100-41-4 108-38-3 106-42-3 100-42-5 95-47-6 98-82-8 108-67-8 9-90-86 9-28-66 108-05-4 591-78-6 594-20-7 78-87-5 10061-01-5 10061-02-6 106-93-4 75-01-4 75-00-3 75-69-4 56-60-5 EP074E: Halogenated Aliphatic Compounds EP074B: Oxygenated Compounds **EP074C: Sulfonated Compounds** 4-Methyl-2-pentanone (MIBK) trans-1.3-Dichloropropylene cis-1.3-Dichloropropylene 1.2-Dibromoethane (EDB) Dichlorodifluoromethane trans-1.2-Dichloroethene Trichlorofluoromethane 1.3.5-Trimethylbenzene 1.2.4-Trimethylbenzene EP074D: Fumigants 1.2-Dichloropropane 2.2-Dichloropropane meta- & para-Xylene 1.1-Dichloroethene p-IsopropyItoluene sec-Butylbenzene 2-Hexanone (MBK) Sub-Matrix: WATER tert-Butylbenzene 2-Butanone (MEK) Isopropylbenzene n-Propylbenzene Carbon disulfide n-Butylbenzene **Bromomethane** Chloromethane Vinyl chloride Chloroethane Ethylbenzene Vinyl Acetate ortho-Xylene Styrene

A Campbell Brothers Limited Compan

Page Work Order Project Client

: 8 of 23 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

		Č						
Sub-Matrix: WATER	Olis	CII ent samoli	Client sampling date / time	GW101_200912 20-SEP-2012 10:45	BH4_200912 20-SEP-2012 11:20	BH5_200912 20-SEP-2012 11:50	GW103_200912 20-SEP-2012 14:00	BH3_200912 20-SEP-2012 14:29
700000000000000000000000000000000000000	, oden. M. O. M. O	. ac	l Init	EM1211100-007	EM1211100-008	EM1211100-009	EM1211100-010	EM1211100-011
	CAS Mariner							
EPU74E: Halogenated Allphatic Compounds - Continued	oounds - Continued							
1.1-Dichloroethane	75-34-3	Ω	hg/L	<5	<5	<5	~ 2	<5 <
cis-1.2-Dichloroethene	156-59-2	2	hg/L	<5	<5	<5	<5	<5
1.1.1-Trichloroethane	71-55-6	2	hg/L	<5	<5	<5	<5	<5
1.1-Dichloropropylene	563-58-6	2	hg/L	<5	<5	<5	~ 22	<5
Carbon Tetrachloride	56-23-5	Ŋ	hg/L	<5	<5	~ 2	~	\ \ \ \
1.2-Dichloroethane	107-06-2	Ŋ	hg/L	<5	<5	~ 2	~	\ \ \ \ \
Trichloroethene	79-01-6	Ŋ	hg/L	<5	<5	~ 2	~	\ \ \ \
Dibromomethane	74-95-3	Ω	hg/L	<5	<5	< <u>\$</u>	~ 2	\ \ \ \ \
1.1.2-Trichloroethane	2-00-2	2	µg/L	<5	<5	<5 <5	<5 <	× 25
1.3-Dichloropropane	142-28-9	Ŋ	hg/L	<5	<5	~ 2	~	\ \ \ \
Tetrachloroethene	127-18-4	22	hg/L	<5	<5	<5	~	< 5
1.1.1.2-Tetrachloroethane	630-20-6	22	hg/L	<5	<5 <5	~ 2	~	< 5
trans-1.4-Dichloro-2-butene	110-57-6	22	hg/L	<5	<5	~ 2	~	< 5
cis-1.4-Dichloro-2-butene	1476-11-5	22	hg/L	<5	<5 <5	~ 2	~	< 5
1.1.2.2-Tetrachloroethane	79-34-5	2	hg/L	<5	<5	~ 22	~	× 25
1.2.3-Trichloropropane	96-18-4	22	hg/L	<5	<5	<5	<5	<5
Pentachloroethane	76-01-7	22	hg/L	<5	<5	<5	<5	<5
1.2-Dibromo-3-chloropropane	96-12-8	2	hg/L	<5	<5	<5	<5	<5
EP074F: Halogenated Aromatic Compounds	spunod							
Chlorobenzene	108-90-7	2	hg/L	<5	<5	<5	<5	<5
Bromobenzene	108-86-1	2	hg/L	<5	<5	<5	<5	<5
2-Chlorotoluene	95-49-8	2	hg/L	<5	<5	<5	<5	<5
4-Chlorotoluene	106-43-4	2	hg/L	<5	<5	<5	<5	<5
1.2.3-Trichlorobenzene	87-61-6	2	hg/L	<5	<5	<5	<5	<5
EP074G: Trihalomethanes								
Chloroform	67-66-3	2	hg/L	<5	<5	<5	<5	<5
Bromodichloromethane	75-27-4	2	hg/L	<5	<5	<5	~ 2	<5
Dibromochloromethane	124-48-1	2	hg/L	<5	<5	<5	<5	<5
Bromoform	75-25-2	2	hg/L	<5	<5	<5	<5	<5
EP075A: Phenolic Compounds								
Phenol	108-95-2	7	hg/L	<2	<2	<2	<2	<2
2-Chlorophenol	8-22-26	2	hg/L	<2	<2	<2	<2	<2
2-Methylphenol	95-48-7	2	hg/L	<2	<2	<2	<2	<2
3- & 4-Methylphenol	1319-77-3	4	hg/L	4>	4	4>	45	4>
2-Nitrophenol	88-75-5	2	hg/L	<2	<2	<2	<2	<2
2.4-Dimethylphenol	105-67-9	2	hg/L	<2	<2	<2	<2	<2

Page Work Order Client

: 9 of 23 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Analytical Results

Project

Sub-Matrix: WATER		Olie	Client sample ID	GW101 200912	BH4 200912	BH5 200912	GW103 200912	BH3 200912
	Cl	ient samplir	Client sampling date / time	20-SEP-2012 10:45	20-SEP-2012 11:20	20-SEP-2012 11:50	20-SEP-2012 14:00	20-SEP-2012 14:29
Compound	CAS Number	LOR	Unit	EM1211100-007	EM1211100-008	EM1211100-009	EM1211100-010	EM1211100-011
EP075A: Phenolic Compounds - Continued								
2.4-Dichlorophenol	120-83-2	2	hg/L	<2	<2	<2	\$	<2
2.6-Dichlorophenol	87-65-0	2	hg/L	<2	<2	<2	~	<2
4-Chloro-3-Methylphenol	29-20-7	2	hg/L	<2	<2	<2	<2	<2
2.4.6-Trichlorophenol	88-06-2	2	hg/L	<2	~	<2	<2	<2
2.4.5-Trichlorophenol	95-95-4	2	hg/L	<2	~	~	<2	<2
Pentachlorophenol	87-86-5	4	hg/L	4>	4>	4	4>	4>
EP075B: Polynuclear Aromatic Hydrocarbons	pons							
Naphthalene	91-20-3	2	hg/L	7	\$	\$	\$	<2
2-Methylnaphthalene	91-57-6	2	hg/L	<2	<2	<2	<2	<2
2-Chloronaphthalene	91-58-7	2	hg/L	<2	<2	<2	<2	<2
Acenaphthylene	208-96-8	2	hg/L	<2	<2	<2	<2	<2
Acenaphthene	83-32-9	2	hg/L	<2	<2	<2	<2	<2
Fluorene	86-73-7	2	hg/L	<2	<2	<2	<2	<2
Phenanthrene	85-01-8	2	hg/L	<2	<2	<2	<2	<2
Anthracene	120-12-7	2	hg/L	<2	<2	<2	\$	<2
Fluoranthene	206-44-0	2	hg/L	<2	~	<2	7	<2
Pyrene	129-00-0	2	hg/L	<2	<2	<2	\$	<2
N-2-Fluorenyl Acetamide	53-96-3	2	hg/L	<2	<2	<2	<2	<2
Benz(a)anthracene	56-55-3	2	hg/L	<2	<2	<2	<2	<2
Chrysene	218-01-9	2	hg/L	<2	<2	<2	<2	<2
Benzo(b) & 20	205-99-2 207-08-9	4	hg/L	4>	4>	4>	4>	4 >
Benzo(k)fluoranthene								
7.12-Dimethylbenz(a)anthracene	9-26-29	2	hg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	50-32-8	2	hg/L	<2	<2	<2	<2	<2
3-Methylcholanthrene	56-49-5	2	hg/L	<2	<2	<2	<2	<2
Indeno(1.2.3.cd)pyrene	193-39-5	2	µg/L	<2	<2	<2	<2	<2
Dibenz(a.h)anthracene	53-70-3	2	µg/L	<2	<2	<2	<2	<2
Benzo(g.h.i)perylene	191-24-2	2	hg/L	<2	<2	<2	<2	<2
N Sum of PAHs	-	2	hg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene TEQ (WHO)		2	hg/L	<2	<2	<2	<2	<2
EP075C: Phthalate Esters								
Dimethyl phthalate	131-11-3	2	hg/L	<2	<2	<2	<2	<2
Diethyl phthalate	84-66-2	2	hg/L	<2	<2	<2	<2	<2
Di-n-butyl phthalate	84-74-2	2	hg/L	<2	<2	<2	<2	<2
Butyl benzyl phthalate	85-68-7	2	hg/L	<2	<2	<2	<2	<2
bis(2-ethylhexyl) phthalate	117-81-7	10	hg/L	<10	<10	<10	<10	<10

EP075G: Chlorinated Hydrocarbons

 Page
 : 10 of 23

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIF

Client : CAF
Project : 212'

: 10 of 23 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Analytical results								
Sub-Matrix: WATER		Clie	Client sample ID	GW101_200912	BH4_200912	BH5_200912	GW103_200912	BH3_200912
	Cli	ent samplii	Client sampling date / time	20-SEP-2012 10:45	20-SEP-2012 11:20	20-SEP-2012 11:50	20-SEP-2012 14:00	20-SEP-2012 14:29
Compound	CAS Number	LOR	Unit	EM1211100-007	EM1211100-008	EM1211100-009	EM1211100-010	EM1211100-011
EP075C: Phthalate Esters - Continued								
Di-n-octylphthalate	117-84-0	2	hg/L	<2	<2	<2	<2	<2
EP075D: Nitrosamines								
N-Nitrosomethylethylamine	10595-95-6	7	hg/L	<2	<2	<2	<2	<2
N-Nitrosodiethylamine	55-18-5	2	hg/L	~ 5	<2	<2	<2	<2
N-Nitrosopyrrolidine	930-55-2	4	hg/L	4>	4>	4>	4>	4>
N-Nitrosomorpholine	59-89-2	2	hg/L	~ 5	<2	<2	<2	<2
N-Nitrosodi-n-propylamine	621-64-7	2	hg/L	\$	<2	<2	<2	<2
N-Nitrosopiperidine	100-75-4	2	hg/L	\$	<2	<2	<2	<2
N-Nitrosodibutylamine	924-16-3	2	hg/L	\$	<2	<2	<2	<2
N-Nitrosodiphenyl &	86-30-6 122-39-4	4	hg/L	4>	4>	4>	4>	4>
Dipnenylamine	1	c	1,	ć	ć	ć	ć	ć
Methapyrilene	91-80-2	7	hg/L	75	7.7	75	77	2>
EP075E: Nitroaromatics and Ketones								
2-Picoline	109-06-8	2	hg/L	<2	<2	<2	<2	<2
Acetophenone	98-86-2	7	hg/L	<2	<2	<2	<2	<2
Nitrobenzene	98-95-3	7	hg/L	<2	<2	<2	<2	<2
Isophorone	78-59-1	7	hg/L	<2	<2	<2	<2	<2
2.6-Dinitrotoluene	606-20-2	4	hg/L	4 >	4>	<4	4>	<4
2.4-Dinitrotoluene	121-14-2	4	hg/L	4>	4>	4>	4>	^
1-Naphthylamine	134-32-7	7	hg/L	<2	<2	<2	<2	<2
4-Nitroquinoline-N-oxide	56-57-5	2	hg/L	~ 5	<2	<2	<2	<2
5-Nitro-o-toluidine	99-22-8	7	hg/L	<2	<2	<2	<2	<2
Azobenzene	103-33-3	7	hg/L	<2	<2	<2	<2	<2
1.3.5-Trinitrobenzene	99-35-4	7	hg/L	<2	<2	<2	<2	<2
Phenacetin	62-44-2	7	hg/L	<2	<2	<2	<2	<2
4-Aminobiphenyl	92-67-1	7	hg/L	<2	<2	<2	<2	<2
Pentachloronitrobenzene	82-68-8	7	hg/L	<2	<2	<2	<2	<2
Pronamide	23950-58-5	7	hg/L	<2	<2	<2	<2	<2
Dimethylaminoazobenzene	60-11-7	7	hg/L	<2	<2	<2	<2	<2
Chlorobenzilate	510-15-6	2	hg/L	<2	<2	<2	<2	<2
EP075F: Haloethers								
Bis(2-chloroethyl) ether	111-44-4	2	hg/L	<2	<2	<2	<2	<2
Bis(2-chloroethoxy) methane	111-91-1	7	hg/L	<2	<2	<2	<2	<2
4-Chlorophenyl phenyl ether	7005-72-3	2	hg/L	<2	<2	<2	<2	<2
4-Bromophenyl phenyl ether	101-55-3	2	hg/L	<2	<2	<2	<2	<2

: 11 of 23 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Page Work Order Client

Project

Sub-Matrix: WATER		Š	Client sample ID	GW101 200912	BH4 200912	BH5 200912	GW103 200912	BH3 200912
	Cli	ənt sampli	Client sampling date / time	20-SEP-2012 10:45	20-SEP-2012 11:20	20-SEP-2012 11:50	20-SEP-2012 14:00	20-SEP-2012 14:29
Compound	CAS Number	LOR	Unit	EM1211100-007	EM1211100-008	EM1211100-009	EM1211100-010	EM1211100-011
EP075G: Chlorinated Hydrocarbons - Continued	- Continued							
1.3-Dichlorobenzene	541-73-1	2	hg/L	<2	<2	<2	~	<2
1.4-Dichlorobenzene	106-46-7	2	hg/L	<2	<2	<2	~	<2
1.2-Dichlorobenzene	95-50-1	2	hg/L	<2	<2	<2	<2	<2
Hexachloroethane	67-72-1	2	hg/L	<2	<2	<2	<2	<2
1.2.4-Trichlorobenzene	120-82-1	2	hg/L	<2	<2	<2	~	<2
Hexachloropropylene	1888-71-7	2	hg/L	<2	<2	<2	~	<2
Hexachlorobutadiene	87-68-3	2	hg/L	<2	<2	<2	~	<2
Hexachlorocyclopentadiene	77-47-4	10	hg/L	<10	<10	<10	<10	<10
Pentachlorobenzene	608-93-5	7	hg/L	<2	<2	<2	<2	<2
Hexachlorobenzene (HCB)	118-74-1	4	hg/L	4>	4>	<4	4 >	4>
EP075H: Anilines and Benzidines								
Aniline	62-53-3	2	hg/L	<2	<2	<2	<2	<2
4-Chloroaniline	106-47-8	2	hg/L	<2	<2	<2	~	<2
2-Nitroaniline	88-74-4	4	hg/L	4>	4>	4>	4>	4>
3-Nitroaniline	99-09-2	4	hg/L	4>	4>	<4	4 >	4>
Dibenzofuran	132-64-9	2	hg/L	<2	<2	<2	<2	<2
4-Nitroaniline	100-01-6	7	µg/L	<2	<2	<2	<2	<2
Carbazole	8-74-8	7	hg/L	<2	<2	<2	<2	<2
3.3' -Dichlorobenzidine	91-94-1	2	hg/L	<2	<2	<2	<2	<2
EP075l: Organochlorine Pesticides								
alpha-BHC	319-84-6	2	µg/L	<2	<2	<2	<2	<2
beta-BHC	319-85-7	7	µg/L	<2	<2	<2	<2	<2
gamma-BHC	58-89-9	7	hg/L	<2	<2	<2	<2	<2
delta-BHC	319-86-8	7	µg/L	<2	<2	<2	<2	<2
Heptachlor	76-44-8	2	hg/L	<2	<2	<2	<2	<2
Aldrin	309-00-2	2	µg/L	<2	<2	<2	<2	<2
Heptachlor epoxide	1024-57-3	2	µg/L	<2	<2	<2	<2	<2
alpha-Endosulfan	9-86-656	7	µg/L	<2	<2	<2	<2	<2
4.4' -DDE	72-55-9	7	µg/L	<2	<2	<2	<2	<2
Dieldrin	60-57-1	7	µg/L	<2	<2	<2	<2	<2
Endrin	72-20-8	7	µg/L	<2	<2	<2	<2	<2
beta-Endosulfan	33213-65-9	2	µg/L	<2	<2	<2	<2	<2
4.4`-DDD	72-54-8	7	µg/L	<2	<2	<2	<2	<2
Endosulfan sulfate	1031-07-8	7	µg/L	<2	<2	<2	<2	<2
4.4`-DDT	50-29-3	4	hg/L	4>	4>	4>	4>	4>
Sum of Aldrin + Dioldrin	309 00 2/80 57 1	4	ng/L	4^	4>	4>	4>	42

Page Work Order Client

: 12 of 23 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Project

Analytical Results

Sub-Matrix: WATER		Ö	Client sample ID	GW101_200912	BH4_200912	BH5_200912	GW103_200912	BH3_200912
	O	lient sampli	Client sampling date / time	20-SEP-2012 10:45	20-SEP-2012 11:20	20-SEP-2012 11:50	20-SEP-2012 14:00	20-SEP-2012 14:29
Compound	CAS Number	LOR	Unit	EM1211100-007	EM1211100-008	EM1211100-009	EM1211100-010	EM1211100-011
EP075I: Organochlorine Pesticides - Continued	Continued							
Sum of DDD + DDE + DDT		4	hg/L	4>	4>	4>	4>	4>
EP075J: Organophosphorus Pesticides	des							
Dichlorvos	62-73-7	2	hg/L	<2	<2	<2	~	<2
Dimethoate	60-51-5	2	hg/L	<2	<2	<2	<2	<2
Diazinon	333-41-5	2	µg/L	<2	<2	<2	~	<2
Chlorpyrifos-methyl	5598-13-0	2	µg/L	<2	<2	<2	~	<2
Malathion	121-75-5	2	µg/L	<2	<2	<2	~	<2
Fenthion	55-38-9	2	hg/L	<2	<2	<2	~	<2
Chlorpyrifos	2921-88-2	2	hg/L	<2	<2	<2	<2	<2
Pirimphos-ethyl	23505-41-1	2	hg/L	<2	<2	<2	<2	<2
Chlorfenvinphos	470-90-6	2	hg/L	<2	<2	<2	~	<2
Prothiofos	34643-46-4	2	hg/L	<2	<2	<2	<2	<2
Ethion	563-12-2	2	hg/L	<2	<2	<2	<2	<2
EP080/071: Total Petroleum Hydrocarbons	rbons							
C6 - C9 Fraction	-	20	hg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction	-	20	µg/L	<50	<50	<50	<50	1380
C15 - C28 Fraction	-	100	hg/L	<100	<100	390	<100	<100
C29 - C36 Fraction	-	20	hg/L	<50	<50	20	<50	<50
[∧] C10 - C36 Fraction (sum)	-	20	hg/L	<50	<50	460	<50	1380
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft	carbons - NEPM 20	10 Draft						
C6 - C10 Fraction	-	20	hg/L	<20	<20	<20	<20	<20
>C10 - C16 Fraction	-	100	hg/L	<100	<100	<100	<100	1310
>C16 - C34 Fraction	-	100	hg/L	<100	<100	380	<100	<100
>C34 - C40 Fraction		100	hg/L	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		100	hg/L	<100	<100	380	<100	1310
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	81.9	76.0	54.1	89.2	84.3
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	101	109	107	79.4	105
Toluene-D8	2037-26-5	0.1	%	95.8	103	102	103	99.0
4-Bromofluorobenzene	460-00-4	0.1	%	81.9	83.8	82.0	85.6	81.6
EP075S: Acid Extractable Surrogates	S							
2-Fluorophenol	367-12-4	0.1	%	31.3	33.5	48.1	29.4	30.0
Phenol-d6	13127-88-3	0.1	%	18.3	18.7	23.1	21.4	13.6
2-Chlorophenol-D4	93951-73-6	0.1	%	46.6	52.6	57.6	55.1	47.4
2.4.6-Tribromophenol	118-79-6	0.1	%	50.5	77.2	73.5	70.2	74.9

A Campbell Brothers Limited Company

 Page
 : 13 of 23

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163 2

Analytical Results

20-SEP-2012 14:29 EM1211100-011 BH3_200912 80.5 61.1 89.8 0.69 87.5 72.0 98.1 20-SEP-2012 14:00 GW103_200912 EM1211100-010 64.5 89.5 95.2 65.4 97.7 84.2 83.4 20-SEP-2012 11:50 EM1211100-009 BH5_200912 60.3 65.4 85.9 9.06 71.8 55.4 98.1 20-SEP-2012 11:20 EM1211100-008 BH4_200912 9.99 61.0 81.1 82.6 90.6 103 74.2 20-SEP-2012 10:45 GW101_200912 EM1211100-007 7.76 83.6 86.8 94.3 73.5 85.7 Client sample ID Client sampling date / time Cnit % % % % % % % LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 CAS Number 17060-07-0 1719-06-8 1718-51-0 2037-26-5 460-00-4 4165-60-0 321-60-8 2199-69-1 EP075T: Base/Neutral Extractable Surrogates EP080S: TPH(V)/BTEX Surrogates 1.2-Dichloroethane-D4 1.2-Dichlorobenzene-D4 4-Bromofluorobenzene Sub-Matrix: WATER 2-Fluorobiphenyl Nitrobenzene-D5 4-Terphenyl-d14 Anthracene-d10 Toluene-D8 Compound

 Page
 : 14 of 23

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163 2

Analytical Results

20-SEP-2012 18:30 GW108_200912 EM1211100-016 <0.005 <0.001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 0.010 0.002 0.008 0.005 0.022 0.298 <0.01 <0.01 400 099 ĭ V 129 129 128 19 72 24 2 28 20-SEP-2012 17:45 GW110 200912 EM1211100-015 <0.001 <0.0001 <0.001 0.015 0.080 0.003 0.009 0.121 0.013 <0.001 0.001 0.002 0.001 <0.01 540 7.21 434 500 15 22 277 V V 42 20-SEP-2012 16:28 GW106_200912 EM1211100-014 <0.100 <0.0100 <0.100 0.200 0.628 0.731 0.242 1.45 0.611 0.146 <1.00 0.627 2920 1700 425 425 580 127 V 61 8 20-SEP-2012 15:45 GW107_200912 EM1211100-013 <0.0001 0.002 0.060 <0.001 0.014 <0.001 0.002 0.00 <0.001 0.891 <0.01 0.007 0.002 0.001 7.26 1270 780 320 320 V V 5 90 29 97 4 20-SEP-2012 15:13 GW111_200912 EM1211100-012 0.0002 <0.001 <0.001 0.002 0.003 0.049 <0.001 0.129 0.034 6590 1.22 6.59 3660 113 1220 108 177 2 ₹ Client sample ID Client sampling date / time pH Unit mS/cm mg/L 0.0001 LOR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.001 0.001 0.01 10 GIS-210-010 14808-79-8 7439-93-2 1 16887-00-6 7440-43-9 7440-47-3 CAS Number 3812-32-6 71-52-3 7440-70-2 7439-95-4 7440-23-5 7440-09-7 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-48-4 7440-50-8 7439-96-5 7440-02-0 7439-92-1 7440-62-2 7440-66-6 7439-98-7 DMO-210-001 ED041G: Sulfate (Turbidimetric) as SO4 2- by DA EG020F: Dissolved Metals by ICP-MS ED045G: Chloride Discrete analyser ED093F: Dissolved Major Cations ED037P: Alkalinity by PC Titrator Bicarbonate Alkalinity as CaCO3 EA015: Total Dissolved Solids Total Dissolved Solids @180°C Carbonate Alkalinity as CaCO3 Electrical Conductivity @ 25°C Hydroxide Alkalinity as CaCO3 Sulfate as SO4 - Turbidimetric Total Alkalinity as CaCO3 EA010: Conductivity Sub-Matrix: WATER Molybdenum Magnesium EA005: pH Aluminium Manganese Potassium Chromium Compound Vanadium Antimony Beryllium pH Value Cadmium Chloride Calcium Sodium Arsenic Copper Barinm Lithium Cobalt Nickel Lead

A Campbell Brothers Limited Compan

: 15 of 23 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Page Work Order Project Client

Analytical Results

•								
Sub-Matrix: WATER		Cje	Client sample ID	GW111_200912	GW107_200912	GW106_200912	GW110_200912	GW108_200912
	CI	ent samplir	Client sampling date / time	20-SEP-2012 15:13	20-SEP-2012 15:45	20-SEP-2012 16:28	20-SEP-2012 17:45	20-SEP-2012 18:30
Compound	CAS Number	LOR	Unit	EM1211100-012	EM1211100-013	EM1211100-014	EM1211100-015	EM1211100-016
EG020F: Dissolved Metals by ICP-MS - Continued	peni							
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<1.00	<0.01	<0.01
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	<0.100	<0.001	<0.001
Thallium	7440-28-0	0.001	mg/L	<0.001	<0.001	<0.100	<0.001	<0.001
Boron	7440-42-8	0.05	mg/L	0.21	90.0	<1.00	90.0	<0.05
Iron	7439-89-6	0.05	mg/L	<0.05	2.19	540	<0.05	<0.05
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0100	<0.0001	<0.0001
EG050F: Dissolved Hexavalent Chromium								
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01		<0.01	<0.01
EK026SF: Total CN by Segmented Flow Analyser	ılyser							
Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004		<0.004	<0.004
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.3	1.6	0.4	0.2
EK055G: Ammonia as N by Discrete Analyser		3						
Ammonia as N	7664-41-7	0.01	mg/L	0.17	0.18	0.27	0.38	0.49
EK057G: Nitrite as N by Discrete Analyser								
Nitrite as N		0.01	mg/L	0.05	<0.01	90.0	0.02	0.10
EK058G: Nitrate as N by Discrete Analyser								
Nitrate as N	14797-55-8	0.01	mg/L	0.51	0.04	0.04	0.34	0.16
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser	Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.56	0.04	0.10	0.36	0.26
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.5	1.8	11.1	6.0	2.8
EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser	Discrete An	alyser						
^ Total Nitrogen as N		0.1	mg/L	1.1	1.8	11.2	1.3	3.1
EK067G: Total Phosphorus as P by Discrete Analyser	Analyser							
Total Phosphorus as P		0.01	mg/L	1.02	09'0	54.1	0.09	10.2
EN055: Ionic Balance								
Total Anions		0.01	med/L	59.4	12.1	34.0	16.2	6.77
Total Cations		0.01	med/L	66.5	11.9	31.5	14.7	6.18
Ionic Balance		0.01	%	5.62	0.74	3.83	4.85	4.55
EP066: Polychlorinated Biphenyls (PCB)								
Total Polychlorinated biphenyls		1	hg/L	<1	\	۲	^	^
EP074A: Monocyclic Aromatic Hydrocarbons	10							
Benzene	71-43-2	-	hg/L	<u>></u>	>	₹	₹	<u>^</u>

A Campbell Brothers Limited Company

: 16 of 23 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Page Work Order Project Client

Analytical Results

Part Part	Sub-Matrix: WATER		Clie	Client sample ID	GW111_200912	GW107_200912	GW106_200912	GW110_200912	GW108_200912
COR Unit EMIZ11100-012 EMIZ11100-013 EMIZ11100-014 2 1 ug/L <2 <2 2 1 ug/L <2 <2 2 1 ug/L <2 <2 5 1 ug/L <2 <2 5 1 ug/L <2 <2 6 1 ug/L <5 <2 6 1 ug/L <5 <2 6 1 ug/L <5 <2 7 1 ug/L <5 <2 8 1 ug/L <5 <2 9 1 ug/L <5 <2 1 ug/L <5 <2 <2 1 ug/L <		Cij	ent samplin	g date / time	20-SEP-2012 15:13	20-SEP-2012 15:45	20-SEP-2012 16:28	20-SEP-2012 17:45	20-SEP-2012 18:30
2 1991 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Compound	CAS Number	LOR	Unit	EM1211100-012	EM1211100-013	EM1211100-014	EM1211100-015	EM1211100-016
2 µg/l <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 </th <th>EP074A: Monocyclic Aromatic Hydrocarbon</th> <th>ns - Continued</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	EP074A: Monocyclic Aromatic Hydrocarbon	ns - Continued							
100414 2 42 62 62 63	Toluene	108-88-3	2	hg/L	<2	\$	7	~	<2
R.3 10642.3 2 µµL <2	Ethylbenzene	100-41-4	2	hg/L	<2	<2	<2	<2	<2
100-42-5 5 µg/L <5		.38-3 106-42-3	2	hg/L	<2	<2	<2	<2	<2
98.47-6 2 µg/L <2	Styrene	100-42-5	2	hg/L	<5	<5	<5	<5	<5
98-82-8 5 µg/L <5	ortho-Xylene	95-47-6	2	hg/L	<2	\$	<2	<2	<2
103-65-1 5 µg/L <5	Isopropylbenzene	98-82-8	2	hg/L	<5	<5	<5	<5	<5
108-67-8 5 µg/L <5	n-Propylbenzene	103-65-1	2	hg/L	<5	<5	<5	<5	<5
135.88.8 5 µg/L <5	1.3.5-Trimethylbenzene	108-67-8	2	hg/L	<5	<5	<5	<5	<5
95 63-6 5 45 <th< th=""><th>sec-Butylbenzene</th><td>135-98-8</td><td>2</td><td>hg/L</td><td><5</td><td><5</td><td><5</td><td><5</td><td><5</td></th<>	sec-Butylbenzene	135-98-8	2	hg/L	<5	<5	<5	<5	<5
98 0646 5 µg/L <5	1.2.4-Trimethylbenzene	95-63-6	2	hg/L	<5 <	<5	<5	<5	<5
99.87-6 5 µg/L <5	tert-Butylbenzene	9-90-86	2	hg/L	<5	<5>	<5	<5	<5
108-61-8 5 µg/L <5	p-IsopropyItoluene	9-87-6	2	hg/L	<5 <	<5	<5	<5	<5
108-05-4 50 µg/L <50	n-Butylbenzene	104-51-8	2	hg/L	<5	<5	<5	<5	<5
108-05-4 50 µg/L <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <5	EP074B: Oxygenated Compounds								
78-93-3 50 µg/L \$60	Vinyl Acetate	108-05-4	20	hg/L	<50	<50	<50	<50	<50
108-10-1 50 µg/L <50	2-Butanone (MEK)	78-93-3	20	hg/L	<50	<50	<50	<50	<50
591-78-6 50 μg/L <50	4-Methyl-2-pentanone (MIBK)	108-10-1	20	hg/L	<50	<50	<50	<50	<50
75-15-0 5 µg/L <5	2-Hexanone (MBK)	591-78-6	20	hg/L	<50	<50	<50	<50	<50
594.20-7 5 ug/L 65 65 65 10061-02-6 5 ug/L 65 65 65 10061-02-6 5 ug/L 65 65 65 10061-02-6 5 ug/L 65 65 65 65 10061-02-6 5 ug/L 65 </th <th>EP074C: Sulfonated Compounds</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	EP074C: Sulfonated Compounds								
594-20-7 5 µg/L <5	Carbon disulfide	75-15-0	2	hg/L	<5	<5	<5	<5	<5
594-20-7 5 µg/L <5	EP074D: Fumigants								
78-87-5 5 µg/L <5	2.2-Dichloropropane	594-20-7	2	hg/L	<5	<5	<5	<5	<5
10061-01-5 5 µg/L <5	1.2-Dichloropropane	78-87-5	2	hg/L	<5	<5	<5	<5	<5
10061-02-6 5 µg/L <5	cis-1.3-Dichloropropylene	10061-01-5	2	hg/L	<5	<5>	<5	<5	<5
106-934 5 µg/L <5	trans-1.3-Dichloropropylene	10061-02-6	2	hg/L	<5	<5>	<5>	<5>	<5>
75-71-8 50 µg/L <50	1.2-Dibromoethane (EDB)	106-93-4	2	hg/L	<5	<5	<5	<5	<5
75-71-8 50 µg/L <50	EP074E: Halogenated Aliphatic Compounds	S							
74-87-3 50 µg/L <50	Dichlorodifluoromethane		20	hg/L	<50	<50	<50	<50	<50
75-014 50 µg/L <50	Chloromethane	74-87-3	20	hg/L	<50	<50	<50	<50	<50
74-83-9 50 µg/L <50	Vinyl chloride	75-01-4	20	hg/L	<50	<50	<50	<50	<50
75-00-3 50 µg/L <50	Bromomethane	74-83-9	20	hg/L	<50	<50	<50	<50	<50
75-694 50 µg/L <50	Chloroethane	75-00-3	20	hg/L	<50	<50	<50	<50	<50
75-354 5 µg/L <5	Trichlorofluoromethane	75-69-4	20	hg/L	<50	<50	<50	<50	<50
74-88-4 5 µg/L <5 <5 <5	1.1-Dichloroethene	75-35-4	2	hg/L	<5	<5	<5	<5	<5
156-60-5 5 µg/L <5 <5 <5	lodomethane	74-88-4	2	hg/L	<5	<5	<5	<5	<5
	trans-1.2-Dichloroethene	156-60-5	2	hg/L	<5	<5	<5	<5	<5

A Campbell Brothers Limited Company

 Page
 : 17 of 23

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163 2

Sub-Matrix: WATER		Clier	Client sample ID	GW111 200912	GW107 200912	GW106 200912	GW110 200912	GW108 200912
	Clie	ent samplin	Client sampling date / time	20-SEP-2012 15:13	20-SEP-2012 15:45	20-SEP-2012 16:28	20-SEP-2012 17:45	20-SEP-2012 18:30
Compound	CAS Number	LOR	Unit	EM1211100-012	EM1211100-013	EM1211100-014	EM1211100-015	EM1211100-016
EP074E: Halogenated Aliphatic Compounds - Continued	ds - Continued							
1.1-Dichloroethane	75-34-3	2	hg/L	<5	<5	<5	<5	<5
cis-1.2-Dichloroethene	156-59-2	2	hg/L	<5	<5	<5	<5	<5
1.1.1-Trichloroethane	71-55-6	2	hg/L	<5	<5	<5	<5	<5
1.1-Dichloropropylene	563-58-6	2	hg/L	<5	<5	<5	<5	<5
Carbon Tetrachloride	56-23-5	2	hg/L	<5	<5	<5	<5	<5
1.2-Dichloroethane	107-06-2	2	hg/L	<5	<5	<5	<5	<5
Trichloroethene	79-01-6	2	hg/L	<5	<5	<5	<5	<5
Dibromomethane	74-95-3	2	hg/L	<5	<5	<5	<5	<5
1.1.2-Trichloroethane	79-00-5	2	hg/L	<5	<5	<5	<5	<5
1.3-Dichloropropane	142-28-9	2	hg/L	<5	<5	<5	<5	<5
Tetrachloroethene	127-18-4	2	hg/L	<5	<5	<5	<5	<5
1.1.1.2-Tetrachloroethane	630-20-6	2	hg/L	<5	<5	<5	<5	<5
trans-1.4-Dichloro-2-butene	110-57-6	2	hg/L	<5	<5	<5	<5	<5
cis-1.4-Dichloro-2-butene	1476-11-5	2	hg/L	<5	<5	<5	<5	<5
1.1.2.2-Tetrachloroethane	79-34-5	2	hg/L	<5	<5	<5	<5	<5
1.2.3-Trichloropropane	96-18-4	2	hg/L	<5	<5	<5	<5	<5
Pentachloroethane	76-01-7	2	hg/L	<5	<5	<5	<5	<5
1.2-Dibromo-3-chloropropane	96-12-8	2	hg/L	<5	<5	<5	<5	<5
EP074F: Halogenated Aromatic Compounds	ds							
Chlorobenzene	108-90-7	2	hg/L	<5	<5	<5	<5	<5
Bromobenzene	108-86-1	2	hg/L	<5	<5	<5	<5	<5
2-Chlorotoluene	95-49-8	2	hg/L	<5	<5	<5	<5	<5
4-Chlorotoluene	106-43-4	2	hg/L	<5	<5	<5	<5	<5
1.2.3-Trichlorobenzene	87-61-6	2	hg/L	<5	<5	<5	<5	<5
EP074G: Trihalomethanes								
Chloroform	67-66-3	2	hg/L	<5	<5	<5	<5	<5
Bromodichloromethane	75-27-4	2	hg/L	<5	<5	<5	<5	<5
Dibromochloromethane	124-48-1	2	µg/L	<5	<5	<5	<5	<5
Bromoform	75-25-2	2	hg/L	<5	<5	<5	<5	<5
EP075A: Phenolic Compounds								
Phenol	108-95-2	2	hg/L	<2	<2	<2	<2	<2
2-Chlorophenol	92-24-8	2	hg/L	<2	<2	<2	<2	<2
2-Methylphenol	95-48-7	2	hg/L	<2	<2	<2	<2	<2
3- & 4-Methylphenol	1319-77-3	4	hg/L	4,	4>	42	4,	4>
2-Nitrophenol	88-75-5	2	hg/L	<2	<2	<2	<2	<2
2.4-Dimethylphenol	105-67-9	2	hg/L	<2	<2	<2	<2	<2

 Page
 : 18 of 23

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163 2

								0
Sub-Matrix: WATER		Clie	Client sample ID	GW111_200912	GW107_200912	GW106_200912	GW110_200912	GW108_200912
	Cli	ənt samplii	Client sampling date / time	20-SEP-2012 15:13	20-SEP-2012 15:45	20-SEP-2012 16:28	20-SEP-2012 17:45	20-SEP-2012 18:30
Compound	CAS Number	LOR	Unit	EM1211100-012	EM1211100-013	EM1211100-014	EM1211100-015	EM1211100-016
EP075A: Phenolic Compounds - Continued	5							
2.4-Dichlorophenol	120-83-2	2	hg/L	<2	<2	<2	<2	<2
2.6-Dichlorophenol	87-65-0	7	hg/L	<2	<2	<2	<2	<2
4-Chloro-3-Methylphenol	29-20-2	2	hg/L	<2	<2	<2	<2	<2
2.4.6-Trichlorophenol	88-06-2	2	µg/L	~	<2	<2	<2	<2
2.4.5-Trichlorophenol	95-95-4	2	µg/L	~	<2	<2	<2	<2
Pentachlorophenol	87-86-5	4	hg/L	4>	4>	4>	4>	4>
EP075B: Polynuclear Aromatic Hydrocarbons	pons							
Naphthalene	91-20-3	2	hg/L	<2	<2	6	<2	4
2-Methylnaphthalene	91-57-6	2	µg/L	~	<2	<2	<2	<2
2-Chloronaphthalene	91-58-7	2	hg/L	<2	<2	<2	<2	<2
Acenaphthylene	208-96-8	2	hg/L	<2	<2	<2	<2	<2
Acenaphthene	83-32-9	2	hg/L	<2	<2	<2	<2	<2
Fluorene	86-73-7	7	hg/L	<2	<2	<2	<2	<2
Phenanthrene	85-01-8	7	hg/L	<2	<2	2	<2	<2
Anthracene	120-12-7	7	hg/L	<2	<2	2	<2	<2
Fluoranthene	206-44-0	7	hg/L	<2	<2	<2	<2	<2
Pyrene	129-00-0	7	hg/L	<2	<2	<2	<2	<2
N-2-Fluorenyl Acetamide	53-96-3	2	hg/L	<2	<2	<2	<2	<2
Benz(a)anthracene	56-55-3	2	hg/L	<2	<2	<2	<2	<2
Chrysene	218-01-9	2	hg/L	<2	<2	<2	<2	<2
Benzo(b) & 20. Benzo(k)fluoranthene	205-99-2 207-08-9	4	hg/L	^	4>	4>	4^	4^
7.12-Dimethylbenz(a)anthracene	9-2-6-2	2	µg/L	~	<2	<2	<2	<2
Benzo(a)pyrene	50-32-8	7	hg/L	<2	<2	<2	<2	<2
3-Methylcholanthrene	56-49-5	7	hg/L	<2	<2	<2	<2	<2
Indeno(1.2.3.cd)pyrene	193-39-5	7	hg/L	<2	<2	<2	<2	<2
Dibenz(a.h)anthracene	53-70-3	7	hg/L	<2	<2	<2	<2	<2
Benzo(g.h.i)perylene	191-24-2	2	hg/L	<2	<2	<2	<2	<2
N Sum of PAHs		2	hg/L	<2	<2	13	<2	4
Benzo(a)pyrene TEQ (WHO)		2	hg/L	<2	<2	<2	<2	<2
EP075C: Phthalate Esters								
Dimethyl phthalate	131-11-3	2	hg/L	<2	<2	<2	<2	<2
Diethyl phthalate	84-66-2	2	hg/L	<2	<2	<2	<2	<2
Di-n-butyl phthalate	84-74-2	2	hg/L	<2	<2	<2	<2	<2
Butyl benzyl phthalate	85-68-7	2	hg/L	<2	<2	<2	<2	<2
bis(2-ethylhexyl) phthalate	117-81-7	10	hg/L	<10	<10	175	<10	78

EP075G: Chlorinated Hydrocarbons

V

 Page
 : 19 of 23

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163 2

Sub-Matrix: WATER Client	Client sample ID	GW111_200912	GW107_200912	GW106_200912	GW110_200912	GW108_200912
Client						
	Client sampling date / time	e 20-SEP-2012 15:13	20-SEP-2012 15:45	20-SEP-2012 16:28	20-SEP-2012 17:45	20-SEP-2012 18:30
Compound CAS Number L	LOR	EM1211100-012	EM1211100-013	EM1211100-014	EM1211100-015	EM1211100-016
EP075C: Phthalate Esters - Continued						
Di-n-octylphthalate 117-84-0	2 µg/L	<2	<2	<2	<2	<2
EP075D: Nitrosamines						
N-Nitrosomethylethylamine 10595-95-6	2 µg/L	<2	<2	<2	<2	<2
N-Nitrosodiethylamine 55-18-5	2 µg/L	<2	<2	~	<2	<2
N-Nitrosopyrrolidine	4 µg/L	4>	4>	4>	4>	4>
N-Nitrosomorpholine 59-89-2	2 µg/L	<2	<2	~	<2	<2
N-Nitrosodi-n-propylamine 621-64-7	2 µg/L	<2	<2	~	<2	<2
N-Nitrosopiperidine	2 µg/L	<2	<2	~	<2	<2
N-Nitrosodibutylamine 924-16-3	2 µg/L	<2	<2	~	<2	<2
N-Nitrosodiphenyl & 86-30-6 122-39-4	4 µg/L	4>	4>	4>	4>	4>
Methapyrilene 91-80-5	2 µg/L	<2	<2	<2	<2	<2
EP075E: Nitroaromatics and Ketones						
2-Picoline 109-06-8	2 µg/L	<2	<2	<2	<2	<2
Acetophenone 98-86-2	2 µg/L	<2	<2	4	<2	<2
Nitrobenzene 98-95-3	2 µg/L	<2	<2	<2	<2	<2
Isophorone 78-59-1	2 µg/L	<2	<2	<2	<2	<2
2.6-Dinitrotoluene 606-20-2	4 µg/L	^	4>	4>	4>	4>
2.4-Dinitrotoluene	4 µg/L	^	4>	4>	4>	4>
134-32-7	2 µg/L	<2	<2	<2	<2	<2
4-Nitroquinoline-N-oxide	2 µg/L	<2	<2	<2	<2	<2
5-Nitro-o-toluidine	2 µg/L	<2	<2	<2	<2	<2
Azobenzene 103-33-3	2 µg/L	<2	<2	<2	<2	<2
1.3.5-Trinitrobenzene	2 µg/L	<2	<2	<2	<2	<2
Phenacetin 62-44-2	2 µg/L	<2	<2	<2	<2	<2
4-Aminobiphenyl 92-67-1	2 µg/L	<2	<2	<2	<2	<2
Pentachloronitrobenzene 82-68-8	2 µg/L	<2	<2	<2	<2	<2
Pronamide 23950-58-5	2 µg/L	<2	<2	<2	<2	<2
Dimethylaminoazobenzene 60-11-7	2 µg/L	<2	<2	~	<2	<2
Chlorobenzilate 510-15-6	2 µg/L	<2	<2	<2	<2	<2
EP075F: Haloethers						
Bis(2-chloroethyl) ether	2 µg/L	<2	<2	<2	<2	<2
Bis(2-chloroethoxy) methane 111-91-1	2 µg/L	<2	<2	<2	<2	<2
4-Chlorophenyl phenyl ether 7005-72-3	2 µg/L	<2	<2	<2	<2	<2
4-Bromophenyl phenyl ether	2 µg/L	<2	<2	<2	<2	<2

CARDNO LANE PIPER PTY LTD 20 of 23 EM1211100 2121632 Work Order Project Client

Analytical Results

20-SEP-2012 18:30 GW108_200912 EM1211100-016 2 2 0 7 7 7 4 7 7 4 4 7 2 ς ς γ 7 2 2 \$ \$ \$ \$ 7 7 2 0 2 7 2 4 20-SEP-2012 17:45 GW110 200912 EM1211100-015 <10 7 \$ \$ \$ \$ \$ \$ \$ \$ \$ 7 [∆] [∆] [∆] 7 7 4 4 7 2 2 2 7 Ÿ ₩ ₩ 2 2 \$ \$ \$ \$ Ϋ́ 7 20-SEP-2012 16:28 GW106_200912 EM1211100-014 <10 Δ, Δ, 7 7 7 7 γ γ γ 7 ۲۷ ۲۷ ۲۷ ۲۷ 7 ç, 7 4 4 7 7 7 ů 7 7 7 7 Ÿ 20-SEP-2012 15:45 GW107_200912 EM1211100-013 ×10 7 ۲۷ ۲۷ ۲۷ 7 7 7 7 ۸ 4 7 7 ۸ 4 4 7 7 7 7 ۲, 7 7 ζ, 7 2 7 7 ۲۷ ۲۷ 7 7 4 20-SEP-2012 15:13 GW111_200912 EM1211100-012 410 γ γ γ 7 7 7 7 7 4 7 7 4 4 7 7 7 7 ç 7 Ÿ 7 \$ \$ \$ 7 7 γ γ γ γ γ γ ۲۷ ۷ 4 4 Client sample ID Client sampling date / time hg/L LOR 10 4 7 4 N 2 α α 2 7 a N 4 4 α N 2 α N α N α α 4 87-68-3 99-09-2 132-64-9 91-94-1 60-57-1 72-20-8 CAS Number 106-46-7 888-71-7 77-47-4 608-93-5 118-74-1 62-53-3 106-47-8 100-01-6 86-74-8 319-84-6 58-89-9 319-86-8 76-44-8 309-00-2 024-57-3 959-98-8 72-55-9 33213-65-9 72-54-8 1031-07-8 50-29-3 309-00-2/60-57-1 541-73-1 95-50-1 67-72-1 120-82-1 88-74-4 319-85-7 EP075G: Chlorinated Hydrocarbons - Continued EP075I: Organochlorine Pesticides **EP075H: Anilines and Benzidines** Hexachlorocyclopentadiene Hexachlorobenzene (HCB) Sum of Aldrin + Dieldrin 1.2.4-Trichlorobenzene 3.3' -Dichlorobenzidine Hexachloropropylene Hexachlorobutadiene Pentachlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene Heptachlor epoxide Hexachloroethane **Endosulfan sulfate** Sub-Matrix: WATER alpha-Endosulfan beta-Endosulfan 4-Chloroaniline 3-Nitroaniline 2-Nitroaniline 4-Nitroaniline Dibenzofuran gamma-BHC alpha-BHC Heptachlor Carbazole delta-BHC Compound beta-BHC 4.4`-DDE 4.4`-DDD 4.4`-DDT Dieldrin Aniline Aldrin Endrin

CARDNO LANE PIPER PTY LTD EM1211100 2121632 21 of 23 Work Order Client

Analytical Results

Project

20-SEP-2012 18:30 GW108_200912 EM1211100-016 <100 ²20 <50 390 540 470 470 71.4 2 \$ \$ 7 2 7 7 \$ \$ 150 20-SEP-2012 17:45 GW110 200912 EM1211100-015 **300** <100 310 <100 92.0 1210 300 3320 93.6 <20 ²20 <50 310 ۸ γ γ γ 2 2 2 7 \$ \$ 7 2 2 20-SEP-2012 16:28 GW106_200912 EM1211100-014 <100 1000 810 870 150 1020 24.5 <50 190 γ γ γ 7 7 7 Ϋ́ 7 7 7 20-SEP-2012 15:45 GW107_200912 EM1211100-013 <100 <100 <100 <100 <100 15.7 67.2 <50 ²20 <50 <20 139 2 ۲۷ ۲۷ 7 7 7 7 7 7 20-SEP-2012 15:13 GW111_200912 EM1211100-012 <100 <100 <100 <100 <100 <50 <50 77.4 <20 <50 --Ÿ γ γ γ ۲۷ ۲۷ 7 ۲۷ ۲۷ 7 γ γ γ Client sample ID Client sampling date / time hg/L µg/L hg/L hg/L µg/L hg/L hg/L hg/L µg/L Unit hg/L % LOR 0.02 0.02 EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft 100 100 9 6 100 0.2 0.1 20 20 20 20 0.1 7 N 2 α N α α \sim 2 60-51-5 7601-90-3 1763-23-1 2051-24-3 CAS Number -62-73-7 333-41-5 5598-13-0 121-75-5 55-38-9 2921-88-2 470-90-6 34643-46-4 563-12-2 -335-67-1 27619-97-2 23505-41-1 EP0751: Organochlorine Pesticides - Continued EP231: Perfluorooctyl Acids and Sulfonates EP080/071: Total Petroleum Hydrocarbons EP075J: Organophosphorus Pesticides 6:2 Fluorotelomer Sulfonate (6:2 EP216: Perchlorate by LC/MS **EP074S: VOC Surrogates** EP066S: PCB Surrogate >C10 - C40 Fraction (sum) Sum of DDD + DDE + DDT C10 - C36 Fraction (sum) Decachlorobiphenyl Chlorpyrifos-methyl >C16 - C34 Fraction >C34 - C40 Fraction >C10 - C16 Fraction C29 - C36 Fraction C10 - C14 Fraction C15 - C28 Fraction C6 - C10 Fraction Sub-Matrix: WATER Chlorfenvinphos C6 - C9 Fraction Pirimphos-ethyl Chlorpyrifos Perchlorate Dimethoate Dichlorvos Prothiofos Compound Malathion Fenthion Diazinon Ethion PFOS PFOA FtS)

A Campbell Brothers Limited Compan

104

107

109

83.9

100

%

0.1

17060-07-0

1.2-Dichloroethane-D4

 Page
 : 22 of 23

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163 2

Analytical Results

20-SEP-2012 18:30 GW108_200912 EM1211100-016 9.08 52.5 61.0 8.69 82.3 22.3 59.1 68.2 53.7 97.2 60.7 20-SEP-2012 17:45 GW110_200912 EM1211100-015 21.8 81.0 87.0 98.5 79.7 64.2 85.1 63.7 99.9 65.7 102 76.2 20-SEP-2012 16:28 GW106_200912 EM1211100-014 32.3 88.0 87.4 14.4 20.4 23.5 28.2 37.4 75.4 19.7 20-SEP-2012 15:45 GW107_200912 EM1211100-013 88.6 17.9 46.2 54.5 54.5 66.4 75.7 101 85.1 107 74.1 20-SEP-2012 15:13 GW111_200912 EM1211100-012 57.8 81.3 83.3 79.4 94.8 17.4 45.5 72.2 85.8 85.6 93.4 Client sample ID Client sampling date / time Unit % % % % % % % % % % % % % % LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 17060-07-0 CAS Number 367-12-4 118-79-6 2037-26-5 460-00-4 93951-73-6 321-60-8 1718-51-0 13127-88-3 4165-60-0 2199-69-1 1719-06-8 2037-26-5 460-00-4 EP075T: Base/Neutral Extractable Surrogates EP075S: Acid Extractable Surrogates EP074S: VOC Surrogates - Continued EP080S: TPH(V)/BTEX Surrogates 1.2-Dichlorobenzene-D4 4-Bromofluorobenzene 4-Bromofluorobenzene 1.2-Dichloroethane-D4 2.4.6-Tribromophenol 2-Chlorophenol-D4 Sub-Matrix: WATER 2-Fluorobiphenyl Nitrobenzene-D5 4-Terphenyl-d14 Anthracene-d10 2-Fluorophenol Toluene-D8 Toluene-D8 Phenol-d6 Compound

: 23 of 23 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Page Work Order Project Client

Surrogate Control Limits

EP066S: PCB Surrogate CAS Number Low High EP066S: PCB Surrogate 2051-24-3 27.8 134 Decachlorobiphenyl 2051-24-3 27.8 134 EP074S: VOC Surrogates 17060-07-0 72 132 1.2-Dichloroethane-D4 17060-07-0 72 132 4-Bromofluorobenzene 460-00-4 70 132 EP075S: Acid Extractable Surrogates 367-12-4 10 83 2-Fluorophenol 13127-88-3 10 49 2-Fluorophenol-D4 118-78-6 20.3 101 2-A-Tribromophenol 118-79-6 19.5 134 EP075T: Base/Neutral Extractable Surrogates 4165-60-0 18.8 100 2-Lorololorobenzene-D5 1.2-Dichlorobenzene-D6 1718-51-0 134 2-Fluorobiphenyl 2-Fluorobiphenyl 1718-51-0 136 2-Fluorobiphenyl 1718-51-0 32 136 2-Fluorobiphenyl 1718-51-0 32 136 EP080S: TPH(V)/BTEX Surrogates 1718-51-0 72	Sub-Matrix: WATER		Recovery Limits (%)	imits (%)
2051-24-3 27.8 17060-07-0 72 2037-26-5 74 460-00-4 70 367-12-4 10 13127-88-3 10 93951-73-6 20.3 118-79-6 18.8 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1718-51-0 32 17060-07-0 73 2037-26-5 70	Compound	CAS Number	Low	High
2051-24-3 27.8 17060-07-0 72 2037-26-5 74 460-00-4 70 367-12-4 10 13127-88-3 10 93951-73-6 20.3 118-79-6 18.8 4165-60-0 18.8 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1718-51-0 73 17060-07-0 73 2037-26-5 72 460-00-4 70	EP066S: PCB Surrogate			
17060-07-0 72 2037-26-5 74 460-00-4 70 367-12-4 10 13127-88-3 10 93951-73-6 20.3 118-79-6 19.5 4165-60-0 18.2 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1719-06-8 35 1718-51-0 73 2037-26-5 72 460-00-4 70	Decachlorobiphenyl	2051-24-3	27.8	134
17060-07-0 72 2037-26-5 74 460-00-4 70 367-12-4 10 13127-88-3 10 93951-73-6 20.3 118-79-6 19.5 4165-60-0 18.2 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1719-06-8 35 1718-51-0 73 2037-26-5 72 460-00-4 70	EP074S: VOC Surrogates			
2037-26-5 74 460-00-4 70 367-12-4 10 13127-88-3 10 93951-73-6 19.5 118-79-6 18.2 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1719-06-8 35 1718-51-0 73 2037-26-5 72 460-00-4 70	1.2-Dichloroethane-D4	17060-07-0	72	132
460-00-4 70 367-12-4 10 13127-88-3 10 93951-73-6 19.5 118-79-6 18.2 4165-60-0 18.2 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1718-51-0 32 2037-26-5 72 460-00-4 70	Toluene-D8	2037-26-5	74	128
367-12-4 10 13127-88-3 10 93951-73-6 20.3 118-79-6 19.5 4165-60-0 18.2 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1718-51-0 32 17060-07-0 73 2037-26-5 72 460-00-4 70	4-Bromofluorobenzene	460-00-4	70	132
367-12-4 10 13127-88-3 10 93951-73-6 20.3 118-79-6 19.5 19.5 19.5 19.69-0-1 18.2 2199-69-1 18.8 35 1719-06-8 35 1718-51-0 32 2037-26-5 72 460-00-4 70 10.0 1312 17060-07-0 73 17060-07-0 73 17060-07-0	EP075S: Acid Extractable Surrogates			
13127-88-3 10 93951-73-6 20.3 118-79-6 19.5 4165-60-0 18.2 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1718-51-0 32 17060-07-0 73 2037-26-5 72	2-Fluorophenol	367-12-4	10	83
93951-73-6 20.3 118-79-6 19.5 4165-60-0 18.2 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1718-51-0 32 17060-07-0 73 2037-26-5 72 460-00-4 70	Phenol-d6	13127-88-3	10	49
118-79-6 19.5 4165-60-0 18.2 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 17060-07-0 73 2037-26-5 72 460-00-4 70	2-Chlorophenol-D4	93951-73-6	20.3	101
4165-60-0 18.2 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1718-51-0 32 17060-07-0 73 2037-26-5 72 460-00-4 70	2.4.6-Tribromophenol	118-79-6	19.5	134
4165-60-0 18.2 2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1718-51-0 32 17060-07-0 73 2037-26-5 72 460-00-4 70	EP075T: Base/Neutral Extractable Surrogates			
2199-69-1 18.8 321-60-8 25.3 1719-06-8 35 1718-51-0 32 17060-07-0 73 2037-26-5 72 460-00-4 70	Nitrobenzene-D5	4165-60-0	18.2	114
321-60-8 25.3 1719-06-8 35 1718-51-0 32 17060-07-0 73 2037-26-5 72 460-00-4 70	1.2-Dichlorobenzene-D4	2199-69-1	18.8	100
1718-51-0 32 1718-51-0 32 17060-07-0 73 2037-26-5 72 460-00-4 70	2-Fluorobiphenyl	321-60-8	25.3	122
1718-51-0 32 17060-07-0 73 2037-26-5 72 460-00-4 70	Anthracene-d10	1719-06-8	35	137
17060-07-0 73 2037-26-5 72 460-00-4 70	4-Terphenyl-d14	1718-51-0	32	136
17060-07-0 73 2037-26-5 72 460-00-4 70	EP080S: TPH(V)/BTEX Surrogates			
2037-26-5 72 460-00-4 70	1.2-Dichloroethane-D4	17060-07-0	73	131
460-00-4 70	Toluene-D8	2037-26-5	72	124
	4-Bromofluorobenzene	460-00-4	70	126

Environmental Division

QUALITY CONTROL REPORT

	urne Australia 3171	۴	nd ALS QCS3 requirement	
: 1 of 19	: Environmental Division Melbourne : Sarah Hodgson : 4 Westall Rd Springvale VIC Australia 3171	: sarah.hodgson@alsenviro.com : 03 8549 9652 : 03 8549 9626	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement : 21-SEP-2012	: 03-OCT-2012 : 17 : 15
Page	Laboratory Contact Address	E-mail Telephone Facsimile	QC Level Date Samples Received	Issue Date No. of samples received No. of samples analysed
: EM1211100	: CARDNO LANE PIPER PTY LTD : MR MARCUS BOYD (Cardno) : 154 HIGHBURY ROAD BURWOOD VIC, AUSTRALIA 3125	: marcus.boyd@cardno.com.au : +61 03 98880100 : +61 03 98083511	: 212163 2 : Fiskville :	: MB : : ME/441/12
Work Order	Client Contact Address	E-mail Telephone Facsimile	Project Site C-O-C number	Sampler Order number Quote number

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11. Signatories

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics
Eric Chau	Metals Team Leader	Melbourne Inorganics
Lana Nguyen	Senior LCMS Chemist	Sydney Organics
Nancy Wang	Senior Semivolatile Instrument Chemist	Melbourne Organics
Nikki Stepniewski	Senior Inorganic Instrument Chemist	Melbourne Inorganics

CARDNO LANE PIPER PTY LTD EM1211100 2121632 : 2 of 19 Work Order Project Client

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot Key:

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

: CARDNO LANE PIPER PTY LTD : 212163 2 : 3 of 19 : EM1211100 Work Order Project Client

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:- 0% - 20%.

							7 (0) (0) (0)		
Sub-Matrix: WATER					:	Laboratory	Laboratory Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005: pH (QC Lot: 2516410)	2516410)								
EM1211083-001	Anonymous	EA005: pH Value	1	0.01	pH Unit	5.89	5.92	0.5	0% - 20%
EM1211100-007	GW101_200912	EA005: pH Value	1	0.01	pH Unit	7.77	7.81	0.5	0% - 20%
EA010: Conductivity	$\overline{}$								
EM1211100-007	GW101_200912	EA010: Electrical Conductivity @ 25°C	-	-	mS/cm	6850	0069	0.7	0% - 20%
EM1211206-001	Anonymous	EA010: Electrical Conductivity @ 25°C	1	-	mS/cm	10000	0966	0.5	0% - 20%
EA015: Total Dissolv	EA015: Total Dissolved Solids (QC Lot: 2519737)								
EM1211069-001	Anonymous	EA015H: Total Dissolved Solids @180°C	GIS-210-010	10	mg/L	1160	1150	0.7	0% - 20%
EM1211100-009	BH5_200912	EA015H: Total Dissolved Solids @180°C	GIS-210-010	10	mg/L	3240	3300	4.8	0% - 20%
ED037P: Alkalinity by PC Titrator	y PC Titrator (QC Lot: 2518793)	8793)							
EM1211032-015	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	-	mg/L	^	7	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	-	mg/L	က	2	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	-	mg/L	32	31	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3	-	_	mg/L	34	34	2.9	0% - 20%
EM1211071-005	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	-	mg/L	<u>^</u>	₹	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	-	mg/L	4	2	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	-	mg/L	37	36	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3	1	-	mg/L	41	41	0.0	0% - 20%
ED037P: Alkalinity b	ED037P: Alkalinity by PC Titrator (QC Lot: 2518795)	8795)							
EM1211100-008	BH4_200912	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	-	mg/L	^	۲	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	-	mg/L	^	₹	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	-	mg/L	268	265	1.1	0% - 20%
		ED037-P: Total Alkalinity as CaCO3	1	-	mg/L	268	265	1.1	0% - 20%
EM1211149-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	-	mg/L	^		0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	^	\	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	^	\	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3	-	-	mg/L	٧	₹	0.0	No Limit
ED041G: Sulfate (Tu	ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QC Lot: 2516279)	0A (QC Lot: 2516279)							
EM1211100-007	GW101_200912	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	_	mg/L	74	74	0.0	0% - 20%
EM1211100-015	GW110_200912	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	-	mg/L	42	43	0.0	0% - 20%
ED045G: Chloride Di	ED045G: Chloride Discrete analyser(QC Lot: 2516278)	2516278)							
EM1211100-007	GW101_200912	ED045G: Chloride	16887-00-6	-	mg/L	1900	1850	2.2	0% - 20%
EM1211100-015	GW110_200912	ED045G: Chloride	16887-00-6	1	mg/L	189	190	0.5	0% - 20%
ED093F: Dissolved N	ED093F: Dissolved Major Cations(QC Lot: 2516277)	16277)							
EM1211100-007	GW101_200912	ED093F: Calcium	7440-70-2	_	mg/L	103	105	2.0	0% - 20%

 Page
 : 4 of 19

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163.2

Sub-Matrix: WATER						Laboratory D	Laboratory Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED093F: Dissolved	ED093F: Dissolved Major Cations (QC Lot: 2516277) - continued	16277) - continued							
EM1211100-007	GW101_200912	ED093F: Magnesium	7439-95-4	-	mg/L	300	302	0.5	0% - 20%
		ED093F: Sodium	7440-23-5	_	mg/L	821	824	0.3	0% - 20%
		ED093F: Potassium	7440-09-7	_	mg/L	12	12	0.0	%09 - %0
EM1211100-015	GW110_200912	ED093F: Calcium	7440-70-2	-	mg/L	15	15	0.0	0% - 50%
		ED093F: Magnesium	7439-95-4	-	mg/L	22	22	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	-	mg/L	277	277	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	_	mg/L	4	4	0.0	No Limit
EG020F: Dissolved	EG020F: Dissolved Metals by ICP-MS (QC Lot: 2525557)	: 2525557)							
EM1211100-001	QC01_200912	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	0.003	0.002	50.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	090.0	0.059	2.0	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.014	0.013	0.0	0% - 50%
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.887	0.942	0.9	0% - 20%
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.020	0.019	0.0	0% - 50%
		EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.008	0.007	13.3	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.02	0.03	0.0	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	90.0	90.0	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	2.49	2.64	0.9	0% - 20%
EM1211100-013	GW107_200912	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	090.0	0.058	3.0	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.014	0.013	0.0	0% - 50%
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.891	0.868	2.7	0% - 20%
	-								

 Page
 : 5 of 19

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163 2

Sub-Matrix: WATER						Laboratory L	Laboratory Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
lved	Metals by ICP-MS	(QC Lot: 2525557) - continued							
EM1211100-013	GW107_200912	EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.020	0.019	7.8	%09 - %00
		EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.007	0.013	0.09	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.02	85.7	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	90.0	90.0	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	2.19	2.18	0.5	0% - 20%
EG020F: Dissolved	EG020F: Dissolved Metals by ICP-MS (QC Lot: 2525559)	: 2525559)							
EM1211100-001	QC01_200912	EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
EM1211100-013	GW107_200912	EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
EG035F: Dissolved	Mercury by FIMS	(QC Lot: 2525555)							
EM1211100-001	QC01_200912	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EM1211100-013	GW107_200912	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EG050F: Dissolved	EG050F: Dissolved Hexavalent Chromium (QC Lot: 2518555)) Lot: 2518555)							
EM1211100-010	GW103_200912	EG050F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EG050F: Dissolved	EG050F: Dissolved Hexavalent Chromium (QC	(QC Lot: 2522412)							
EM1211100-007		EG050F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM1211233-002	Anonymous	EG050F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK026SF: Total CN	CN by Segmented Flow Analyser (QC Lot: 2518020)	ser (QC Lot: 2518020)							
EM1211149-002	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit
EM1211149-008	Anonymous	EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	<0.004	0.0	No Limit
EK040P: Fluoride by PC Titrator	y PC Titrator (QC Lot: 2518794)	3794)							
EM1211069-001	Anonymons	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.1	0.1	0.0	No Limit
EM1211100-011	BH3_200912	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.1	0.1	0.0	No Limit
EK055G: Ammonia	EK055G: Ammonia as N by Discrete Analyser(QC Lot: 2521030)	(QC Lot: 2521030)							
EM1211100-001	QC01_200912	EK055G: Ammonia as N	7-14-41-7	0.01	mg/L	0.20	0.20	0.0	0% - 20%
EM1211100-015	GW110_200912	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.38	0.38	0.0	0% - 20%
EK057G: Nitrite as	as N by Discrete Analyser (QC Lot: 2516276)	C Lot: 2516276)							
EM1211100-007	GW101_200912	EK057G: Nitrite as N	-	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM1211100-015	GW110_200912	EK057G: Nitrite as N	-	0.01	mg/L	0.02	0.02	0.0	No Limit
EK059G: Nitrite plu	is Nitrate as N (NOx) by Dis	EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 2521029)							
EM1211028-001	Anonymous	EK059G: Nitrite + Nitrate as N	-	0.01	mg/L	0.58	0.59	0.0	0% - 20%
EM1211100-002	QC03_200912	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.37	0.38	0.0	0% - 20%
EK061G: Total Kjelo	EK061G: Total Kjeldahl Nitrogen By Discrete Analyser(QC Lot: 2517360)	nalyser (QC Lot: 2517360)							
EM1211100-007	GW101_200912	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	0.0	No Limit
EM1211100-016	GW108_200912	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.8	4.7	49.8	0% - 20%

Page Work Order Project Client

: 6 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Sub-Matrix: WATER				•		Laboratory D	Laboratory Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EK067G: Total Phos	sphorus as P by Discrete A	EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 2517361)							
EM1211100-007	GW101_200912	EK067G: Total Phosphorus as P	1	0.01	mg/L	0.38	0.37	8.4	0% - 20%
EM1211100-016	GW108_200912	EK067G: Total Phosphorus as P		0.01	mg/L	10.2	8.44	18.9	0% - 20%
EP074A: Monocyclic	EP074A: Monocyclic Aromatic Hydrocarbons (QC Lot: 2523230)	(QC Lot: 2523230)							
EM1211100-007	GW101_200912	EP074: Benzene	71-43-2	-	µg/L	<u>^</u>	^	0.0	No Limit
		EP074: Toluene	108-88-3	2	hg/L	<2	~	0.0	No Limit
		EP074: Ethylbenzene	100-41-4	2	hg/L	<2	7	0.0	No Limit
		EP074: meta- & para-Xylene	108-38-3	2	hg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP074: ortho-Xylene	92-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP074: Styrene	100-42-5	2	hg/L	<5	<5	0.0	No Limit
		EP074: Isopropylbenzene	98-82-8	2	µg/L	<5	<5	0.0	No Limit
		EP074: n-Propylbenzene	103-65-1	2	µg/L	<5	<5	0.0	No Limit
		EP074: 1.3.5-Trimethylbenzene	108-67-8	2	µg/L	<5	<5	0.0	No Limit
		EP074: sec-Butylbenzene	135-98-8	2	hg/L	<5	<5	0.0	No Limit
		EP074: 1.2.4-Trimethylbenzene	92-63-6	2	hg/L	<5	<5	0.0	No Limit
		EP074: tert-Butylbenzene	9-90-86	2	hg/L	<5	<5	0.0	No Limit
		EP074: p-IsopropyItoluene	9-8-66	2	hg/L	<5	<5	0.0	No Limit
		EP074: n-Butylbenzene	104-51-8	2	µg/L	<5	<5	0.0	No Limit
EM1211100-015	GW110_200912	EP074: Benzene	71-43-2	1	µg/L	^	۲>	0.0	No Limit
		EP074: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP074: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP074: meta- & para-Xylene	108-38-3	2	hg/L	<2	<2	0.0	No Limit
			106-42-3		:				
		EP074: ortho-Xylene	92-47-6	2	hg/L	<2	<2	0.0	No Limit
		EP074: Styrene	100-42-5	22	hg/L	<5	<5	0.0	No Limit
		EP074: Isopropylbenzene	98-85-8	2	µg/L	<5	<5	0.0	No Limit
		EP074: n-Propylbenzene	103-65-1	2	µg/L	<5	<5	0.0	No Limit
		EP074: 1.3.5-Trimethylbenzene	108-67-8	2	µg/L	<5	^ 2	0.0	No Limit
		EP074: sec-Butylbenzene	135-98-8	2	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.4-Trimethylbenzene	92-63-6	2	µg/L	<5	<5	0.0	No Limit
		EP074: tert-Butylbenzene	9-90-86	2	hg/L	<5	<5	0.0	No Limit
		EP074: p-IsopropyItoluene	9-8-66	2	µg/L	<5	~ 2	0.0	No Limit
		EP074: n-Butylbenzene	104-51-8	2	µg/L	<5	<5	0.0	No Limit
EP074B: Oxygenate	EP074B: Oxygenated Compounds (QC Lot: 2523230)	(523230)							
EM1211100-007	GW101_200912	EP074: Vinyl Acetate	108-05-4	20	µg/L	<50	<50	0.0	No Limit
		EP074: 2-Butanone (MEK)	78-93-3	20	µg/L	<50	<50	0.0	No Limit
		EP074: 4-Methyl-2-pentanone (MIBK)	108-10-1	20	µg/L	<50	<50	0.0	No Limit
		EP074: 2-Hexanone (MBK)	591-78-6	20	hg/L	<50	<50	0.0	No Limit
EM1211100-015	GW110_200912	EP074: Vinyl Acetate	108-05-4	20	hg/L	<50	<50	0.0	No Limit

Page Work Order Client

: 7 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Project

Sub-Matrix: WATER						Laboratory	Laboratory Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP074B: Oxygenate	EP074B: Oxygenated Compounds(QC Lot: 2523230)- continued	(23230) - continued							
EM1211100-015	GW110_200912	EP074: 2-Butanone (MEK)	78-93-3	20	µg/L	<50	<50	0.0	No Limit
		EP074: 4-Methyl-2-pentanone (MIBK)	108-10-1	20	µg/L	<50	<50	0.0	No Limit
		EP074: 2-Hexanone (MBK)	591-78-6	20	µg/L	<50	<50	0.0	No Limit
EP074C: Sulfonated	EP074C: Sulfonated Compounds (QC Lot: 2523230)	(3230)							
EM1211100-007	GW101_200912	EP074: Carbon disulfide	75-15-0	22	µg/L	<5	<5	0.0	No Limit
EM1211100-015	GW110_200912	EP074: Carbon disulfide	75-15-0	22	µg/L	<5	<5	0.0	No Limit
EP074D: Fumigants	(QC Lot: 2523230)								
EM1211100-007	GW101_200912	EP074: 2.2-Dichloropropane	594-20-7	22	hg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dichloropropane	78-87-5	22	hg/L	<5	<5	0.0	No Limit
		EP074: cis-1.3-Dichloropropylene	10061-01-5	2	µg/L	<5	<22	0.0	No Limit
		EP074: trans-1.3-Dichloropropylene	10061-02-6	Ω	hg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	Ω	hg/L	<5	<5×	0.0	No Limit
EM1211100-015	GW110_200912	EP074: 2.2-Dichloropropane	594-20-7	22	hg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dichloropropane	78-87-5	c2	hg/L	<5	<5	0.0	No Limit
		EP074: cis-1.3-Dichloropropylene	10061-01-5	22	hg/L	°2	^2	0.0	No Limit
		EP074: trans-1.3-Dichloropropylene	10061-02-6	Ω	hg/L	\$	² 2	0.0	No Limit
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	22	hg/L	^2	^2	0.0	No Limit
EP074E: Halogenate	EP074E: Halogenated Aliphatic Compounds (QC Lot: 2523230)	ac Lot: 2523230)							
EM1211100-007	GW101_200912	EP074: 1.1-Dichloroethene	75-35-4	22	µg/L	~ 2	<22	0.0	No Limit
		EP074: lodomethane	74-88-4	22	hg/L	~ 2	\\	0.0	No Limit
		EP074: trans-1.2-Dichloroethene	156-60-5	22	hg/L	\\ 2	\$2	0.0	No Limit
		EP074: 1.1-Dichloroethane	75-34-3	22	hg/L	? 2	² 2	0.0	No Limit
		EP074: cis-1.2-Dichloroethene	156-59-2	22	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1.1-Trichloroethane	71-55-6	22	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1-Dichloropropylene	563-58-6	22	µg/L	<5	<5	0.0	No Limit
		EP074: Carbon Tetrachloride	56-23-5	2	µg/L	<5	<22	0.0	No Limit
		EP074: 1.2-Dichloroethane	107-06-2	22	hg/L	~ 2	^ 22	0.0	No Limit
		EP074: Trichloroethene	79-01-6	22	hg/L	%	² 2	0.0	No Limit
		EP074: Dibromomethane	74-95-3	Ω	hg/L	<5	^2	0.0	No Limit
		EP074: 1.1.2-Trichloroethane	2-00-62	c2	hg/L	<5	<5	0.0	No Limit
		EP074: 1.3-Dichloropropane	142-28-9	c2	hg/L	<5	<5 <	0.0	No Limit
		EP074: Tetrachloroethene	127-18-4	Ω	hg/L	\$	² 2	0.0	No Limit
		EP074: 1.1.2-Tetrachloroethane	630-20-6	Ω	hg/L	<5 2	<5 <	0.0	No Limit
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	22	hg/L	~ 22	\$	0.0	No Limit
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	22	hg/L	<5	<5	0.0	No Limit
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	22	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.3-Trichloropropane	96-18-4	22	µg/L	<5	<5	0.0	No Limit
		EP074: Pentachloroethane	76-01-7	22	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	2	hg/L	<5	<5	0.0	No Limit

: 8 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD Page Work Order Client Project

: 2121632	
ject	

EP074E: Halogenated Aliphatic Compounds (QC Lot: 2523230) - continued EP074E: Halogenated Aliphatic Compounds (QC Lot: 2523230) - continued EP074: Dichlorodiflucrometha EP074: Chloromethane EP074: Vinyl chloride EP074: Trichloroflucromethan EP074: Trichloroflucromethan EP074: Trichloroethane EP074: 1.1-Dichloroethane EP074: 1.1-Dichloroethane EP074: 1.1-Dichloroethane EP074: 1.1-Trichloroethane EP074: Carbon Tetrachloride EP074: 1.2-Dichloroptopylene EP077: Trichloroptopylene EP077: Trichloroethane EP077: 1.1-Dichloroptopylene EP077: 1.1-Dichloroptopylene EP077: Trichloroethane	Method: Compound ounds (QC Lot: 2523230) - continued EP074: Dichlorodifluoromethane	d continued	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EM1211100-007 GW101_200912 EM1211100-015 GW110_200912	unds (QC Lot: 2523230) - EP074: Dichlorod	continued				,			
	EP074: Dichlorodi								
		ifluoromethane	75-71-8	20	µg/L	<50	<50	0.0	No Limit
	EP074: Chloromethane	thane	74-87-3	90	µg/L	<50	<50	0.0	No Limit
	EP074: Vinyl chloride	ride	75-01-4	20	hg/L	<50	<50	0.0	No Limit
	EP074: Bromomethane	thane	74-83-9	20	hg/L	<50	<50	0.0	No Limit
	EP074: Chloroethane	ane	75-00-3	20	hg/L	<50	<50	0.0	No Limit
	EP074: Trichlorofluoromethane	luoromethane	75-69-4	20	hg/L	<50	<50	0.0	No Limit
	EP074: 1.1-Dichloroethene	roethene	75-35-4	2	hg/L	<5	<5	0.0	No Limit
	EP074: Iodomethane	ane	74-88-4	2	µg/L	<5	<5	0.0	No Limit
	EP074: trans-1.2-Dichloroethene	Dichloroethene	156-60-5	2	µg/L	<5	<5	0.0	No Limit
	EP074: 1.1-Dichloroethane	proethane	75-34-3	5	µg/L	<5	<5	0.0	No Limit
	EP074: cis-1.2-Dichloroethene	chloroethene	156-59-2	S	µg/L	<5	<5	0.0	No Limit
	EP074: 1.1.1-Trichloroethane	hloroethane	71-55-6	2	hg/L	<5	<5	0.0	No Limit
	EP074: 1.1-Dichloropropylene	ropropylene	563-58-6	2	hg/L	<5	<5	0.0	No Limit
	EP074: Carbon Tetrachloride	etrachloride	56-23-5	2	hg/L	<5	<5	0.0	No Limit
	EP074: 1.2-Dichloroethane	voethane	107-06-2	2	µg/L	<5	<5	0.0	No Limit
	EP074: Trichloroethene	thene	79-01-6	2	µg/L	<5	<5	0.0	No Limit
	EP074: Dibromomethane	nethane	74-95-3	2	µg/L	<5	<5	0.0	No Limit
	EP074: 1.1.2-Trichloroethane	hloroethane	2-00-62	2	µg/L	<5	<5	0.0	No Limit
	EP074: 1.3-Dichloropropane	propropane	142-28-9	2	µg/L	<5	<5	0.0	No Limit
	EP074: Tetrachloroethene	roethene	127-18-4	2	µg/L	<5	<5	0.0	No Limit
	EP074: 1.1.1.2-Tetrachloroethane	etrachloroethane	630-20-6	2	µg/L	<5	<5	0.0	No Limit
	EP074: trans-1.4-	EP074: trans-1.4-Dichloro-2-butene	110-57-6	ß	µg/L	<5	<5	0.0	No Limit
	EP074: cis-1.4-Dichloro-2-butene	chloro-2-butene	1476-11-5	2	hg/L	<5	<5	0.0	No Limit
	EP074: 1.1.2.2-Tetrachloroethane	strachloroethane	79-34-5	S	hg/L	<5	<5×	0.0	No Limit
	EP074: 1.2.3-Trichloropropane	hloropropane	96-18-4	2	µg/L	<5	<5	0.0	No Limit
	EP074: Pentachloroethane	roethane	7-10-92	2	hg/L	<5	<5	0.0	No Limit
	EP074: 1.2-Dibror	EP074: 1.2-Dibromo-3-chloropropane	96-12-8	S	µg/L	<5	<5	0.0	No Limit
	EP074: Dichlorodifluoromethane	ifluoromethane	75-71-8	20	µg/L	<50	<50	0.0	No Limit
	EP074: Chloromethane	thane	74-87-3	20	µg/L	<50	<50	0.0	No Limit
	EP074: Vinyl chloride	ride	75-01-4	20	µg/L	<50	<50	0.0	No Limit
	EP074: Bromomethane	thane	74-83-9	20	µg/L	<50	<50	0.0	No Limit
	EP074: Chloroethane	ane	22-00-3	20	µg/L	<50	<50	0.0	No Limit
	EP074: Trichlorofluoromethane	luoromethane	75-69-4	20	hg/L	<50	<50	0.0	No Limit
EP074F: Halogenated Aromatic Compounds (QC Lot: 2523230)	ounds (QC Lot: 2523230)								
EM1211100-007 GW101_200912	EP074: Chlorobenzene	nzene	108-90-7	2	hg/L	<5	<5	0.0	No Limit
	EP074: Bromobenzene	nzene	108-86-1	2	hg/L	<5	<5	0.0	No Limit
	EP074: 2-Chlorotoluene	oluene	95-49-8	2	hg/L	<5	<5	0.0	No Limit
	EP074: 4-Chlorotoluene	oluene	106-43-4	2	hg/L	^ 2	^2	0.0	No Limit
	EP074: 1.2.3-Trichlorobenzene	hlorobenzene	87-61-6	2	hg/L	<5	<5	0.0	No Limit

: 9 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Client Project

Page Work Order

EM1211100-015 Cilient sample ID Intendst. Commound Col. 12223230 - continued	Sub-Matrix: WATER						Laboratory L	Laboratory Duplicate (DUP) Report		
EM1211100-015 GW110_200912 EP074: Chlorobenzene	Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EM1211100-015 GW110_200912 EP074: Chlorobenzene	EP074F: Halogenate	ed Aromatic Compounds	(QC Lot: 2523230) - continued							
EP074: Bromobenzene	EM1211100-015	GW110_200912	EP074: Chlorobenzene	108-90-7	2	µg/L	<5	<5	0.0	No Limit
EP074: 2-Chlorotoluene			EP074: Bromobenzene	108-86-1	2	µg/L	<5	<5	0.0	No Limit
EP074G: Trihalomethanes (QC Lot: 2523230) EM1211100-007 GW101_200912 EP074: 12.3-Trichlorobenzene EP074: 12.3-Trichlorobenzene EP074: 12.3-Trichlorobenzene EP074: Dibromochloromethane EP074: Dibromochloromethane EP074: Dibromochloromethane EP074: Dibromochloromethane EP074: Bromodichloromethane EP074: Bromodich			EP074: 2-Chlorotoluene	8-49-8	2	µg/L	<5	<5	0.0	No Limit
EP0746: Trihalomethanes (QC Lot: 2523230) EM1211100-007 GW101_200912 EP074: Chloroform EM1211100-015 GW110_200912 EP074: Bromodichloromethane EP080/071: Total Petroleum Hydrocarbons (QC Lot: 2516052) EM1211100-007 GW110_200912 EP080: C6 - C9 Fraction EM1211100-007 GW110_200912 EP080: C6 - C9 Fraction EM1211100-007 GW110_200912 EP080: C6 - C10 Fraction EM1211100-007 GW110_200912 EP080: C6 - C10 Fraction EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EM211100-013 GW110_200912 EP216: Perchlorate EP231: Perfluorocotyl Acids and Sulfonates. (QC Lot: 2516351) EB1224875-001 Anonymous EP231: PFCS			EP074: 4-Chlorotoluene	106-43-4	2	µg/L	<5	<5	0.0	No Limit
EM1211100-007 GW101_200912 EP074: Bromodichloromethane EM1211100-007 GW101_200912 EP074: Bromodichloromethane EM1211100-015 GW110_200912 EP074: Bromodichloromethane EM1211100-015 GW110_200912 EP074: Bromodichloromethane EM1211100-015 GW110_200912 EP074: Bromodichloromethane EM1211100-007 GW110_200912 EP074: Bromodichloromethane EM1211100-007 Anonymous EP074: Bromodichloromethane EM1211100-007 GW101_200912 EP074: Bromodichloromethane EM1211100-007 GW101_200912 EP074: Bromodichloromethane EM1211100-007 GW101_200912 EP071: C10_C14 Fraction EM1211149-003 Anonymous EP071: C10_C16 Fraction EM1211100-015 GW101_200912 EP071: >C10_C16 Fraction EM1211100-015 GW101_200912 EP080: C6_C10 Fraction EM211100-015 GW101_200912 EP080: C6_C10 Fraction EM211100-015 GW107_200912 EP080: C6_C10 Fraction EM224875-001 Anonymous EP231: PFOA EP231: PFOA EP074			EP074: 1.2.3-Trichlorobenzene	87-61-6	2	µg/L	<5	<5	0.0	No Limit
EM1211100-007 GW101_200912 EP074: Chloroform EM1211100-015 GW110_200912 EP074: Bromodichloromethane EP074: Dibromochloromethane EP074: Bromodichloromethane EP074: Dibromochloromethane EP074: Bromodichloromethane EP074: Dibromochloromethane EP074: Bromodichloromethane EP074: Dibromochloromethane EP074: Bromodichloromethane EM1211149-003 Anonymous EM1211100-007 GW101_200912 EM1211100-015 GW101_200912 EM1211100-015 GW101_200912 EM1211100-015 GW101_200912 EM1211100-015 GW101_200912 EM1211100-015 Anonymous EM1211100-015 GW101_200912 EM1211100-015 GW101_200912 EM1211100-015 GW101_200912 EM1211100-015 GW101_200912 EM1211100-015 GW101_200912 EM1211100-015 GW101_200912 EM211100-015 GW101_200912 EM211100-015 GW101_200912 EM21100-016 GW102_200912 EM211 Perfluorooctyl Acids and Sulfonates. (QC Lot: 2516351)	EP074G: Trihalomet	thanes (QC Lot: 2523230)								
EM1211100-015 GW110_200912 EP074: Bromodichloromethane	EM1211100-007	GW101_200912	EP074: Chloroform	67-66-3	2	hg/L	<5	<5	0.0	No Limit
EP074: Dibromochloromethane			EP074: Bromodichloromethane	75-27-4	2	hg/L	<5	<5	0.0	No Limit
EM1211100-015 GW110_200912 EP074; Bromoform			EP074: Dibromochloromethane	124-48-1	2	µg/L	<5	<5	0.0	No Limit
EM1211100-015 GW110_200912 EP074; Chloroform EP074; Bromodichloromethane EP074; Bromodichloromethane EP080/071; Total Petroleum Hydrocarbons (QC Lot; 2516052) EP077; C15 - C28 Fraction EM1211100-007 GW110_200912 EP071; C10 - C14 Fraction EM1211100-015 GW110_200912 EP080; C6 - C9 Fraction EM1211100-015 GW101_200912 EP080; C6 - C9 Fraction EM1211100-015 GW101_200912 EP080; C6 - C9 Fraction EM1211100-015 GW101_200912 EP071; > C10 - C16 Fraction EM1211100-016 GW101_200912 EP080; C6 - C10 Fraction EP216: Perchlorate by LC/MS (QC Lot; 2516184) EP080; C6 - C10 Fraction EP231: Perfluorooctyl Acids and Sulfonates. (QC Lot; 2516351) EP231; PFOA EP1224875-001 Anonymous EP231; PFOA			EP074: Bromoform	75-25-2	2	µg/L	<5	<5	0.0	No Limit
EP074: Bromodichloromethane	EM1211100-015	GW110_200912	EP074: Chloroform	67-66-3	2	µg/L	<5	<5	0.0	No Limit
EP074: Dibromochloromethane EP080/071: Total Petroleum Hydrocarbons (QC Lot: 2516052)			EP074: Bromodichloromethane	75-27-4	2	hg/L	<5	<5	0.0	No Limit
EP074: Bromoform			EP074: Dibromochloromethane	124-48-1	2	hg/L	<5	<5	0.0	No Limit
EP080/071: Total Petroleum Hydrocarbons (QC Lot: 2516052) EM1211149-003 Anonymous EP071: C15 - C28 Fraction EP080: C10 - C14 Fraction EP071: C29 - C36 Fraction EP080/071: Total Petroleum Hydrocarbons (QC Lot: 2523229) EP080: C6 - C9 Fraction EM1211100-007 GW101_200912 EP080: C6 - C9 Fraction EM1211100-015 GW110_200912 EP080: C6 - C9 Fraction EM1211149-003 Anonymous EP071: >C10 - C16 Fraction EM1211100-015 Anonymous EP071: >C16 - C34 Fraction EM1211100-007 GW101_200912 EP071: >C34 - C40 Fraction EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EM211100-015 GW110_200912 EP080: C6 - C10 Fraction EP216: Perchlorate by LCAMS (QC Lot: 2516184) EP080: C6 - C10 Fraction EM211100-013 GW107_200912 EP216: Perchlorate EP231: Perfluoroctyl Acids and Sulfonates. (QC Lot: 2516351) EP216: Perchlorate EP231: PFOA Anonymous EP231: PFOA			EP074: Bromoform	75-25-2	2	µg/L	<5	<5	0.0	No Limit
EM1211149-003 Anonymous EP071: C15 - C28 Fraction EP080/071: Total Petroleum Hydrocarbons (QC Lot: 2523229) EP071: C29 - C36 Fraction EM121100-007 GW101_200912 EP080: C6 - C9 Fraction EM1211100-015 GW101_200912 EP080: C6 - C9 Fraction EM1211100-015 GW101_200912 EP080: C6 - C9 Fraction EM1211100-015 Anonymous EP071: >C10 - C16 Fraction EM1211100-007 GW101_200912 EP071: >C34 - C40 Fraction EM1211100-007 GW101_200912 EP080: C6 - C10 Fraction EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EP216: Perchlorate by LC/MS (QC Lot: 2516184) EP080: C6 - C10 Fraction EM1211100-013 GW107_200912 EP080: C6 - C10 Fraction EP231: PFOS EP231: PFOS EB1224875-001 Anonymous EP231: PFOS	EP080/071: Total Per	troleum Hydrocarbons (C	2C Lot: 2516052)							
EP071: C10 - C14 Fraction	EM1211149-003	Anonymous	EP071: C15 - C28 Fraction	-	100	µg/L	580	490	16.3	No Limit
EP080/071: Total Petroleum Hydrocarbons (QC Lot: 2523229) EM1211100-007 GW101_200912 EP080: C6 - C9 Fraction EM1211100-015 GW110_200912 EP080: C6 - C9 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2516052) EM1211100-017 Anonymous EP071: >C16 - C34 Fraction EP071: >C34 - C40 Fraction EP071: >C40 Fraction EP080: C6 - C10 Fraction EP080			EP071: C10 - C14 Fraction	1	20	µg/L	<50	<50	0.0	No Limit
EP080/071: Total Petroleum Hydrocarbons (QC Lot: 2523229) EM1211100-007 GW101_200912 EP080: C6 - C9 Fraction EM1211100-015 GW110_200912 EP080: C6 - C9 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2516052) EM1211149-003 Anonymous EP071: >C10 - C16 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2523229) EP071: >C34 - C40 Fraction EM1211100-007 GW101_200912 EP080: C6 - C10 Fraction EM1211100-015 GW102_200912 EP080: C6 - C10 Fraction EM1211100-013 GW107_200912 EP080: C6 - C10 Fraction EM1211100-013 GW107_200912 EP216: Perchlorate EP231: PFOS EP231: PFOS EP231: PFOA Anonymous EP231: PFOS			EP071: C29 - C36 Fraction	-	20	hg/L	099	290	11.2	%05 - %0
EM1211100-007 GW101_200912 EP080: C6 - C9 Fraction EM1211100-015 GW110_200912 EP080: C6 - C9 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2516052) EP071: >C10 - C16 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2523229) EM1211100-007 GW101_200912 EP080: C6 - C10 Fraction EM1211100-007 GW110_200912 EP080: C6 - C10 Fraction EP080: C6 - C10 Fraction EM211100-015 GW110_200912 EP080: C6 - C10 Fraction EM1211100-013 GW107_200912 EP080: C6 - C10 Fraction EM211100-013 GW107_200912 EP216: Perchlorate EP231: Perfluorocctyl Acids and Sulfonates. (QC Lot: 2516351) EP231: PFOA EP231: PFOA Anonymous EP231: PFOA	EP080/071: Total Per	troleum Hydrocarbons (C	QC Lot: 2523229)							
EM1211100-015 GW110_200912 EP080: C6 - C9 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2516052) EP071: >C10 - C16 Fraction EM1211149-003 Anonymous EP071: >C10 - C16 Fraction EP071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2523229) EM1211100-007 GW101_200912 EP080: C6 - C10 Fraction EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EP080: C6 - C10 Fraction EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EM1211100-013 GW107_200912 EP216: Perchlorate EM211: Perfluorocctyl Acids and Sulfonates. (QC Lot: 2516351) EP231: PFOS EB1224875-001 Anonymous EP231: PFOA	EM1211100-007	GW101_200912	EP080: C6 - C9 Fraction	-	20	µg/L	<20	<20	0.0	No Limit
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2516052) EM1211149-003 Anonymous EP071: >C10 - C16 Fraction EP071: >C16 - C34 Fraction EP071: >C34 - C40 Fraction EM121100-007 GW101_200912 EP080: C6 - C10 Fraction EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EP216: Perchlorate by LCAMS (QC Lot: 2516184) EP216: Perchlorate EM1211100-013 GW107_200912 EP216: Perchlorate EP231: Perfluoroctyl Acids and Sulfonates. (QC Lot: 2516351) EP231: PFOS EB1224875-001 Anonymous EP231: PFOA	EM1211100-015	GW110_200912	EP080: C6 - C9 Fraction	-	20	µg/L	<20	<20	0.0	No Limit
EM1211149-003 Anonymous EP071:>C10 - C16 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2523229) EP071:>C34 - C40 Fraction EM1211100-007 GW101_200912 EP080: C6 - C10 Fraction EP216: Perchlorate by LC/MS (QC Lot: 2516184) EP216: Perchlorate by LC/MS (QC Lot: 2516184) EM1211100-013 GW107_200912 EP216: Perchlorate EP231: Perfluorooctyl Acids and Sulfonates. (QC Lot: 2516351) EP231: PFOS EB1224875-001 Anonymous EP231: PFOA	EP080/071: Total Re	coverable Hydrocarbons	- NEPM 2010 Draft (QC Lot: 2516052)							
EP071: >C16 - C34 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2523229) EM1211100-007 GW101_200912 EP080: C6 - C10 Fraction EP216: Perchlorate by LC/MS (QC Lot: 2516184) EP216: Perchlorate by LC/MS (QC Lot: 2516184) EM1211100-013 GW107_200912 EP216: Perchlorate EP231: Perfluorooctyl Acids and Sulfonates. (QC Lot: 2516351) EP231: PFOS EB1224875-001 Anonymous EP231: PFOS	EM1211149-003	Anonymous	EP071: >C10 - C16 Fraction	1	100	µg/L	<100	<100	0.0	No Limit
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2523229) EM1211100-007 GW101_200912 EP080: C6 - C10 Fraction EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EP216: Perchlorate by LC/MS (QC Lot: 2516184) EP216: Perchlorate EM1211100-013 GW107_200912 EP216: Perchlorate EP231: Perfluorooctyl Acids and Sulfonates. (QC Lot: 2516351) EP231: PFOS EB1224875-001 Anonymous EP231: PFOS			EP071: >C16 - C34 Fraction	1	100	µg/L	1080	940	13.2	No Limit
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QC Lot: 2523229) EM1211100-007 GW101_200912 EP080: C6 - C10 Fraction EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EP216: Perchlorate by LC/MS (QC Lot: 2516184) EP216: Perchlorate EM1211100-013 GW107_200912 EP216: Perchlorate EP231: Perfluorooctyl Acids and Sulfonates. (QC Lot: 2516351) EP231: PFOS EB1224875-001 Anonymous EP231: PFOS			EP071: >C34 - C40 Fraction		100	µg/L	340	300	8.6	No Limit
EM1211100-007 GW101_200912 EP080: C6 - C10 Fraction EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EP216: Perchlorate by LC/MS (QC Lot: 2516184) EP216: Perchlorate EM1211100-013 GW107_200912 EP216: Perchlorate EP231: Perfluorooctyl Acids and Sulfonates. (QC Lot: 2516351) EP231: PFOS EB1224875-001 Anonymous EP231: PFOS	EP080/071: Total Re	coverable Hydrocarbons	- NEPM 2010 Draft (QC Lot: 2523229)							
EM1211100-015 GW110_200912 EP080: C6 - C10 Fraction EP216: Perchlorate by LC/MS (QC Lot: 2516184) EP216: Perchlorate EM1211100-013 GW107_200912 EP216: Perchlorate EP231: Perfluorooctyl Acids and Sulfonates. (QC Lot: 2516351) EP231: PFOS EB1224875-001 Anonymous EP231: PFOS	EM1211100-007	GW101_200912	EP080: C6 - C10 Fraction	-	20	µg/L	<20	<20	0.0	No Limit
EP216: Perchlorate by LC/MS (QC Lot: 2516184) EM1211100-013 GW107_200912 EP216: Perchlorate EP231: Perfluorooctyl Acids and Sulfonates. (QC Lot: 2516351) EP231: PFOS EB1224875-001 Anonymous EP231: PFOS	EM1211100-015	GW110_200912	EP080: C6 - C10 Fraction	-	20	hg/L	<20	<20	0.0	No Limit
EM1211100-013 GW107_200912 EP216: Perchlorate EP231: Perfluorooctyl Acids and Sulfonates. (QC Lot: 2516351) EP231: PFOS EB1224875-001 Anonymous EP231: PFOS EP231: PFOA EP231: PFOA	EP216: Perchlorate	by LC/MS (QC Lot: 25161	84)							
EP231: Perfluorooctyl Acids and Sulfonates. (QC Lot: 2516351) EB1224875-001 Anonymous EP231: PFOS EP231: PFOA	EM1211100-013	GW107_200912	EP216: Perchlorate	7601-90-3	0.2	µg/L	<0.2	<0.2	0.0	No Limit
Anonymous	EP231: Perfluorooct	yl Acids and Sulfonates.	(QC Lot: 2516351)							
EP231: PFOA	EB1224875-001	Anonymous	EP231: PFOS	1763-23-1	0.02	hg/L	10.3	68.6	4.0	0% - 20%
			EP231: PFOA	335-67-1	0.02	µg/L	0.19	0.19	0.0	No Limit
EP231: 6:2 Fluorotelomer Sulfonate (6:2 Ftt			EP231: 6:2 Fluorotelomer Sulfonate (6:2 FtS)	27619-97-2	0.1	µg/L	<0.1	<0.1	0.0	No Limit

: CARDNO LANE PIPER PTY LTD : 212163 2 EM1211100 : 10 of 19 Work Order Client

Project

Method Blank (MB) and Laboratory Control Spike (LCS) Report

Sub-Matrix: WATER

parameter is to monitor potential laboratory contramination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Method Blank (MB)

Laboratory Control Spike (LCS) Report

				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	imits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	Low	High
EA010: Conductivity (QCLot: 2523718)								
EA010: Electrical Conductivity @ 25°C		1	mS/cm	1 >	1413 µS/cm	101	86	102
EA015: Total Dissolved Solids (QCLot: 2519737)								
EA015H: Total Dissolved Solids @180°C	GIS-210-010	10	mg/L	<10	2000 mg/L	100	86	104
ED037P: Alkalinity by PC Titrator (QCLot: 2518793)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	0.66	77	127
ED037P: Alkalinity by PC Titrator (QCLot: 2518795)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	97.2	77	127
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 2516279)	2516279)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	^	12.5 mg/L	116	81	125
ED045G: Chloride Discrete analyser (QCLot: 2516278)								
ED045G: Chloride	16887-00-6	1	mg/L	۲>	1000 mg/L	103	89	117
ED093F: Dissolved Major Cations (QCLot: 2516277)								
ED093F: Calcium	7440-70-2	-	mg/L	۲	5 mg/L	103	83	129
ED093F: Magnesium	7439-95-4	_	mg/L	۲	5 mg/L	102	80	124
ED093F: Sodium	7440-23-5	1	mg/L	^	50 mg/L	101	77	125
ED093F: Potassium	7440-09-7	1	mg/L	.^	50 mg/L	93.1	77	123
EG020F: Dissolved Metals by ICP-MS (QCLot: 2525557)								
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	101	80	120
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	0.1 mg/L	88.6	80	124
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	101	87	109
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	103	70	124
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	104	88	110
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	97.9	88	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	101	98	112
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	106	87	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	104	86	108
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	97.1	06	110
EG020A-F: Lithium	7439-93-2	0.001	mg/L	<0.001	0.1 mg/L	104	09	130
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	89.0	87	111
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	92.9	84	108
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	102	86	112
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	92.6	83	111
EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	0.1 mg/L	92.7	77	107

: 11 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Page Work Order Client

Project

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report	CS) Report	
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	Low	High
ed Metals by ICP-MS (QCLot: 2525557)	- continued							
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	94.9	85	113
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	99.4	98	120
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.1 mg/L	104	61	133
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	105	79	119
EG020F: Dissolved Metals by ICP-MS (QCLot: 2525559)								
EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001			-	-
EG035F: Dissolved Mercury by FIMS (QCLot: 2525555)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0100 mg/L	107	7.1	125
EG050F: Dissolved Hexavalent Chromium (QCLot: 2518555)	(55)							
EG050F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	0.5 mg/L	101	80	120
EG050F: Dissolved Hexavalent Chromium (QCLot: 2522412)	12)							
EG050F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	0.5 mg/L	101	80	120
EK026SF: Total CN by Segmented Flow Analyser (QCLot: 2518020)	t: 2518020)							
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	91.6	85	125
EK040P: Fluoride by PC Titrator (QCLot: 2518794)								
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	98.8	78	120
EK055G: Ammonia as N by Discrete Analyser (QCLot: 2521030)	21030)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	94.2	92	122
EK057G: Nitrite as N by Discrete Analyser (QCLot: 2516276)	276)							
EK057G: Nitrite as N		0.01	mg/L	<0.01	0.5 mg/L	95.7	84	112
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 2521029)	yser (QCLot: 252	(1029)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	91.6	73	127
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 2517360)	ICLot: 2517360)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	103	63	117
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 2517361)	CLot: 2517361)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	104	73	117
EP066: Polychlorinated Biphenyls (PCB) (QCLot: 2516051)	1)							
EP066: Total Polychlorinated biphenyls		1	hg/L	7	10 µg/L	63.0	45	137
EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 2523230)	23230)							
EP074: Benzene	71-43-2	_	hg/L	7	20 µg/L	94.1	79	121
EP074: Toluene	108-88-3	2	hg/L	<2	20 µg/L	93.1	80	124
EP074: Ethylbenzene	100-41-4	2	hg/L	<2	20 µg/L	84.8	79	121
EP074: meta- & para-Xylene	108-38-3	2	hg/L	<2	40 µg/L	82.4	80	122
	106-42-3		:		=		i	
EP074: Styrene	100-42-5	2	hg/L	\$ 2	20 µg/L	80.3	74	122
EP074: ortho-Xylene	95-47-6	2	hg/L	<2	20 µg/L	88.8	81	123
EP074: Isopropylbenzene	98-82-8	2	hg/L	<5	20 µg/L	86.7	80	120

A Campbell Brothers Limited Company

: 12 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Page Work Order Client

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report	CS) Report	
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SOT	Low	High
EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 2523230)	2523230) - continued							
EP074: n-Propylbenzene	103-65-1	2	hg/L	<5	20 µg/L	83.0	20	120
EP074: 1.3.5-Trimethylbenzene	108-67-8	2	hg/L	<5	20 µg/L	81.2	7.1	119
EP074: sec-Butylbenzene	135-98-8	2	hg/L	<5	20 µg/L	87.6	72	120
EP074: 1.2.4-Trimethylbenzene	95-63-6	2	hg/L	<5	20 µg/L	83.0	73	119
EP074: tert-Butylbenzene	9-90-86	2	hg/L	<5	20 µg/L	85.1	73	119
EP074: p-lsopropyltoluene	9-8-66	22	hg/L	<5	20 µg/L	83.9	71	121
EP074: n-Butylbenzene	104-51-8	5	hg/L	<5	20 µg/L	78.8	65	121
EP074B: Oxygenated Compounds (QCLot: 2523230)								
EP074: Vinyl Acetate	108-05-4	20	hg/L	<50	200 µg/L	86.1	22	131
EP074: 2-Butanone (MEK)	78-93-3	50	hg/L	<50	200 µg/L	92.2	69	135
EP074: 4-Methyl-2-pentanone (MIBK)	108-10-1	50	hg/L	<50	200 µg/L	89.6	89	136
EP074: 2-Hexanone (MBK)	591-78-6	50	hg/L	<50	200 µg/L	87.0	89	138
EP074C: Sulfonated Compounds (QCLot: 2523230)								
EP074: Carbon disulfide	75-15-0	5	hg/L	<5	20 µg/L	70.0	29	127
EP074D: Fumigants (QCLot: 2523230)								
EP074: 2.2-Dichloropropane	594-20-7	5	hg/L	<5	20 µg/L	89.8	29	128
EP074: 1.2-Dichloropropane	78-87-5	2	hg/L	<5	20 µg/L	92.9	77	121
EP074: cis-1.3-Dichloropropylene	10061-01-5	5	hg/L	<5	20 µg/L	73.9	70	118
EP074: trans-1.3-Dichloropropylene	10061-02-6	2	hg/L	<5	20 µg/L	0.69	99	120
EP074: 1.2-Dibromoethane (EDB)	106-93-4	2	hg/L	<5	20 µg/L	83.7	78	124
EP074E: Halogenated Aliphatic Compounds (QCLot: 2523230)								
EP074: Dichlorodifluoromethane	75-71-8	20	hg/L	<50	200 µg/L	94.9	58	148
EP074: Chloromethane	74-87-3	50	hg/L	<50	200 µg/L	110	62	142
EP074: Vinyl chloride	75-01-4	50	hg/L	<50	200 µg/L	100	61	141
EP074: Bromomethane	74-83-9	50	hg/L	<50	200 µg/L	126	57	131
EP074: Chloroethane	75-00-3	50	hg/L	<50	200 µg/L	96.4	64	138
EP074: Trichlorofluoromethane	75-69-4	20	hg/L	<50	200 µg/L	98.4	29	131
EP074: 1.1-Dichloroethene	75-35-4	2	hg/L	<5	20 µg/L	92.0	71	125
EP074: Iodomethane	74-88-4	2	hg/L	<5	20 µg/L	# 152	61	135
EP074: trans-1.2-Dichloroethene	156-60-5	2	hg/L	<5	20 µg/L	93.8	75	121
EP074: 1.1-Dichloroethane	75-34-3	5	hg/L	<5	20 µg/L	97.8	77	121
EP074: cis-1.2-Dichloroethene	156-59-2	2	µg/L	<5	20 µg/L	95.5	78	122
EP074: 1.1.1-Trichloroethane	71-55-6	5	hg/L	<5	20 µg/L	94.0	70	120
EP074: 1.1-Dichloropropylene	563-58-6	5	hg/L	<5	20 µg/L	95.8	74	122
EP074: Carbon Tetrachloride	56-23-5	2	µg/L	<5	20 µg/L	84.5	22	123
EP074: 1.2-Dichloroethane	107-06-2	5	hg/L	<5	20 µg/L	113	75	125
EP074: Trichloroethene	79-01-6	2	µg/L	<5	20 µg/L	88.8	77	121
EP074: Dibromomethane	74-95-3	2	hg/L	~ 5	20 µg/L	97.1	92	122

Page Work Order Client Project

: 13 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

							d	
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report	S) Report	
				report	Spike	Spike Recovery (%)	Recovery	Recovery Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SOT	Low	High
EP074E: Halogenated Aliphatic Compounds (QCLot: 2523230) - continued	Lot: 2523230) - continued							
EP074: 1.1.2-Trichloroethane	2-00-62	2	hg/L	<5	20 µg/L	96.1	78	126
EP074: 1.3-Dichloropropane	142-28-9	5	hg/L	<5	20 µg/L	96.3	79	125
EP074: Tetrachloroethene	127-18-4	5	hg/L	<5	20 µg/L	88.8	92	122
EP074: 1.1.2-Tetrachloroethane	630-20-6	2	hg/L	<5	20 µg/L	80.6	65	119
EP074: trans-1.4-Dichloro-2-butene	110-57-6	2	hg/L	<5	20 µg/L	78.6	46	126
EP074: cis-1.4-Dichloro-2-butene	1476-11-5	2	hg/L	~ 22	20 µg/L	85.5	54	132
EP074: 1.1.2.2-Tetrachloroethane	79-34-5	2	hg/L	~ 2	20 µg/L	90.9	75	131
EP074: 1.2.3-Trichloropropane	96-18-4	2	hg/L	<5	20 µg/L	95.6	75	133
EP074: Pentachloroethane	76-01-7	2	hg/L	<5	20 µg/L	9.99	46	118
EP074: 1.2-Dibromo-3-chloropropane	96-12-8	2	hg/L	\ \ \ \ \	20 µg/L	66.3	54	124
EP074F: Halogenated Aromatic Compounds (QCLot: 2523230)	Lot: 2523230)							
EP074: Chlorobenzene		2	hg/L	<5	20 µg/L	93.2	81	121
EP074: Bromobenzene	108-86-1	2	hg/L	~ 2	20 µg/L	88.2	75	119
EP074: 2-Chlorotoluene	92-49-8	2	hg/L	<5	20 µg/L	87.6	73	121
EP074: 4-Chlorotoluene	106-43-4	2	hg/L	<5	20 µg/L	85.0	72	120
EP074: 1.2.3-Trichlorobenzene	87-61-6	5	hg/L	<5	20 µg/L	84.6	69	123
EP074G: Trihalomethanes (QCLot: 2523230)								
EP074: Chloroform	67-66-3	2	hg/L	<5	20 µg/L	99.3	77	121
EP074: Bromodichloromethane	75-27-4	2	hg/L	<5	20 µg/L	81.7	69	117
EP074: Dibromochloromethane	124-48-1	2	hg/L	<5	20 µg/L	67.2	59	119
EP074: Bromoform	75-25-2	5	hg/L	<5	20 µg/L	8.09	49	121
EP075A: Phenolic Compounds (QCLot: 2516050)								
EP075: Phenol	108-95-2	2	hg/L	<2	10 µg/L	18.7	10	65
EP075: 2-Chlorophenol	8-22-8	2	hg/L	<2	10 µg/L	41.5	29.8	108
EP075: 2-Methylphenol	95-48-7	2	hg/L	<2	10 µg/L	53.2	21.9	110
EP075: 3- & 4-Methylphenol	1319-77-3	2	hg/L	1	10 µg/L	44.9	10	108
		4	hg/L	4>				
EP075: 2-Nitrophenol	88-75-5	2	hg/L	<2	10 µg/L	56.4	31.2	123
EP075: 2.4-Dimethylphenol	105-67-9	2	hg/L	<2	10 µg/L	56.0	36	124
EP075: 2.4-Dichlorophenol	120-83-2	2	hg/L	<2	10 µg/L	51.4	31.2	125
EP075: 2.6-Dichlorophenol	0-99-28	2	hg/L	<2	10 µg/L	59.0	33	123
EP075: 4-Chloro-3-Methylphenol	29-20-2	2	hg/L	<2	10 µg/L	57.8	39	125
EP075: 2.4.6-Trichlorophenol	88-06-2	2	hg/L	<2	10 µg/L	8.09	23.9	134
EP075: 2.4.5-Trichlorophenol	95-95-4	2	hg/L	<2	10 µg/L	64.3	31.6	136
EP075: Pentachlorophenol	9-98-2	2	hg/L	1	10 µg/L	47.6	47	153
		4	hg/L	4 >	-		-	
EP075B: Polynuclear Aromatic Hydrocarbons (QCLot: 2516050)	CLot: 2516050)							
EP075: Naphthalene	91-20-3	2	hg/L	<2	10 µg/L	60.7	33	117
EP075: 2-Methylnaphthalene	91-57-6	2	hg/L	<2	10 µg/L	59.1	33	123
						-		ш

Page Work Order Project Client

: 14 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	Low	High
EP075B: Polynuclear Aromatic Hydrocarbons(QCLot: 2516050)- continued	(QCLot: 2516050) - continuec							
EP075: 2-Chloronaphthalene	91-58-7	2	hg/L	<2	10 µg/L	49.8	22.6	133
EP075: Acenaphthylene	208-96-8	2	hg/L	<2	10 µg/L	0.09	35	131
EP075: Acenaphthene	83-32-9	2	hg/L	<2	10 µg/L	8.09	37	127
EP075: Fluorene	86-73-7	2	hg/L	<2	10 µg/L	63.2	39	133
EP075: Phenanthrene	85-01-8	2	hg/L	<2	10 µg/L	63.3	42	134
EP075: Anthracene	120-12-7	2	hg/L	<2	10 µg/L	63.2	41	135
EP075: Fluoranthene	206-44-0	2	hg/L	<2	10 µg/L	62.9	40	146
EP075: Pyrene	129-00-0	2	hg/L	<2	10 µg/L	62.3	42	142
EP075: N-2-Fluorenyl Acetamide	53-96-3	7	hg/L	<2	10 µg/L	65.4	40	146
EP075: Benz(a)anthracene	56-55-3	7	hg/L	<2	10 µg/L	62.2	41	143
EP075: Chrysene	218-01-9	2	hg/L	<2	10 µg/L	61.9	40	146
EP075: Benzo(b) & Benzo(k)fluoranthene	202-99-2	4	hg/L	4>	20 µg/L	65.2	21	151
	207-08-9							
EP075: 7.12-Dimethylbenz(a)anthracene	9-2-6-2	2	hg/L	<2	10 µg/L	66.7	39	151
EP075: Benzo(a)pyrene	50-32-8	2	hg/L	<2	10 µg/L	0.99	39	141
EP075: 3-Methylcholanthrene	56-49-5	2	hg/L	<2	10 µg/L	55.4	33	139
EP075: Indeno(1.2.3.cd)pyrene	193-39-5	2	hg/L	<2	10 µg/L	62.8	31.5	139
EP075: Dibenz(a.h)anthracene	53-70-3	2	hg/L	<2	10 µg/L	67.0	30.1	140
EP075: Benzo(g.h.i)perylene	191-24-2	2	hg/L	<2	10 µg/L	62.2	29.5	138
EP075C: Phthalate Esters (QCLot: 2516050)								
EP075: Dimethyl phthalate	131-11-3	2	hg/L	<2	10 µg/L	65.7	41	141
EP075: Diethyl phthalate	84-66-2	2	hg/L	<2	10 µg/L	73.6	45	139
EP075: Di-n-butyl phthalate	84-74-2	2	hg/L	<2	10 µg/L	65.3	42	150
EP075: Butyl benzyl phthalate	85-68-7	2	hg/L	<2	10 µg/L	61.8	36	152
EP075: bis(2-ethylhexyl) phthalate	117-81-7	10	hg/L	<10	1	-		
		20	µg/L		10 µg/L	72.4	42	158
EP075: Di-n-octylphthalate	117-84-0	2	hg/L	<2>	10 µg/L	78.6	43	141
EP075D: Nitrosamines (QCLot: 2516050)								
EP075: N-Nitrosomethylethylamine	10595-95-6	7	hg/L	<2	10 µg/L	67.2	10	109
EP075: N-Nitrosodiethylamine	55-18-5	2	hg/L	<2	10 µg/L	40.1	23.5	124
EP075: N-Nitrosopyrrolidine	930-55-2	4	hg/L	4>	10 µg/L	38.5	18.8	26
EP075: N-Nitrosomorpholine	59-89-2	2	hg/L	<2	10 µg/L	44.2	18.3	96
EP075: N-Nitrosodi-n-propylamine	621-64-7	2	hg/L	<2	10 µg/L	57.5	30.6	129
EP075: N-Nitrosopiperidine	100-75-4	2	hg/L	<2	10 µg/L	54.8	32	126
EP075: N-Nitrosodibutylamine	924-16-3	2	hg/L	<2	10 µg/L	61.6	29.1	135
EP075: N-Nitrosodiphenyl & Diphenylamine	86-30-6	4	hg/L	4,	10 µg/L	62.1	39	139
EDOZE- Mathanyrijana	122-39-4	0	1/011	<i>c></i>	10.10/1	28.2	28.1	20
Though in the contract of the	2-00-10	4	7 J	7,	1/8H 0-	2.03	04	2

Page Work Order Client Project

: 15 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Sub-Matrix: WATED				Method Blank (MB)		Laboratory Control Spike (LCS) Report	CS) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Recovery Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	Low	High
omatics and Ketones (QCLot: 2516050)	- continued							
EP075: 2-Picoline	109-06-8	2	hg/L	<2	10 µg/L	# 16.3	28.4	22
EP075: Acetophenone	98-86-2	2	hg/L	<2	10 µg/L	55.4	34	126
EP075: Nitrobenzene	98-92-3	2	hg/L	<2	10 µg/L	53.9	36	120
EP075: Isophorone	78-59-1	2	hg/L	<2	10 µg/L	59.4	38	124
EP075: 2.6-Dinitrotoluene	606-20-2	4	hg/L	44	10 µg/L	0.99	38	142
EP075: 2.4-Dinitrotoluene	121-14-2	4	hg/L	44	10 µg/L	65.8	44	138
EP075: 1-Naphthylamine	134-32-7	2	hg/L	<2	10 µg/L	0.9#	29.8	152
EP075: 4-Nitroquinoline-N-oxide	56-57-5	2	hg/L	<2	10 µg/L	71.5	25.9	168
EP075: 5-Nitro-o-toluidine	8-22-8	2	hg/L	<2	10 µg/L	42.5	26.2	138
EP075: Azobenzene	103-33-3	2	hg/L	<2	10 µg/L	64.2	43	135
EP075: 1.3.5-Trinitrobenzene	99-35-4	2	hg/L	<2	10 µg/L	61.8	10	158
EP075: Phenacetin	62-44-2	2	hg/L	<2	10 µg/L	57.4	37	131
EP075: 4-Aminobiphenyl	92-67-1	2	hg/L	<2	10 µg/L	40.3	10	150
EP075: Pentachloronitrobenzene	82-68-8	2	hg/L	<2	10 µg/L	64.4	38	146
EP075: Pronamide	23950-58-5	2	hg/L	<2	10 µg/L	66.3	45	139
EP075: Dimethylaminoazobenzene	60-11-7	2	hg/L	<2	10 µg/L	65.3	37	147
EP075: Chlorobenzilate	510-15-6	2	hg/L	<2	10 µg/L	64.0	42	148
EP075F: Haloethers (QCLot: 2516050)								
EP075: Bis(2-chloroethyl) ether	111-44-4	2	hg/L	<2	10 µg/L	51.9	10	142
EP075: Bis(2-chloroethoxy) methane	111-91-1	2	hg/L	<2	10 µg/L	0.09	34	126
EP075: 4-Chlorophenyl phenyl ether	7005-72-3	2	hg/L	<2	10 µg/L	62.8	39	133
EP075: 4-Bromophenyl phenyl ether	101-55-3	2	hg/L	<2	10 µg/L	64.2	39	137
EP075G: Chlorinated Hydrocarbons (QCLot: 2516050)								
EP075: 1.4-Dichlorobenzene	106-46-7	2	hg/L	<2	10 µg/L	8.09	23	109
EP075: 1.3-Dichlorobenzene	541-73-1	2	hg/L	<2	10 µg/L	43.8	19.8	112
EP075: 1.2-Dichlorobenzene	95-50-1	2	hg/L	<2	10 µg/L	53.7	25.2	109
EP075: Hexachloroethane	67-72-1	2	hg/L	<2	10 µg/L	54.8	17.4	115
EP075: 1.2.4-Trichlorobenzene	120-82-1	2	hg/L	<2	10 µg/L	53.5	25.7	112
EP075: Hexachloropropylene	1888-71-7	2	hg/L	<2	10 µg/L	50.4	19.1	115
EP075: Hexachlorobutadiene	87-68-3	2	hg/L	<2	10 µg/L	55.3	21.1	117
EP075: Hexachlorocyclopentadiene	77-47-4	10	hg/L	<10	10 µg/L	21.2	10	120
EP075: Pentachlorobenzene	608-93-5	2	hg/L	<2	10 µg/L	59.4	36	130
EP075: Hexachlorobenzene (HCB)	118-74-1	4	hg/L	<4	20 µg/L	61.2	11.1	135
EP075H: Anilines and Benzidines (QCLot: 2516050)								
EP075: Aniline	62-53-3	2	hg/L	<2	10 µg/L	43.1	19.8	96
EP075: 4-Chloroaniline	106-47-8	2	hg/L	<2	10 µg/L	# 15.7	16.4	130
EP075: 2-Nitroaniline	88-74-4	4	hg/L	<4	10 µg/L	59.5	38	138
EP075: 3-Nitroaniline	99-09-2	4	hg/L	<4	10 µg/L	22.0	10	135
EP075: Dibenzofuran	132-64-9	2	hg/L	<2	10 µg/L	63.3	39	129

: 16 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Page Work Order

Client Project

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report	CS) Report	
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SOT	Low	High
EP075H: Anilines and Benzidines (QCLot: 2516050) - continued	ntinued							
EP075: 4-Nitroaniline	100-01-6	2	hg/L	<2	10 µg/L	53.4	22.8	133
EP075: Carbazole	86-74-8	2	hg/L	~	10 µg/L	64.5	44	138
EP075: 3.3'-Dichlorobenzidine	91-94-1	2	hg/L	<2	10 µg/L	35.5	14.6	107
EP075I: Organochlorine Pesticides (QCLot: 2516050)								
EP075: alpha-BHC	319-84-6	2	hg/L	~	10 µg/L	64.2	4	143
EP075: beta-BHC	319-85-7	2	hg/L	<2	10 µg/L	61.7	39	145
EP075: gamma-BHC	58-89-9	2	hg/L	<2	10 µg/L	63.3	39	143
EP075: delta-BHC	319-86-8	2	hg/L	<2	10 µg/L	63.5	42	142
EP075: Heptachlor	76-44-8	2	hg/L	<2	10 µg/L	57.9	39	139
EP075: Aldrin	309-00-2	2	hg/L	<2	10 µg/L	65.8	40	142
EP075: Heptachlor epoxide	1024-57-3	2	hg/L	\$	10 µg/L	62.4	37	147
EP075: alpha-Endosulfan	929-98-8	2	hg/L	<2	10 µg/L	82.9	42	146
EP075: 4.4'-DDE	72-55-9	2	hg/L	\$	10 µg/L	59.0	41	141
EP075: Dieldrin	60-57-1	2	hg/L	~	10 µg/L	62.2	42	144
EP075: Endrin	72-20-8	2	hg/L	<2	10 µg/L	54.1	41	145
EP075: beta-Endosulfan	33213-65-9	2	hg/L	<2	10 µg/L	62.2	42	146
EP075: 4.4`-DDD	72-54-8	2	hg/L	<2	10 µg/L	60.1	40	148
EP075: Endosulfan sulfate	1031-07-8	2	hg/L	<2	10 µg/L	63.4	38	152
EP075: 4.4'-DDT	50-29-3	4	hg/L	4 >	10 µg/L	54.3	33	145
EP075J: Organophosphorus Pesticides (QCLot: 2516050)								
EP075: Dichlorvos	62-73-7	2	hg/L	<2	10 µg/L	60.1	38	132
EP075: Dimethoate	60-51-5	2	hg/L	<2	10 µg/L	57.0	36	138
EP075: Diazinon	333-41-5	2	hg/L	<2	10 µg/L	63.6	43	141
EP075: Chlorpyrifos-methyl	5598-13-0	2	hg/L	<2	10 µg/L	61.4	43	141
EP075: Malathion	121-75-5	2	hg/L	<2	10 µg/L	65.0	44	148
EP075: Fenthion	55-38-9	2	hg/L	<2	10 µg/L	61.1	42	144
EP075: Chlorpyrifos	2921-88-2	2	µg/L	<2	10 µg/L	62.9	42	142
EP075: Pirimphos-ethyl	23505-41-1	2	hg/L	<2	10 µg/L	62.3	44	142
EP075: Chlorfenvinphos	470-90-6	2	hg/L	<2	10 µg/L	63.4	44	146
EP075: Prothiofos	34643-46-4	2	hg/L	<2	10 µg/L	58.5	40	142
EP075: Ethion	563-12-2	2	hg/L	<2	10 µg/L	59.5	42	146
EP080/071: Total Petroleum Hydrocarbons (QCLot: 2516052))52)							
EP071: C10 - C14 Fraction	-	90	µg/L	<50	2585 µg/L	80.4	64	124
EP071: C15 - C28 Fraction	-	100	hg/L	<100	9720 µg/L	89.6	70	130
EP071: C29 - C36 Fraction	-	20	µg/L	<50	3340 µg/L	87.3	89	128
EP080/071: Total Petroleum Hydrocarbons (QCLot: 2523229)	(52)							
EP080: C6 - C9 Fraction	!	20	µg/L	<20	360 µg/L	83.1	72	136
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QCLot: 2516052)) Draft (QCLot: 25	516052)						

: 17 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD Page Work Order

Client Project

12163 2
2

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Recovery Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SOT	Low	High
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QCLot: 2516052) - continued	Draft (QCLot: 2	2516052) - continu	pa					
EP071: >C10 - C16 Fraction		100	hg/L	<100	4055 µg/L	86.2	20	130
EP071: >C16 - C34 Fraction	1	100	hg/L	<100	10355 µg/L	89.7	70	130
EP071: >C34 - C40 Fraction	1	100	hg/L	<100	890 µg/L	86.4	70	130
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft (QCLot: 2523229)	Draft (QCLot: 2	2523229)						
EP080: C6 - C10 Fraction		20	hg/L	<20	450 µg/L	79.8	70	130
EP216: Perchlorate by LC/MS (QCLot: 2516184)								
EP216: Perchlorate	7601-90-3	0.2	µg/L	<0.2	5 µg/L	107	65	139
EP231: Perfluorooctyl Acids and Sulfonates. (QCLot: 2516351)	6351)							
EP231: PFOS	1763-23-1	0.02	µg/L	<0.02	0.25 µg/L	74.4	70	136
EP231: PFOA	335-67-1	0.02	µg/L	<0.02	0.25 µg/L	122	72	134
EP231: 6:2 Fluorotelomer Sulfonate (6:2 FtS)	27619-97-2	0.1	hg/L	<0.1	1.25 µg/L	104	61	145

 Page
 : 18 of 19

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163.2

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory spilit sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Matrix Spike (MS) Report

Sub-Matrix: WATER

EM1211100-008 Cilent sample ID Metho EM1211100-008 BH4_200912 ED04 EM1211100-008 BH4_200912 ED04 EM1211100-008 BH4_200912 ED04 EM1211100-008 BH4_200912 EG02 EM1211100-001 QC01_200912 EG02 EG02SF: Dissolved Mercury by FIMS (QCLot: 252555) EG02 EG03F: Dissolved Hexavalent Chromium (QCLot: 251855) EG02 EM1211100-001 Anonymous EG05 EM1211100-008 BH4_200912 EG05 EM1211100-008 BH4_200912 EM1211100-008 EM1211100-008 BH4_200912		o v	Spike	Spike Recovery (%)	Recovery	Recovery Limits (%)
		TO Mirrorhous	a citoraturo C	SW		High
	Method: Compound	CAS Number	Concentration	2	TOW	,
	279)					
	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	85.0	70	130
	ED045G: Chloride	16887-00-6	200 mg/L	105	20	130
	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	119	89	139
	EG020A-F: Beryllium	7440-41-7	0.2 mg/L	112	64	138
	EG020A-F: Barium	7440-39-3	0.2 mg/L	105	80	122
	EG020A-F: Cadmium	7440-43-9	0.05 mg/L	109	75	131
	EG020A-F: Chromium	7440-47-3	0.2 mg/L	98.8	70	130
	EG020A-F: Cobalt	7440-48-4	0.2 mg/L	113	77	129
	EG020A-F: Copper	7440-50-8	0.2 mg/L	109	71	127
	EG020A-F: Lead	7439-92-1	0.2 mg/L	96.1	71	123
	EG020A-F: Manganese	7439-96-5	0.2 mg/L	# Not Determined	99	132
	EG020A-F: Nickel	7440-02-0	0.2 mg/L	105	73	129
	EG020A-F: Vanadium	7440-62-2	0.2 mg/L	96.3	70	130
	EG020A-F: Zinc	7440-66-6	0.2 mg/L	107	89	136
	EG035F: Mercury	7439-97-6	0.0100 mg/L	94.0	70	130
	EG050F: Hexavalent Chromium	18540-29-9	0.5 mg/L	8.66	20	130
	EG050F: Hexavalent Chromium	18540-29-9	0.5 mg/L	84.6	70	130
	(020)					
	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	91.3	20	130
	EK040P: Fluoride	16984-48-8	5.0 mg/L	84.4	70	130
	EK055G: Ammonia as N	7664-41-7	0.5 mg/L	85.8	70	130
BH4_200912						
	EK057G: Nitrite as N		0.5 mg/L	103	20	130
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser(QCLot: 2521029)	QCLot: 2521029)					
EM1211028-003 Anonymous EK056	EK059G: Nitrite + Nitrate as N		0.5 mg/L	# Not Determined	20	130

: 19 of 19 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Page Work Order

Client Project

Clients sample 10	Sub-Matrix: WATED					Matrix Spike (MS) Report	1	
CAS Number Concentration MS					Spike	Spike Recovery (%)		Limits (%)
sphorus as P 1 mg/L 104 90.1 sphorus as P 1 mg/L 104 104 90.1 104 90.1 90.1 90.1 90.1 90.1 90.1 90.1 90.1 90.1 90.2	Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
dail Nitrogen as N 5 mg/L 90.1 90.1 sphorus as P 1 mg/L 104 104 sphorus as P 108-88-3 20 µg/L 86.3 86.3 rethere 75-35-4 20 µg/L 87.5 87.5 87.5 ene 79-01-6 20 µg/L 83.7 87.5 87.5 ene 79-01-6 20 µg/L 83.7 87.5 87.5 ene 79-01-6 20 µg/L 88.5	EK061G: Total Kjelda	ihl Nitrogen By Discrete Analyser (QCLot:	2517360)					
sphorus as P 1 mg/L 104 sphorus as P 71-43-2 20 µg/L 86.3 rethene 75-35-4 20 µg/L 86.3 rethene 75-35-4 20 µg/L 87.5 ene 79-01-6 20 µg/L 83.7 reaction 9720 µg/L 90.2 reaction 9720 µg/L 96.2 reaction 3340 µg/L 96.2 reaction 10355 µg/L 96.4 Fraction 890 µg/L 97.4 Fraction 890 µg/L 97.4 rection 890 µg/L 96.4 rection 890 µg/L 96.4 rection 90.2 µg/L 96.4 rection 1096.4 96.4 rection 90.2 µg/L 96.4 rection 109 µg/L 96.4 rection 90.2 µg/L 96	EM1211100-008	BH4_200912	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	90.1	70	130
sphorus as P 1 mg/L 104 sphorus as P 71-43-2 20 µg/L 86.3 rethene 75-35-4 20 µg/L 86.3 rethene 75-35-4 20 µg/L 83.7 rene 79-01-6 20 µg/L 83.7 rene 108-90-7 20 µg/L 90.2 rection 9720 µg/L 96.2 rection 3340 µg/L 96.2 rection 4055 µg/L 96.3 rection 4055 µg/L 97.4 rection 4055 µg/L 96.4 rection 330 µg/L 96.4 rection 335 µg/L 109 rection 335 µg/L 109	EK067G: Total Phosp	horus as P by Discrete Analyser (QCLot:	2517361)					
T1-43-2 20 µg/L 86.3 here better the petter better	EM1211100-008	BH4_200912		-	1 mg/L	104	70	130
T143-2 20 µg/L 86.3 Secondary Seco	EP074A: Monocyclic	Aromatic Hydrocarbons (QCLot: 2523230)						
sethene 75-35-4 20 µg/L 66.2 lene 75-35-4 20 µg/L 66.2 ene 79-01-6 20 µg/L 83.7 ene 108-90-7 20 µg/L 90.2 ene 108-90-7 20 µg/L 90.2 raction 2585 µg/L 98.5 raction 280 µg/L 96.2 raction 4055 µg/L 97.6 Fraction 890 µg/L 97.4 Fraction 890 µg/L 97.4 Fraction 890 µg/L 97.4 raction 890 µg/L 96.4 raction 890 µg/L 96.4 raction 96.4 109 raction	EM1211100-008	BH4_200912	EP074: Benzene	71-43-2	20 µg/L	86.3	64	121
bethene 75-35-4 20 µg/L 66.2 lene 79-01-6 20 µg/L 83.7 ene 108-90-7 20 µg/L 90.2 Fraction 2585 µg/L 93.8 Fraction 3340 µg/L 96.2 Fraction 280 µg/L 97.6 Fraction 10355 µg/L 97.4 Fraction 890 µg/L 97.4 Fraction 10355 µg/L 97.4 Fraction 890 µg/L 97.4 Fraction 890 µg/L 97.4 Fraction 10355 µg/L 96.4 Fraction 1763-23-1 0.25 µg/L 96.4 Fraction 1763-23-1 0.25 µg/L 96.4 Fraction 1025 µg/L \$6.4 109 Fraction 1025 µg/L \$6.4 109 Fraction 96.4 109			EP074: Toluene	108-88-3	20 µg/L	87.5	63	125
rene 75-35-4 20 µg/L 66.2 leng ene 79-01-6 20 µg/L 83.7 leng ene 108-90-7 20 µg/L 90.2 leng Fraction 9720 µg/L 93.8 leng Fraction 9720 µg/L 98.5 leng Ction 3340 µg/L 96.2 leng Fraction 4055 µg/L 97.6 leng Fraction 890 µg/L 97.4 leng Fraction 890 µg/L 97.4 leng Fraction 890 µg/L 96.4 leng Action 330 µg/L 96.4 leng action 335 µg/L 96.4 leng Action 335 µg/L 96.4 leng Action 10.25 µg/L 96.4 leng Action 10.25 µg/L 109 leng	EP074E: Halogenated	4 Aliphatic Compounds (QCLot: 2523230)						
Fraction Fra	EM1211100-008	BH4_200912	EP074: 1.1-Dichloroethene	75-35-4	20 µg/L	66.2	52	104
ene 108-90-7 20 µg/L 90.2 Fraction 2585 µg/L 93.8 Fraction 9720 µg/L 98.5 Fraction 3340 µg/L 96.2 ction 280 µg/L 97.6 Fraction 4055 µg/L 97.6 Fraction 890 µg/L 97.4 Fraction 890 µg/L 97.4 Fraction 890 µg/L 97.4 Fraction 890 µg/L 96.4 action 1763-23-1 0.25 µg/L 96.4 schioner Sulfonate (6.2 Fts) 2761-90-3 5 µg/L 86.4 109 schioner Sulfonate (6.2 Fts) 27619-97-2 1.25 µg/L 86.4 109			EP074: Trichloroethene	79-01-6	20 µg/L	83.7	59	120
ene 108-90-7 20 μg/L 90.2 Fraction 2588 μg/L 93.8 Fraction 9720 μg/L 98.5 Fraction 9720 μg/L 96.2 ction 280 μg/L 96.2 Fraction 4055 μg/L 97.6 Fraction 890 μg/L 97.4 Fraction 890 μg/L 97.4 raction 330 μg/L 75.1 raction 96.4 75.1 raction 1763-23-1 6.45 solo μg/L 75.1 96.4 raction 1763-23-1 6.45 solo μg/L 75.1 96.4 raction 125 μg/L 86.4 raction 1.25 μg/L 86.4 raction 1.25 μg/L 86.4 raction 1.25 μg/L 86.4	EP074F: Halogenated	Aromatic Compounds (QCLot: 2523230)						
Fraction 2585 μg/L 93.8 Fraction 9720 μg/L 98.5 Fraction 3340 μg/L 96.2 ction 280 μg/L 79.2 Fraction 4055 μg/L 97.6 Fraction 890 μg/L 97.4 Fraction 890 μg/L 97.4 Fraction 890 μg/L 96.4 raction 1763-23-1 6.25 μg/L 96.4 raction 1763-23-1 6.25 μg/L 96.4 raction 1763-23-1 125 μg/L 85.4 stomer Sulfonate (6:2 FtS) 27619-97-2 125 μg/L 85.4	EM1211100-008	BH4_200912	EP074: Chlorobenzene	108-90-7	20 µg/L	90.2	63	132
Fraction 2685 μg/L 93.8 Fraction 9720 μg/L 98.5 Fraction 280 μg/L 96.2 ction 280 μg/L 79.2 Fraction 4055 μg/L 97.6 Fraction 890 μg/L 97.4 Fraction 890 μg/L 97.4 action 890 μg/L 97.4 action 890 μg/L 96.4 330 μg/L 75.1 96.4 335-67-1 109-97-2 1.25 μg/L 86.4 109 109 109	EP080/071: Total Petr	roleum Hydrocarbons (QCLot: 2516052)						
Fraction 9720 μg/L 98.5 Faction 98.5 Fraction 98.5 Fraction 96.2 Fraction 280 μg/L 96.2 96.2 P. Fraction 4055 μg/L 97.6 97.6 98.3 98.3 98.3 98.3 98.3 97.4 98.3 97.4 98.3 97.4	EM1211149-003	Anonymous	EP071: C10 - C14 Fraction	-	2585 µg/L	93.8	64	124
Fraction —— 3340 μg/L 96.2 [6.2 [7.2 [7.2 [7.2 [7.2 [7.2 [7.2 [7.2 [7			EP071: C15 - C28 Fraction	1	9720 µg/L	98.5	20	130
retion 280 µg/L 79.2 Fraction 4055 µg/L 97.6 Fraction 10355 µg/L 98.3 Fraction 890 µg/L 97.4 rection 890 µg/L 97.4 rection 890 µg/L 75.1 rection 330 µg/L 75.1 rection 7601-90-3 5 µg/L 96.4 rection 1763-23-1 0.25 µg/L # Not Determined rection 335-67-1 0.25 µg/L 409 rection 27619-97-2 1.25 µg/L 85.4			EP071: C29 - C36 Fraction		3340 µg/L	96.2	89	128
retion —— 280 µg/L 79.2 Fraction —— 4055 µg/L 97.6 Fraction —— 890 µg/L 97.4 97.4 97.4 97.4 97.4 97.4 97.4 97.4	EP080/071: Total Petr	roleum Hydrocarbons (QCLot: 2523229)						
Fraction 4055 µg/L 97.6 Fraction 10355 µg/L 98.3 Fraction 890 µg/L 97.4 action 330 µg/L 97.4 7601-90-3 5 µg/L 75.1 7601-90-3 5 µg/L 96.4 1763-23-1 0.25 µg/L # Not Determined 335-67-1 0.25 µg/L 109 slomer Sulfonate (6:2 Fts) 27619-97-2 1.25 µg/L 85.4	EM1211100-008	BH4_200912	EP080: C6 - C9 Fraction		280 µg/L	79.2	51	125
Fraction 4055 µg/L 97.6 97.6 Fraction 10355 µg/L 98.3 98.3 Fraction 890 µg/L 97.4 97.4 action 330 µg/L 75.1 75.1 7601-90-3 5 µg/L 96.4 76.4 1763-23-1 0.25 µg/L # Not Determined 335-67-1 0.25 µg/L # Not Determined 335-67-1 0.25 µg/L 409 slomer Sulfomate (6:2 FtS) 27619-97-2 1.25 µg/L	EP080/071: Total Rec	overable Hydrocarbons - NEPM 2010 Draft	: (QCLot: 2516052)					
Fraction 10355 μg/L 98.3 Fraction 890 μg/L 97.4 action 330 μg/L 75.1 7601-90-3 5 μg/L 96.4 1763-23-1 0.25 μg/L # Not Determined 335-67-1 0.25 μg/L # Not Determined slomer Sulfomate (6:2 FtS) 27619-97-2 1.25 μg/L 85.4	EM1211149-003	Anonymous	EP071: >C10 - C16 Fraction		4055 µg/L	97.6	70	130
Fraction 890 µg/L 97.4 action 330 µg/L 75.1 7601-90-3 5 µg/L 96.4 1763-23-1 0.25 µg/L # Not Determined 335-67-1 0.25 µg/L 109 slomer Sulfomate (6:2 FtS) 27619-97-2 1.25 µg/L 85.4			EP071: >C16 - C34 Fraction		10355 µg/L	98.3	70	130
action 330 µg/L 75.1 7601-90-3 5 µg/L 96.4 1763-23-1 0.25 µg/L # Not Determined 335-67-1 0.25 µg/L # Not Determined 335-67-1 0.25 µg/L # Not Betermined 335-67-1 0.25 µg/L # Not Betermined 85.4 1.25 µg/L 85.4			EP071: >C34 - C40 Fraction		890 µg/L	97.4	70	130
EP216: Perchlorate 7601-90-3 5 µg/L 75.1 75.1 EP216: Perchlorate 7601-90-3 5 µg/L 96.4 EP231: PFOS 1763-23-1 0.25 µg/L # Not Determined EP231: PFOA 335-67-1 0.25 µg/L 109 EP231: 6.2 Fluorotelomer Sulfonate (6:2 FtS) 27619-97-2 1.25 µg/L 85.4	EP080/071: Total Rec	overable Hydrocarbons - NEPM 2010 Draft	: (QCLot: 2523229)					
EP216: Perchlorate 7601-90-3 5 μg/L 96.4 EP231: PFOS 1763-23-1 0.25 μg/L # Not Determined EP231: PFOA 335-67-1 0.25 μg/L 109 EP231: 6.2 Fluorotelomer Sulfonate (6:2 FtS) 27619-97-2 1.25 μg/L 85.4	EM1211100-008	BH4_200912	EP080: C6 - C10 Fraction		330 µg/L	75.1	70	130
EP216: Perchlorate 7601-90-3 5 µg/L 96.4 EP231: PFOS 1763-23-1 0.25 µg/L # Not Determined EP231: PFOA 335-67-1 0.25 µg/L 109 EP231: 6:2 Fluorotelomer Sulfonate (6:2 FtS) 27619-97-2 1.25 µg/L 85.4	EP216: Perchlorate b	y LC/MS (QCLot: 2516184)						
EP231: PFOS 1763-23-1 0.25 µg/L # Not Determined EP231: PFOA 335-67-1 0.25 µg/L 109 EP231: 6:2 Fluorotelomer Sulfonate (6:2 FtS) 27619-97-2 1.25 µg/L 85.4	EM1211100-013	GW107_200912	EP216: Perchlorate	7601-90-3	5 µg/L	96.4	29	131
Anonymous EP231: PFOS 1763-23-1 0.25 μg/L # Not Determined EP231: PFOA 335-67-1 0.25 μg/L 109 EP231: 6:2 Fluorotelomer Sulfonate (6:2 FtS) 27619-97-2 1.25 μg/L 85.4	EP231: Perfluoroocty	1 Acids and Sulfonates. (QCLot: 2516351)						
335-67-1 0.25 μg/L 109 27619-97-2 1.25 μg/L 85.4	EB1224875-001	Anonymous	EP231: PFOS	1763-23-1	0.25 µg/L	# Not Determined	70	136
27619-97-2 1.25 μg/L 85.4			EP231: PFOA	335-67-1	0.25 µg/L	109	72	134
			EP231: 6:2 Fluorotelomer Sulfonate (6:2 FtS)	27619-97-2	1.25 µg/L	85.4	61	145

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

: 1 of 17	: Environmental Division Melbourne : Sarah Hodgson : 4 Westall Rd Springvale VIC Australia 3171	: sarah.hodgson@alsenviro.com : 03 8549 9652 : 03 8549 9626	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement	ed : 21-SEP-2012	: 03-OCT-2012		21 : be	ed :15
Page	Laboratory Contact Address	E-mail Telephone Facsimile	QC Level	Date Samples Received	Issue Date		No. of samples received	No. of samples analysed
: EM1211100	: CARDNO LANE PIPER PTY LTD : MR MARCUS BOYD (Cardno) : 154 HIGHBURY ROAD BURWOOD VIC, AUSTRALIA 3125	: marcus.boyd@cardno.com.au : +61 03 98880100 : +61 03 98083511	: 212163 2 : Fiskville		: MB	:		: ME/441/12
Work Order	Client Contact Address	E-mail Telephone Facsimile	Project Site	C-O-C number	Sampler	Order number		Quote number

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171 Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

CARDNO LANE PIPER PTY LTD : EM1211100 212163 2 Work Order Client Project

Analysis Holding Time Compliance

dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent Summary of Outliers. Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation:	× = Holding time	Evaluation: \mathbf{x} = Holding time breach ; \mathbf{v}' = Within holding time.	holding time.
Method		Sample Date	Exi	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural								
QC01_200912,	QC03_200912,	20-SEP-2012	!	1	-	25-SEP-2012	20-SEP-2012	×
GW101_200912,	BH4_200912,							
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912								
Clear Plastic Bottle - Natural								
GW108_200912		20-SEP-2012			-	25-SEP-2012	21-SEP-2012	×
EA010: Conductivity								
Clear Plastic Bottle - Natural								
GW101_200912,	BH4_200912,	20-SEP-2012	!	1	-	29-SEP-2012	18-OCT-2012	>
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural								
QC01_200912,	QC03_200912,	20-SEP-2012	i	27-SEP-2012		27-SEP-2012	27-SEP-2012	>
GW101_200912,	BH4_200912,							
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural								
GW101_200912,	BH4_200912,	20-SEP-2012	I	04-OCT-2012		26-SEP-2012	04-OCT-2012	>
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							

Page Work Order Client Project

: 3 of 17 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Matrix: WATER					Evaluation:	× = Holding time	Evaluation: $\mathbf{x} = \text{Holding time breach}$; $\checkmark = \text{Within holding time}$.	holding time.
Method		Sample Date	Ex	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural GW101_200912, BH5_200912, BH3_200912, GW107_200912, GW110_200912,	BH4_200912, GW103_200912, GW111_200912, GW106_200912, GW108_200912,	20-SEP-2012	I	18-OCT-2012	ı	27-SEP-2012	18-OCT-2012	>
ED045G: Chloride Discrete analyser								
Clear Plastic Bottle - Natural GW101_200912, BH5_200912, BH3_200912, GW107_200912, GW110_200912,	BH4_200912, GW103_200912, GW11_200912, GW106_200912, GW108_200912	20-SEP-2012	ı	18-OCT-2012		27-SEP-2012	18-OCT-2012	>
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural GW101_200912, BH5_200912, BH3_200912, GW107_200912, GW110_200912,	BH4_200912, GW103_200912, GW111_200912, GW106_200912, GW108_200912	20-SEP-2012	I	27-SEP-2012		26-SEP-2012	27-SEP-2012	>
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Natural BH5_200912, GW106_200912,	GW103_200912, GW108_200912	20-SEP-2012	I	19-MAR-2013	!	03-OCT-2012	19-MAR-2013	>
Clear Plastic Bottle - Nitric Acid; Filtered QC01_200912, GW101_200912, BH3_200912, GW107_200912,	QC03_200912, BH4_200912, GW111_200912, GW110_200912	20-SEP-2012	I	19-MAR-2013	l	03-OCT-2012	19-MAR-2013	>
Clear Plastic Bottle - Nitric Acid; Unspecified QC05_200912		20-SEP-2012		19-MAR-2013	-	03-OCT-2012	19-MAR-2013	>
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Natural BH5_200912, GW106_200912,	GW103_200912, GW108_200912	20-SEP-2012	l	18-OCT-2012		03-OCT-2012	18-OCT-2012	>
Clear Plastic Bottle - Nitric Acid; Filtered QC01_200912, GW101_200912, BH3_200912, GW107_200912,	QC03_200912, BH4_200912, GW111_200912, GW110_200912	20-SEP-2012	I	18-OCT-2012	I	03-OCT-2012	18-OCT-2012	>
Clear Plastic Bottle - Nitric Acid; Unspecified QC05_200912		20-SEP-2012		04-OCT-2012	!	03-OCT-2012	04-OCT-2012	`,

 Page
 : 4 of 17

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163 2

Matrix: WATER					Evaluation:	× = Holding time	Evaluation: \times = Holding time breach; \checkmark = Within holding time.	holding time.
Method		Sample Date	Ex	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG050F: Dissolved Hexavalent Chromium								
Clear Plastic Bottle - NaOH	00004	70 00				0 00	0 H	,
BH5_200912,	BH3_200912,	20-3EP-2012	!			20-3EP-2012	0-00-12	>
GW111_200912,	GW107_200912, GW108_200912							
Clear Plastic Bottle - Natural								
GW103_200912		20-SEP-2012		-	!	27-SEP-2012	21-SEP-2012	×
EK026SF: Total CN by Segmented Flow Analyser								
White Plastic Bottle-NaOH								
GW101_200912,	BH4_200912,	20-SEP-2012	1	04-OCT-2012	-	26-SEP-2012	04-OCT-2012	>
BH3_200912,	BH3_200912,							
GW110_200912,	GW108_200912; GW108_200912							
EK040P: Fluoride by PC Titrator								
Clear Plastic Bottle - Natural								
GW101 200912,	BH4 200912,	20-SEP-2012	ŀ	18-OCT-2012	!	26-SEP-2012	18-OCT-2012	`
BH5_200912,	GW103_200912,	i i		I ; ; ; ;		i i)
BH3_200912,	GW111_200912,							
GW107_200912, GW110_200812	GW106_200912, GW108_200912							
FK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid								
OC01 200912	OC03 200912	20. SED 2012		18_OCT_2012	!	04.0CT.2042	18_OCT_2012	_
GW101_200912,	BH4_200912,	1000		-				•
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912, GW108_200912							
FK057G: Nitrite as N by Discrete Analyser								
Close Disette Dettie								
OCO1 200912	0.003 200912	20.SED.2012	1	22_SED_2012		24_CED_2042	22_SEP_2012	`
GW101 200912,	BH4_200912,							•
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser	Analyser							
Clear Plastic Bottle - Sulfuric Acid								
QC01_200912,	QC03_200912,	20-SEP-2012	1	18-OCT-2012	-	01-OCT-2012	18-OCT-2012	>
GW101_Z0091Z,	BH4_200912, GM403_200912							
BH3_200912,	GW102_20312,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							

Page Work Order Client Project

: 5 of 17 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Matrix: WATER					Evaluation:	= Holding time I	Evaluation: $\mathbf{x}=$ Holding time breach ; $\checkmark=$ Within holding time.	holding time.
Method		Sample Date	Exi	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid								
GW101_200912, BHE_200013	BH4_200912, GW403_200912	20-SEP-2012	26-SEP-2012	18-OCT-2012	>	27-SEP-2012	18-OCT-2012	>
BH3 200912,	GW111 200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
EK067G: Total Phosphorus as P by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid								
GW101_200912,	BH4_200912,	20-SEP-2012	26-SEP-2012	18-OCT-2012	>	27-SEP-2012	18-OCT-2012	>
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
EP066: Polychlorinated Biphenyls (PCB)								
Amber Glass Bottle - Unpreserved								
GW101 200912.	BH4 200912,	20-SEP-2012	25-SEP-2012	27-SEP-2012	>	28-SEP-2012	04-NOV-2012	>
BH5 200912,	GW103 200912,			1	•			•
BH3_200912,	GW111_200912,							
GW107 200912,	GW106_200912,							
GW110_200912,	GW108_200912							
EP074A: Monocyclic Aromatic Hydrocarbons								
Amber VOC Vial - Sulfuric Acid								
GW101 200912.	BH4 200912.	20-SEP-2012	28-SFP-2012	04-OCT-2012	`	28-SFP-2012	04-OCT-2012	`
BH5 200912,	GW103 200912,			1	•		-	•
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
EP074B: Oxygenated Compounds								
Amber VOC Vial - Sulfuric Acid								
GW101_200912,	BH4_200912,	20-SEP-2012	28-SEP-2012	04-OCT-2012	>	28-SEP-2012	04-OCT-2012	>
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
EP074C: Sulfonated Compounds								
Amber VOC Vial - Sulfuric Acid								
GW101_200912,	BH4_200912,	20-SEP-2012	28-SEP-2012	04-OCT-2012	>	28-SEP-2012	04-OCT-2012	>
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							

Page Work Order Client

: 6 of 17 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Matrix: WATER				Evaluation:	= Holding time t	Evaluation: $\mathbf{x} = \text{Holding time breach}$; $\checkmark = \text{Within holding time}$.	nolding time.
Method	Sample Date	Ext	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP074D: Fumigants							
Amber VOC Vial - Sulfuric Acid GW101_200912, BH5_200912, GW103_200912, GW11_200912, GW107_200912, GW110_200912, GW100_200912,	20-SEP-2012	28-SEP-2012	04-OCT-2012	>	28-SEP-2012	04-OCT-2012	>
ed Aliphatic Compounds							
Amber VOC Vial - Sulfuric Acid BH4_200912, GW101_200912, BH5_200912, BH5_200912, GW103_200912, GW107_200912, GW106_200912, GW110_200912, GW108_200912,	20-SEP-2012	28-SEP-2012	04-OCT-2012	>	28-SEP-2012	04-OCT-2012	>
EP074F: Halogenated Aromatic Compounds							
Amber VoC Vial - Sulfuric Acid BH4_200912, GW101_200912, GW103_200912, BH5_200912, GW111_200912, GW107_200912, GW106_200912, GW110_200912, GW108_200912	20-SEP-2012	28-SEP-2012	04-OCT-2012	>	28-SEP-2012	04-OCT-2012	>
EP074G: Trihalomethanes							
Amber VOC Vial - Sulfuric Acid GW101_200912, BH5_200912, GW103_200912, BH3_200912, GW111_200912, GW110_200912, GW110_200912,	20-SEP-2012	28-SEP-2012	04-OCT-2012	>	28-SEP-2012	04-OCT-2012	>
spunodwo							
Amber Glass Bottle - Unpreserved BH4_200912, GW101_200912, GW103_200912, BH5_200912, GW111_200912, GW107_200912, GW106_200912, GW110_200912, GW108_200912	20-SEP-2012	25-SEP-2012	27-SEP-2012	>	28-SEP-2012	04-NOV-2012	>
EP075B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved GW101_200912, GW103_200912, BH3_200912, GW101_200912, GW110_200912, GW110_200912,	20-SEP-2012	25-SEP-2012	27-SEP-2012	`	28-SEP-2012	04-NOV-2012	``

Page Work Order Client

: 7 of 17 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Matrix: WATER					Evaluation:	x = Holding time	Evaluation: * = Holding time breach; < = Within holding time	holding time.
Method		Sample Date	Exi	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075C: Phthalate Esters								
Amber Glass Bottle - Unpreserved								
GW101_200912, BH5_200912	BH4_200912, GW103_200912	20-SEP-2012	25-SEP-2012	27-SEP-2012	>	28-SEP-2012	04-NOV-2012	>
BH3_200912,	GW111_200912,							
GW107_200912, GW110_200912	GW106_200912, GW108_200912							
EP075D: Nitrosamines								
Amber Glass Bottle - Unpreserved								
GW101_200912,	BH4_200912,	20-SEP-2012	25-SEP-2012	27-SEP-2012	>	28-SEP-2012	04-NOV-2012	>
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912, GW110_200912.	GW106_200912, GW108_200912							
EP075E: Nitroaromatics and Ketones								
Amber Glass Bottle - Unpreserved								
GW101_200912,	BH4_200912,	20-SEP-2012	25-SEP-2012	27-SEP-2012	>	28-SEP-2012	04-NOV-2012	>
BH5_200912,	GW103_200912,				ı			ı
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
EP075F: Haloethers								
Amber Glass Bottle - Unpreserved								
GW101_200912,	BH4_200912,	20-SEP-2012	25-SEP-2012	27-SEP-2012	>	28-SEP-2012	04-NOV-2012	>
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW10 200912,	GW108_200912, GW108_200912							
EP075G: Chlorinated Hydrocarbons								
Amber Glass Bottle - Unpreserved								
GW101_200912,	BH4_200912,	20-SEP-2012	25-SEP-2012	27-SEP-2012	>	28-SEP-2012	04-NOV-2012	>
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200312,	GW 106_200912							
EPU/5H: Anilines and Benzidines								
Amber Glass Bottle - Unpreserved								
GW101_200912,	BH4_200912,	20-SEP-2012	25-SEP-2012	27-SEP-2012	>	28-SEP-2012	04-NOV-2012	>
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW10/_200912,	GW 100_200912,							
GW110_200312,	GVV 100_Z0091Z							

Page Work Order Client

: 8 of 17 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Matrix: WATER					Evaluation:	= Holding time	Evaluation: × = Holding time breach; ✓ = Within holding time	holding time.
Method		Sample Date	Ext	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075I: Organochlorine Pesticides								
Amber Glass Bottle - Unpreserved								Ì
GW101_200912,	BH4_200912,	20-SEP-2012	25-SEP-2012	27-SEP-2012	>	28-SEP-2012	04-NOV-2012	>
BH5_200912,	GW103_200912,							
DH3_2009 12,	GW111							
GW110_200912, GW110_200912,	GW 106_200912, GW108_200912							
EP075J: Organophosphorus Pesticides								
Amber Glass Rottle - Hunreserved								
GW101 200912	BH4 200912	20 650 2042	2E CED 2012	27 SED 2012	`	20 CED 2042	04 NOV 2012	`
BH5 200912	GW103 200912	20-3EP-2012	23-3EP-2012	21-3EL-2012	>	20-3EF-2012	04-IVOV-2012	>
BH3 200912	GW111 200912;							
GW107 200912	GW106 200912.							
GW110_200912,	GW108_200912							
EP080/071· Total Petroleum Hydrocarhons								
Ambor Glase Bottle - Hanssonved								
City of 200042	2,00001	1	1	1	`	L	0700	•
GW101_200812,	DH4_200912,	20-SEP-2012	25-SEP-2012	Z/-SEP-Z01Z	>	28-SEP-2012	04-IVOV-2012	>
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
Amber VOC Vial - Sulfuric Acid								
QC06_200912,	QC09_200912,	20-SEP-2012	28-SEP-2012	04-OCT-2012	>	28-SEP-2012	04-OCT-2012	>
GW101_200912,	BH4_200912,							
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft	M 2010 Draft							
Amber Glass Bottle - Unpreserved								
GW101_200912,	BH4_200912,	20-SEP-2012	25-SEP-2012	27-SEP-2012	>	28-SEP-2012	04-NOV-2012	>
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
Amber VOC Vial - Sulfuric Acid								
QC06_200912,	QC09_200912,	20-SEP-2012	28-SEP-2012	04-OCT-2012	>	28-SEP-2012	04-OCT-2012	>
GW101_200912,	BH4_200912,							
BH5_200912,	GW103_200912,							
BH3_200912,	GW111_200912,							
GW107_200912,	GW106_200912,							
GW110_200912,	GW108_200912							
EP216: Perchlorate by LC/MS								
Clear Plastic Bottle - Natural								
GW107 200912,	GW110_200912	20-SEP-2012	!	-	-	27-SEP-2012	18-OCT-2012	>
	1							

 Page
 : 9 of 17

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163.2

Matrix: WATER

Method		Sample Date	Ext	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation	Evaluation
EP231: Perfluorooctyl Acids and Sulfonates.								
Clear Plastic Bottle								
GW107_200912,	GW110_200912	20-SEP-2012	!	1	-	25-SEP-2012	19-MAR-2013	>

EM1211100 : 10 of 17 Work Order Project Client

: CARDNO LANE PIPER PTY LTD

: 2121632

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		ဝိ	Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	4	40	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	2	18	11.1	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity	EA010	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	2	13	15.4	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	13	15.4	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	2	13	15.4	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	2	16	12.5	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chromium - Dissolved	EG050F	က	24	12.5	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Dissolved	ED093F	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	12	16.7	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Perchlorate by LC/MS	EP216	~	2	50.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
PFOS and PFOA	EP231	~	4	25.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Hd	EA005	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids (High Level)	EA015H	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	7	19	5.3	10.0	×	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	2	20	10.0	10.0	`	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074	2	15	13.3	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	2	40	2.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	7	18	5.6	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity	EA010	7	20	5.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	7	13	7.7	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	7	13	7.7	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	-	13	7.7	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	~	16	6.3	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chromium - Dissolved	EG050F	2	24	8.3	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Dissolved	ED093F	-	20	5.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	7	12	8.3	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	~	20	2.0	2.0	`	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Perchlorate by LC/MS	EP216	~	2	20.0	2.0	`	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
PFOS and PFOA	EP231	1	4	25.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Polychlorinated Binhenyls (PCB)	FPORE	-	10	10.0	2.0	,	NEDM 1000 Cabadala B/3) and AI C OCC3 requirement

A Campbell Brothers Limited Company

$\overline{}$	ш	\circ	(
	<u></u>		
	Nork Order		
	\succeq		
	\circ		1
Φ	¥	E	
⁵ age	ō	Client	-
Č	Š	=	į

: 11 of 17 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	ОС	Regular	Actua!	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued							
Semivolatile Organic Compounds	EP075	1	10	10.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	_	20	5.0	2.0	`	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Cyanide by Segmented Flow Analyser	EK026SF	-	20	2.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids (High Level)	EA015H	-	20	5.0	2.0	`	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	_	20	5.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
FPH - Semivolatile Fraction	EP071	_	19	5.3	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
FPH Volatiles/BTEX	EP080	_	20	5.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074	_	15	6.7	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	-	18	5.6	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	-	20	2.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity	EA010	-	20	5.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	-	13	7.7	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	_	13	7.7	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	-	13	7.7	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	_	16	6.3	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chromium - Dissolved	EG050F	2	24	8.3	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Dissolved	ED093F	_	20	5.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G		12	8.3	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	_	20	5.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Perchlorate by LC/MS	EP216	_	2	50.0	2.0	>	
PFOS and PFOA	EP231	_	4	25.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Polychlorinated Biphenyls (PCB)	EP066	_	10	10.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Semivolatile Organic Compounds	EP075	-	10	10.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	_	20	5.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Cyanide by Segmented Flow Analyser	EK026SF	_	20	5.0	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids (High Level)	EA015H	_	20	5.0	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	_	20	5.0	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	_	20	5.0	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
FPH - Semivolatile Fraction	EP071	_	19	5.3	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	_	20	5.0	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds	EP074		15	6.7	2.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	τ-	18	5.6	2.0	>	ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	-	20	2.0	2.0	>	ALS QCS3 requirement
Dissolved Mercury by FIMS	EG035F	-	13	7.7	2.0	>	ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	_	13	7.7	5.0	>	ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	_	16	6.3	5.0	>	ALS QCS3 requirement
Hexavalent Chromium - Dissolved	EG050F	2	24	8.3	5.0	>	ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	_	12	8.3	2.0	>	ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	_	20	5.0	5.0	>	ALS QCS3 requirement
	0 0 0						

: 12 of 17 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Page Work Order Project Client

Matrix: WATER				Evaluation	ı: × = Quality Cor	itrol frequency n	Evaluation: x = Quality Control frequency not within specification;
Quality Control Sample Type		Ö	Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	ОС	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
PFOS and PFOA	EP231	_	4	25.0	5.0	>	ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	_	20	5.0	5.0	>	ALS QCS3 requirement
Total Cyanide by Segmented Flow Analyser	EK026SF	_	20	5.0	5.0	>	ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	_	20	5.0	5.0	>	ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	_	20	5.0	5.0	>	ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	_	19	5.3	5.0	>	ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	_	20	5.0	5.0	>	ALS QCS3 requirement
Volatile Organic Compounds	EP074	1	15	6.7	5.0	>	ALS QCS3 requirement

 Page
 : 13 of 17

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163 2

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Hd	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity	EA010	WATER	APHA 21st ed., 2510 B Conductivity is determined by ISE, either manually or automated measurement. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids (High Level)	EA015H	WATER	In-House, APHA 21st ed., 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	APHA 21st ed., 4500-SO4 Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	APHA 21st ed., 4500 Cl - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	Major Cations is determined based on APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises the 0.45um filtered sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
			Sodium Absorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2) Hardness parameters are calculated based on APHA 21st ed., 2340 B. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

 Page
 : 14 of 17

 Work Order
 : EM1211100

 Client
 : CARDNO LANE PIPER PTY LTD

 Project
 : 212163.2

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Hexavalent Chromium - Dissolved	EG050F	WATER	APHA 21st ed., 3500 Cr-B. Samples are 0.45 um filtered prior to analysis. Hexavalent chromium is determined on filtered water sample as received by pH adjustment and colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	APHA 4500-CN-O. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Fluoride by PC Titrator	EK040P	WATER	APHA 21st ed., 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N by Discrete analyser	EK055G	WATER	APHA 21st ed., 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg D. 25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500-Norg / 4500-NO3 This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	APHA 21st ed., 4500-P B&F This procedure involves sulphuric acid digestion of a 100mL sample to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
lonic Balance by PCT DA and Turbi SO4 DA	EN055 - PG	WATER	APHA 21st Ed. 1030F. The lonic Balance is calculated based on the major Anions and Cations. The major anions include Alkalinity, Chloride and Sulfate which determined by PCT and DA. The Cations are determined by Turbi SO4 by DA. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Polychlorinated Biphenyls (PCB)	EP066	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page Work Order Project Client

: 15 of 17 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2

Analytical Methods	Method	Matrix	Method Descriptions
TPH - Semivolatile Fraction	EP071	WATER	USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Volatile Organic Compounds	EP074	WATER	USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Semivolatile Organic Compounds	EP075	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
TPH Volatiles/BTEX	EP080	WATER	USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Perchlorate by LC/MS	EP216	WATER	US EPA Method 6850: A sample is acidified with acetic acid and analysed by LC/MS in ESI (negative) mode.
PFOS and PFOA	EP231	WATER	In-house: Direct injection analysis of linear and branched pefluorooctyl sulfonates and acids by LC-Electrospray-MS-MS, Negative Mode using MRM.
Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 500 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

: CARDNO LANE PIPER PTY LTD : 212163 2 EM1211100 : 16 of 17 Work Order Project Client

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EP074E: Halogenated Aliphatic Compounds	2991055-007		lodomethane	74-88-4	152 %	61-135%	Recovery greater than upper control limit
EP075E: Nitroaromatics and Ketones	2982391-001	1	2-Picoline	109-06-8	16.3 %	28.4-57%	Recovery less than lower control limit
EP075E: Nitroaromatics and Ketones	2982391-001		1-Naphthylamine	134-32-7	% 0.9	29.8-152%	Recovery less than lower control limit
EP075H: Anilines and Benzidines	2982391-001	1	4-Chloroaniline	106-47-8	15.7 %	16.4-130%	Recovery less than lower control limit
Matrix Spike (MS) Recoveries							
EG020F: Dissolved Metals by ICP-MS	EM1211100-001	QC01_200912	Manganese	7439-96-5	Not Determined		MS recovery not determined, background level greater than or equal to 4x spike level.
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ar EM1211028-003	r EM1211028-003	Anonymous	Nitrite + Nitrate as N		Not Determined	1	MS recovery not determined, background level greater than or equal to 4x spike level.
EP231: Perfluorooctyl Acids and Sulfonates.	EB1224875-001	Anonymous	PFOS	1763-23-1	Not Determined	1	MS recovery not determined, background level greater than or equal to 4x spike

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.

Regular Sample Surrogates

Sub-Matrix: WATER

		wer data quality	wer data quality
Comment		27.8-134 Recovery less than lower data quality % objective	35-137 % Recovery less than lower data quality objective
Limits		27.8-134	35-137 %
Data		24.5 %	1719-06-8 28.2 %
CAS Number Data Limits Comment		2051-24-3 24.5 %	1719-06-8
Analyte		Decachlorobiphenyl	Anthracene-d10
Client Sample ID		GW106_200912	GW106_200912
Laboratory Sample ID Client Sample ID		EM1211100-014 GW106_200912	EM1211100-014
Compound Group Name	Samples Submitted	EP066S: PCB Surrogate	EP075T: Base/Neutral Extractable Surrogates

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

Method	Extr	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
E ANDE: 24						

: 17 of 17 : EM1211100 : CARDNO LANE PIPER PTY LTD : 212163 2 Page Work Order Client

Project

Matrix: WATER

ואוממוועי אירובוע							
Method		Ext	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Date extracted Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EA005: pH - Analysis Holding Time Compliance							
Clear Plastic Bottle - Natural							
QC01_200912,	QC03_200912,	1	1		25-SEP-2012	20-SEP-2012	2
GW101_200912,	BH4_200912,						
BH5_200912,	GW103_200912,						
BH3_200912,	GW111_200912,						
GW107_200912,	GW106_200912,						
GW110_200912							
Clear Plastic Bottle - Natural							
GW108_200912		-	!	1	25-SEP-2012	21-SEP-2012	4
EG050F: Dissolved Hexavalent Chromium							
Clear Plastic Bottle - Natural							
GW103_200912		-	1		27-SEP-2012	27-SEP-2012 21-SEP-2012	9

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

Matrix: WATER

4 4		Rate	Kate (%)	Quality Control Specification
QC	Regular	Actual	Expected	
(dr				
	19	5.3	10.0	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
n 1	19	5.3	10.0	NEPM 1999 S

In accordance with your acceptance of our standard or customised Terms of Agreement between Cardno Lane Piper Pty Ltd and Service or Equipment Providers HNO3/HCI Silve nat ice pucks X Sampler name: (print and sign Other (Specify) 05-01 əßpnį Date 7.1m Water 21/9/12 NATALLE KRASSELT: MGT. 03956/AD S:45/m S. 30.85 20/9 3:55Pm Sampling Please circle 6/02 50/6 metals ampler: I attest that the proper field sampling proceedures were used during the collection of these samples.

Carde

X X

Por 10 LX green

2x vials, 1xamber

04:

5000

ŧ.

Bothes

X

X X

×

X X

X

PD- 22 H9T

Hq:300A:

EAO10: EC SQT :H310A

PFCs (PFOA PFOA, PCDD/PC

VT-8: TKN, Ammonia as N, Total

*20-TV & NT-02: Major Ions

VEPM Water Screen

Other (Specify)

upreserved

Bothes # Bottles#

> acox 200912 DC08-2009

18coz-200912

XVig

Container

Laboratory ID

y Sheet

Analysis

Sample preservation

Sample Matrix

marcus.boyd@cardno.com.au & CC: david.louwrens@cardno.com.au

FISKILLE

Site:

-aboratory (name, phone, fax no & contact person)

mgt-Lab Mark

Sample ID

Project Number: 212163.2

Email:

Name: MARCUS BOYD

Chain of Custody

C Cardno

Address: Building 2, 154 Highbury Rd, Burwood, Vic, 3125

开352941

5: 15pm

15-00

0/5/

21/9/2016

10:30

20/9 $\frac{\text{Date}}{2/9}$ Page 1 of 1 Printed 19/09/2012

QF3.01 Chain of Custody1

Turn around time: (24 hour/48 houp/5 days) Please supply results electronically in spreadsheet and ESDA干邮会

Approved 3 May 2011

Revision 2

LA KILDOLL

inquished by: (print and signature)

quished by (Sampler) (print and/signature)

Maas Veyd

uished by: (grint and signat

8

ABN - 50 005 085 521

e.mail: enviro@mgtlabmark.com.au

web: www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: +61 3 9564 7055 NATA # 1261 Site # 1254 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 8215 6222 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name: Cardno Lane Piper Pty Ltd

Contact name: Marcus Boyd

Client job number: FISKVILLE 212163.2

COC number: Not provided

Turn around time: 5 Day

Date/Time received: Sep 21, 2012 5:15 PM

mgt-LabMark reference: 352941

Sample information

- ☑ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- ✓ All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Organic samples had Teflon liners.
- ☑ Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Samples received by the laboratory after 4pm are deemed to have been received the following working day.

Contact notes

If you have any questions with respect to these samples please contact:

Natalie Krasselt on Phone: (+61) (3) 8564 5000 or by e.mail: Natalie.Krasselt@mgtlabmark.com.au

Results will be delivered electronically via e.mail to Marcus Boyd - marcus.boyd@lanepiper.com.au.

mgt-LabMark Sample Receipt

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Cardno Lane Piper Pty Ltd **Building 2, 154 Highbury Road** Burwood VIC 3125

ACCREDITATION

Certificate of Analysis
NATA Accredited
Accreditation Number 1261
Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:Marcus Boyd

352941-W Report

Client Reference FISKVILLE 212163.2 Received Date Sep 21, 2012

Client Sample ID			QC02_200912	QC04_200912	QC08_200912
Sample Matrix			Water	Water	Water
mgt-LabMark Sample No.			M12-Se19204	M12-Se19205	M12-Se19206
Date Sampled			Sep 20, 2012	Sep 20, 2012	Sep 20, 2012
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions	•			
TRH C6-C9	0.02	mg/L	-	-	< 0.02
Ammonia (as N)	0.01	mg/L	< 0.01	0.27	-
Nitrate (as N)	0.02	mg/L	< 0.02	0.48	-
pH	0.1	units	7.6	7.7	-
Total Dissolved Solids	10	mg/L	970	980	-
Heavy Metals					
Thallium (filtered)	0.001	mg/L	< 0.001	< 0.001	-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	-
Nickel (filtered)	0.001	mg/L	0.016	0.012	-
Antimony (filtered)	0.005	mg/L	< 0.005	< 0.005	-
Arsenic (filtered)	0.001	mg/L	0.002	0.001	-
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	-
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	-
Cobalt (filtered)	0.001	mg/L	0.012	0.004	-
Copper (filtered)	0.001	mg/L	0.001	0.006	-
Molybdenum (filtered)	0.005	mg/L	< 0.005	< 0.005	-
Selenium (filtered)	0.001	mg/L	< 0.001	0.002	-
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	-
Zinc (filtered)	0.001	mg/L	0.006	0.010	-
Iron (filtered)	0.05	mg/L	2.6	0.10	-
Boron (filtered)	0.05	mg/L	0.06	0.06	-
Manganese (filtered)	0.005	mg/L	1.1	0.14	-
Vanadium (filtered)	0.005	mg/L	< 0.005	< 0.005	-
Barium (filtered)	0.02	mg/L	0.05	0.08	-
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	-
Silver (filtered)	0.005	mg/L	< 0.005	< 0.005	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Testing Site	Extracted	Holding Time						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: TRH C6-C36 - MGT 100A	Melbourne	Sep 24, 2012	7 Day						
Ammonia (as N)	Melbourne	Sep 24, 2012	28 Day						
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA									
Nitrate (as N)	Melbourne	Sep 24, 2012	2 Day						
- Method: APHA 4500-NO3 Nitrate Nitrogen by FIA									
рН	Melbourne	Sep 24, 2012	0 Hours						
- Method: APHA 4500 pH by Direct Measurement - ** Samples analysed outside holding time. Analysis should be performed in situ.									
Total Dissolved Solids	Melbourne	Sep 27, 2012	7 Day						
- Method: APHA 2540C Total Dissolved Solids									
NEPM 5B Metals : Metals M22 filtered	Melbourne	Sep 24, 2012	28 Day						
- Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury									

web: www.mgtlabmark.com.au e.mail: enviro@mgtlabmark.com.au

SydneyUnit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone : -612 8215 6222
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarite QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +613 9564 7055 NATA # 1261 Site # 1254

Priority: Due:

Order No.: Report #: Phone: Fax:

Building 2, 154 Highbury Road Cardno Lane Piper Pty Ltd

Company Name:

Address:

Burwood VIC 3125 **FISKVILLE 212163.2**

Client Job No.:

Received:

Sep 21, 2012 5:15 PM

Oct 1, 2012

5 Day Contact Name:

Marcus Boyd

mgt-LabMark Client Manager: Natalie Krasselt

NEPM 5B Metals : Metals M22 filtered		×					×	×	
TRH C6-C9		×							×
Total Dissolved Solids		×					×	×	
рН		×					×	×	
Nitrate (as N)		×					×	×	
Ammonia (as N)		×					×	×	
						LAB ID	M12-Se19204	M12-Se19205	M12-Se19206
Sample Detail	onducted	Melbourne Laboratory - NATA Site # 1254 & 14271				Matrix	Water	Water	Water
			# 18217	te # 20794		Sampling Time	3:45PM	3:45PM	3:45PM
	Laboratory where analysis is conducted	oratory - NATA	Sydney Laboratory - NATA Site # 18217	Brisbane Laboratory - NATA Site # 20794	tory	Sample Date	Sep 20, 2012 3:45PM Sep 20, 2012 3:45PM	Sep 20, 2012	
	Laboratory whe	Melbourne Labor	Sydney Laborat	Brisbane Labor	External Laboratory	Sample ID	QC02 200912 (QC04 200912 (QC08_200912

Page 3 of 8

Report Number: 352941-W

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis
- 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001)

For samples received on the last day of holding time, notification of testing requirements should have been received at least

6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control

**NOTE: pH duplicates are reported as a range NOT as an RPD

UNITS

 mg/kg:milligrams per Kilogram
 mg/L:milligrams per litre

 μg/L:micrograms per litre
 ppm:Parts per million

 ppb:Parts per billion
 %:Percentage

org/100mL:Organisms per 100 millilitres NTU:Nephelometric Turbidity Units

MPN/100mL:Most Probable Number of organisms per 100 milliltres

TERMS

Dry: Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR: Limit Of Reporting

SPIKE: Addition of the analyte to the sample and reported as percentage recovery.

RPD: Relative Percent Difference between two Duplicate pieces of analysis.

LCS: Laboratory Control Sample - reported as percent recovery.

CRM: Certified Reference Material - reported as percent recovery.

Method Blank: In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water

Surr - Surrogate: The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate: A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate: A second piece of analysis from a sample outside of the client's batch of samples but run within the laboratory batch of analysis.

Batch SPIKE: Spike recovery reported on a sample from outside of the client's batch of samples but run within the laboratory batch of analysis.

USEPA: U.S Environmental Protection Agency
APHA: American Public Health Association

ASLP: Australian Standard Leaching Procedure (AS4439.3)
TCLP: Toxicity Characteristic Leaching Procedure

COC: Chain Of Custody
SRA: Sample Receipt Advice

CP: Client Parent - QC was performed on samples pertaining to this report

Non-Client Parent - QC was performed on samples not pertaining to this report, however QC is representative of the sequence or batch that client samples were analysed

NCP: within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The 2. Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding 6. time. Analysis will begin as soon as possible after sample receipt
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample>
- Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data below the LOR with a positive RPD eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

Report Number: 352941-W

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		'	,		
Total Recoverable Hydrocarbons - 1999 NEPM Fracti	ons TRH C6-C36				
- MGT 100A		10.00	0.00	Deser	
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
Method Blank			1		
Aramania (aa NI)		10.01	0.04	Dana	
Ammonia (as N)	mg/L	< 0.01 < 0.02	0.01	Pass	
Nitrate (as N)	mg/L	< 10	10	Pass	
Total Dissolved Solids Method Blank	mg/L	< 10	10	Pass	
NEPM 5B Metals : Metals M22 filtered USEPA 6010/6	020 Heavy Metals		T T		
& USEPA 7470/71 Mercury	J20 Heavy Wetais				
Thallium (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Antimony (filtered)	mg/L	< 0.005	0.005	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Molybdenum (filtered)	mg/L	< 0.005	0.005	Pass	
Selenium (filtered)	mg/L	< 0.001	0.001	Pass	
Tin (filtered)	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Boron (filtered)	mg/L	< 0.05	0.05	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Vanadium (filtered)	mg/L	< 0.005	0.005	Pass	
Barium (filtered)	mg/L	< 0.02	0.02	Pass	
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fracti - MGT 100A	ons TRH C6-C36				
TRH C6-C9	%	92	70-130	Pass	
LCS - % Recovery			,		
Ammonia (as N)	%	96	70-130	Pass	
Nitrate (as N)	%	115	70-130	Pass	
LCS - % Recovery					
NEPM 5B Metals : Metals M22 filtered USEPA 6010/66 & USEPA 7470/71 Mercury	020 Heavy Metals				
Thallium (filtered)	%	94	80-120	Pass	
Lead (filtered)	%	93	80-120	Pass	
Mercury (filtered)	%	85	70-130	Pass	
Nickel (filtered)	%	95	80-120	Pass	
Arsenic (filtered)	%	94	80-120	Pass	
Cadmium (filtered)	%	99	80-120	Pass	
Chromium (filtered)	%	97	80-120	Pass	
Cobalt (filtered)	%	99	80-120	Pass	
Copper (filtered)	%	88	80-120	Pass	
Selenium (filtered)	%	99	80-120	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Zinc (filtered)			%	96			80-120	Pass	
Iron (filtered)			%	98			80-120	Pass	
Boron (filtered)			%	94			80-120	Pass	
Manganese (filtered)			%	100			80-120	Pass	
Aluminium (filtered)			%	80			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				T			T		<u> </u>
		1	1	Result 1					
Ammonia (as N)	M12-Se18100	NCP	%	88			70-130	Pass	
Nitrate (as N)	M12-Se18100	NCP	%	120			70-130	Pass	
Spike - % Recovery				T			1		-
NEPM 5B Metals : Metals M22	filtered	I	1	Result 1					
Thallium (filtered)	M12-Se18997	NCP	%	86			75-125	Pass	
Lead (filtered)	M12-Se18997	NCP	%	87			75-125	Pass	
Mercury (filtered)	M12-Se17567	NCP	%	86			70-130	Pass	-
Nickel (filtered)	M12-Se18997	NCP	%	89			75-125	Pass	
Antimony (filtered)	A12-Se16099	NCP	%	97			75-125	Pass	
Arsenic (filtered)	M12-Se18997	NCP	%	76			75-125	Pass	
Beryllium (filtered)	M12-Se18997	NCP	%	98			75-125	Pass	
Cadmium (filtered)	M12-Se18997	NCP	%	100			75-125	Pass	
Chromium (filtered)	M12-Se18997	NCP	%	83			75-125	Pass	
Cobalt (filtered)	M12-Se18997	NCP	%	93			75-125	Pass	
Copper (filtered)	M12-Se18997	NCP	%	80			75-125	Pass	
Molybdenum (filtered)	M12-Se18997	NCP	%	83			75-125	Pass	
Selenium (filtered)	M12-Se18997	NCP	%	77			75-125	Pass	
Tin (filtered)	M12-Se18997	NCP	%	82			75-125	Pass	
Zinc (filtered)	M12-Se18997	NCP	%	90			75-125	Pass	
Boron (filtered)	M12-Se18997	NCP	%	84			75-125	Pass	
Manganese (filtered)	M12-Se18997	NCP	%	89			75-125	Pass	
Vanadium (filtered)	M12-Se18997	NCP	%	89			75-125	Pass	
Barium (filtered)	M12-Se18997	NCP	%	95			75-125	Pass	
Aluminium (filtered)	M12-Se18997	NCP	%	81			75-125	Pass	
Silver (filtered)	M12-Se20129	NCP	%	100			75-125	Pass	
Spike - % Recovery	C14			D 11.4			T		
NEPM 5B Metals : Metals M22		NOD	0/	Result 1			75.405	D	
Iron (filtered)	M12-Se20482	NCP	%	80			75-125	Pass	
Spike - % Recovery Total Recoverable Hydrocarbo	one 1000 NEDM From	tiono		Result 1			T		
TRH C6-C9	M12-Se19641	NCP	%	124			70-130	Pass	
Duplicate	W112-3619041	INCF	/0	124			70-130	rass	
Duplicate				Result 1	Result 2	RPD	Τ		
Ammonia (as N)	M12-Se18035	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Nitrate (as N)	M12-Se18035	NCP	mg/L	1.3	1.3	3.0	30%	Pass	
Total Dissolved Solids	M12-Se20139	NCP	mg/L	7700	7400	4.0	30%	Pass	
Duplicate	W112-0020103	1101	l llig/L	1100	7400	7.0	3070	1 433	
NEPM 5B Metals : Metals M22	filtered			Result 1	Result 2	RPD			
Thallium (filtered)	M12-Se18997	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	M12-Se18997	NCP	mg/L	0.0012	0.0012	<1	30%	Pass	
Mercury (filtered)	M12-Se17567	NCP	mg/L	< 0.0012	< 0.0012	96	30%	Fail	Q15
Nickel (filtered)	M12-Se18997	NCP	mg/L	0.0034	0.0034	<1	30%	Pass	<u> </u>
Antimony (filtered)	M12-Se18997	NCP	mg/L	< 0.005	< 0.005	8.0	30%	Pass	
Arsenic (filtered)	M12-Se18997	NCP	mg/L	0.035	0.035	<1	30%	Pass	
,									
Beryllium (filtered)	M12-Se18997	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
NEPM 5B Metals : Metals M22 filte	red			Result 1	Result 2	RPD			
Cadmium (filtered)	M12-Se18997	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M12-Se18997	NCP	mg/L	0.0095	0.0092	3.0	30%	Pass	
Cobalt (filtered)	M12-Se18997	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M12-Se18997	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Molybdenum (filtered)	M12-Se18997	NCP	mg/L	< 0.005	< 0.005	18	30%	Pass	
Selenium (filtered)	M12-Se18997	NCP	mg/L	< 0.001	< 0.001	100	30%	Fail	Q15
Tin (filtered)	M12-Se18997	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	M12-Se18997	NCP	mg/L	0.026	0.024	7.0	30%	Pass	
Boron (filtered)	M12-Se18997	NCP	mg/L	< 0.05	< 0.05	5.0	30%	Pass	
Manganese (filtered)	M12-Se18997	NCP	mg/L	0.030	0.030	3.0	30%	Pass	
Vanadium (filtered)	M12-Se18997	NCP	mg/L	0.012	0.011	3.0	30%	Pass	
Barium (filtered)	M12-Se18997	NCP	mg/L	0.041	0.040	3.0	30%	Pass	
Aluminium (filtered)	M12-Se18997	NCP	mg/L	< 0.05	< 0.05	4.0	30%	Pass	
Silver (filtered)	M12-Se18997	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
NEPM 5B Metals : Metals M22 filte	red			Result 1	Result 2	RPD			
Iron (filtered)	M12-Se19298	NCP	mg/L	0.44	0.45	2.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Frac	tions		Result 1	Result 2	RPD			
TRH C6-C9	M12-Se17957	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	

Report Number: 352941-W

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Organic samples had Teflon liners
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes mgt-LabMark's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

Natalie Krasselt Client Services

Carroll Lee Senior Analyst-Volatile (VIC)
Emily Rosenberg Senior Analyst-Metal (VIC)
Mary Makarios Senior Analyst-Inorganic (VIC)

Glenn Jackson

Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

ngt_Lablark shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall mgt_Labblark be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This occument shall not be reproduced except in full and relates only to the terms tested. Unless indicated otherwise, the tests were performed on the samples as record.

Data Quality Review Groundwater Contamination Assessment, Fiskville, Vic

This appendix reviews the Quality Assurance (QA) and Quality Control (QC) documentation. Quality assurance encompasses the actions, procedures, checks and decisions undertaken to ensure sample integrity and representativeness, and the reliability and accuracy of analysis results. The QA documentation should also include an indication of the Data Quality Objectives sought in relation to each significant action, test or process involved in the assessment.

QC activities measure the effectiveness of the QA procedures by undertaking testing, and then comparing results to previously established objectives. QC work will include the internal laboratory testing as well as results of QC samples submitted by the Assessor such as trip blanks and duplicates. The quality of the information and/or data is deemed satisfactory when the QC results demonstrate that agreed objectives have been met.

A review of the QA/QC was undertaken as part of the data validation exercise. The findings are summarised below.

QA/QC Aspects	Evidence & Evaluation						
QA Documentation							
	A Workplan and Health & Safety Plan were prepared prior to the ground-water contamination assessment.						
Project Quality Plan/	The groundwater investigation was carried out in accordance with the scope and objectives outlined in the report.						
Workplan and Data Quality Objectives	A quality control program was implemented during the assessment and the quality assurance procedures used have been reiterated in the assessment report. In addition, a health and safety plan was prepared for this project.						
	The Data Quality Objectives were expressed in terms of the purpose of the assessment and the relevant assessment criteria.						
	Data Representativeness						
Holding Times	Holding times for groundwater samples were generally in conformance with Appendix A in EPA Publication IWRG701. The groundwater samples were collected on 20 September 2012 and dispatched to the laboratories on 21 September 2012. None of the samples exceeded the required holding times.						
Background samples	No off-site groundwater samples were collected. However, bores GW101 to GW104, and GW108, were installed as background bores and samples were collected from bores GW101, GW103 and GW108 as part of the investigation. Bores GW102 and GW104 were dry.						
Verification of field procedures	Groundwater monitoring was carried out in accordance with EPA guidelines for groundwater sampling (EPA Publication 669) and Cardno Lane Piper field procedures. Disposable bailers were used to sample the groundwater.						
	Data Precision & Accuracy						
	Acceptance Criteria: RPD < 50%						
QC Testing –	Groundwater Samples Analysed: 10						
Blind Duplicates (Primary Laboratory)	Split Duplicate Samples Analysed: 2 Split Duplicate Analysed: 56						
,,	 Split Duplicate Analyte Pairs: 56 Number of Analyte Pairs Exceeding Criteria: 6 						

Appendix F Page 1

QA/QC Aspects	Evidence & Evaluation
	 Percentage of Analyte Pairs Exceeding Criteria: 10.7% The RPD exceedences included nitrate, total nitrogen, antimony and lithium in one sample, and TDS and lithium in the second sample. The level of exceedence is not high for any of the analytes, and the majority of the analyte concentrations (excluding TDS) do not represent particular issues with respect to potential contamination. RPD calculations were not calculated for 21 of the analyte pairs as both analyte concentrations were less than the limit of reporting. The RPD calculations are presented in Table B-2 (Appendix B) of the report.
QC Testing – Split Duplicates (Secondary Laboratory)	 Acceptance Criteria: RPD < 50% Groundwater Samples Analysed: 10 Split Duplicate Samples Analysed: 2 Split Duplicate Analyte Pairs: 50 Number of Analyte Pairs Exceeding Criteria: 5 Percentage of Analyte Pairs Exceeding Criteria: 10% The RPD exceedences included ammonia, nitrate and copper in one sample, and TDS and iron in the second sample. The level of exceedence is high for ammonia (179% RPD), but not for nitrate, TDS and metals (67 to 77%). The reason for the ammonia RPD exceedence cannot be explained at this stage, and will be checked in future monitoring rounds. RPD calculations were not calculated for 20 of the analyte pairs as both analyte concentrations were less than the limit of reporting. The RPD calculations are presented in Table B-2 (Appendix B) of the report.
Trip Blanks	Two trip blanks were collected for the primary samples and one trip blank was collected for the secondary laboratory samples. All trip blanks were tested for light fraction TPH and reported TPH C_6 - C_9 concentrations below the laboratory limit of reporting (LOR).
Laboratory Internal QC	Evidence of internal QC testing is present and complete in the laboratory reports. Both ALS (Primary) and mgt-LabMark (Secondary) performed internal QC with adequate testing and satisfactory results for the matrix spikes, method blanks and laboratory duplicates.
Laboratory Method Detection Limit	Laboratory reports indicate the method detection limits were lower than the respective assessment criteria with the exception of silver in groundwater. The LOR for silver was either 5 μ g/L, which is above the adopted criteria of 0.05 μ g/L. Given that all bores reported silver concentrations below the LOR, this is unlikely to significantly affect the outcome of the groundwater assessment.
NATA endorsement of laboratory reports	Laboratory reports were stamped with the NATA endorsement stamp and signature.
Calibration of Field Equipment	Equipment (water quality meter) was calibrated by the supplier prior to use. The equipment calibration certificate is provided in Appendix G.
Decontamination and Equipment Blanks	One rinsate blank sample was collected (off the water level interface probe) and tested for metals. All metals were reported below the laboratory LORs.
	Data Comparability
Standard Procedures	Fieldwork procedures are detailed in the groundwater contamination assessment report and are in general accordance with applicable standards and guidelines and industry best practice.
Qualified Personnel	Staff members involved in managing and reviewing the project are confirmed

Appendix F Page 2

QA/QC Aspects	Evidence & Evaluation						
	as suitably qualified, trained and experienced personnel.						
Sample Integrity	Field Chain of Custody (COC) documentation is presented in Appendix E. The COCs were completed with full and demonstrable delivery of samples. Laboratory holding times were not exceeded.						
Data Completeness							
Validity of Data Set	This data quality review does not indicate any significant systematic errors in the data collection process and therefore the data set used as the basis for the groundwater assessment is considered valid and complete.						

Appendix F Page 3

Appendix F 10 Pages

Title Information

Basic Property Report
Planning Property Report
Certificate of Title
Title Plan
Extract of EPA Priority Site Register

Property Report from www.land.vic.gov.au on 10 July 2012 01:55 PM

Address: 4549 GEELONG-BALLAN ROAD FISKVILLE 3342 Lot and Plan Number: This site has 4 parcels. See table below.

Standard Parcel Identifier (SPI): See table below.

Local Government (Council): MOORABOOL Council Property Number: 124720

Directory Reference: VicRoads 77 E4

This property is in a designated bushfire prone area. Special bushfire construction requirements apply.

Further information about the building control system and building in bushfire prone areas can be found on the Building Commission website www.buildingcommission.com.au

Parcel Details

Lot/Plan or Crown Description	SPI
Lot 1 TP845669	1\TP845669
Lot 2 TP845669	2\TP845669
Lot 3 TP845669	3\TP845669
Lot 4 TP845669	4\TP845669

State Electorates

Legislative Council: WESTERN VICTORIA (2005)
Legislative Assembly: BALLARAT EAST (2001)

Utilities

Regional Urban Water Business: Central Highlands Water

Rural Water Business: Southern Rural Water Melbourne Water: inside drainage boundary

Power Distributor: POWERCOR (Information about choosing an electricity retailer)

Planning Zone Summary

Planning Zone: FARMING ZONE (FZ)

SCHEDULE TO THE FARMING ZONE

Planning Overlays: DESIGN AND DEVELOPMENT OVERLAY (DDO)

DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2 (DDO2)

ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO)

ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 1 (ESO1)

Heritage Register: VHR H2277 - AUSTRALIAN BEAM WIRELESS TRANSMITTING STATION

Planning scheme data last updated on 6 July 2012.

A **planning scheme** sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State, local, particular and general provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the <u>local council</u> or by visiting <u>Planning Schemes Online</u>

This report is NOT a **Planning Certificate** issued pursuant to Section 199 of the Planning & Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to <u>Titles and Property Certificates</u>

For details of surrounding properties, use this service to get the Reports for properties of interest

To view planning zones, overlay and heritage information in an interactive format visit Planning Maps Online

For other information about planning in Victoria visit www.dpcd.vic.gov.au/planning

Heritage Register data last updated on 29 June 2012.

This report is NOT a **Heritage Certificate** issued pursuant to Section 50 of the Heritage Act 1995. It does not show places which may be under consideration for inclusion in the Victorian Heritage Register.

For more information on the Victorian Heritage Register go to Victorian Heritage Database

Other information about the heritage status of this property, how to obtain a Heritage Certificate, and any heritage approvals that may be required, may be obtained from <u>Heritage Victoria</u>

Area Map

Planning Property Report

From www.dpcd.vic.gov.au/planning on 16 November 2012 03:16 PM

Address: 4549 GEELONG-BALLAN ROAD FISKVILLE 3342

Lot and Plan Number: Lot 1 TP845669

This property has a total of 4 parcels.

For full parcel details get the free Basic Property report at Property Reports

Local Government (Council): MOORABOOL Council Property Number: 124720

Directory Reference: VicRoads 77 E4

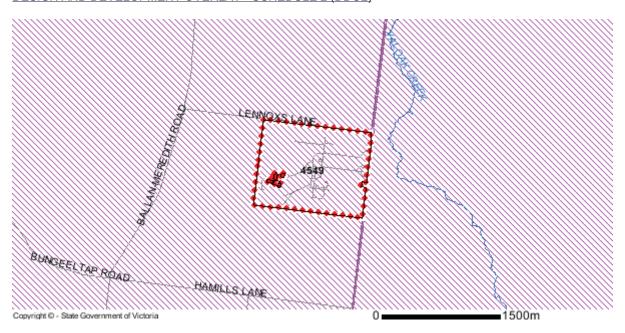
Planning Zone

FARMING ZONE (FZ)

SCHEDULE TO THE FARMING ZONE

Note: labels for zones may appear outside the actual zone - please compare the labels with the legend.

R1Z - Residential 1 Zones Legend IN1Z - Industrial 1 ACZ - Activity Centre IN2Z - Industrial 2 R2Z - Residential 2 B1Z - Business 1 IN3Z - Industrial 3 R3Z - Residential 3 B2Z - Business 2 LDRZ - Low Density Residential RAZ - Rural Activity RCZ - Rural Conservation B3Z - Business 3 MUZ - Mixed Use B4Z - Business 4 RDZ1 - Road - Category 1 PCRZ - Public Conservation & Resource RDZ2 - Road - Category 2 B5Z - Business 5 PDZ - Priority Development CA - Commonwealth Land PPRZ - Public Park & Recreation RLZ - Rural Living PUZ1 - Public Use - Service & Utility RUZ - Rural CCZ - Capital City CDZ - Comprehensive Development PUZ2 - Public Use - Education SUZ - Special Use DZ - Dockland PUZ3 - Public Use - Health Community TZ - Township ERZ - Environmental Rural PUZ4 - Public Use - Transport UFZ - Urban Floodway FZ - Farming PUZ5 - Public Use - Cemetery/Crematorium UGZ - Urban Growth GWAZ - Green Wedge A PUZ6 - Public Use - Local Government Urban Growth Boundary GWZ - Green Wedge PUZ7 - Public Use - Other Public Use


Copyright © - State Government of Victoria

Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided. Read the full disclaimer at www.land.vic.gov.au/home/copyright-and-disclaimer

Planning Overlays

DESIGN AND DEVELOPMENT OVERLAY (DDO) DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2 (DDO2)

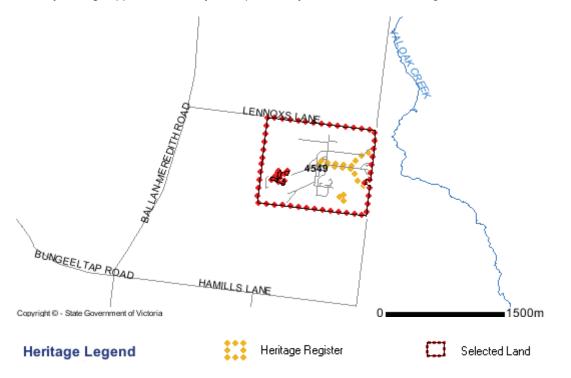
ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 1 (ESO1)

Planning Overlays Legend

Overlays Legend	Erosion Management	Public Acquisition
overlays regend	Environmental Significance	Restructure
Airport Environs	Floodway	Road Closure
City Link Project	Heritage Heritage	Special Building
Development Contributions Plan	Incorporated Plan	Significant Landscape
Design & Development	Land Subject to Inundation & Floodway	 Salinity Management
Design & Development Part	Melbourne Airport Environs 1	State Resource
Development Plan	Melbourne Airport Environs 2	Vegetation Protection
Environmental Audit	Neighbourhood Character	Bushfire Management - Wildfire Management

Note: due to overlaps some colours on the maps may not match those in the legend.

Heritage Register


This property is affected by an entry on the Victorian Heritage Register.

View information about <u>VHR Number H2277</u> - AUSTRALIAN BEAM WIRELESS TRANSMITTING STATION Heritage Register data last updated on 15 November 2012.

This report is NOT a **Heritage Certificate** issued pursuant to Section 50 of the Heritage Act 1995. It does not show places which may be under consideration for inclusion in the Victorian Heritage Register.

For more information on the Victorian Heritage Register go to Victorian Heritage Database

Other information about the heritage status of this property, how to obtain a Heritage Certificate, and any heritage approvals that may be required, may be obtained from <u>Heritage Victoria</u>

Further Planning Information

Planning scheme data last updated on 15 November 2012.

A **planning scheme** sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State, local, particular and general provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting Planning Schemes Online

This report is NOT a **Planning Certificate** issued pursuant to Section 199 of the Planning & Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to <u>Titles and Property Certificates</u>

For details of surrounding properties, use this service to get the Reports for properties of interest

To view planning zones, overlay and heritage information in an interactive format visit Planning Maps Online

For other information about planning in Victoria visit www.dpcd.vic.gov.au/planning

Copyright State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. The State of Victoria accepts no responsibility for any subsequent release, publication or reproduction of the information.

VOLUME 09503 FOLIO 693

Security no : 124042757743V Produced 09/08/2012 12:55 pm

LAND DESCRIPTION

Lots 1,2,3 and 4 on Title Plan 845669K (formerly known as part of Crown Allotment 2 Section 16, Crown Allotments 3 and 8 Section 16, part of Crown Allotment 9 Section 16 Parish of Yaloak).

PARENT TITLE Volume 03538 Folio 516

Created by instrument K206778 21/12/1982

REGISTERED PROPRIETOR

Estate Fee Simple
Sole Proprietor
COUNTRY FIRE AUTHORITY
K206778 21/12/1982

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE TP845669K FOR FURTHER DETAILS AND BOUNDARIES

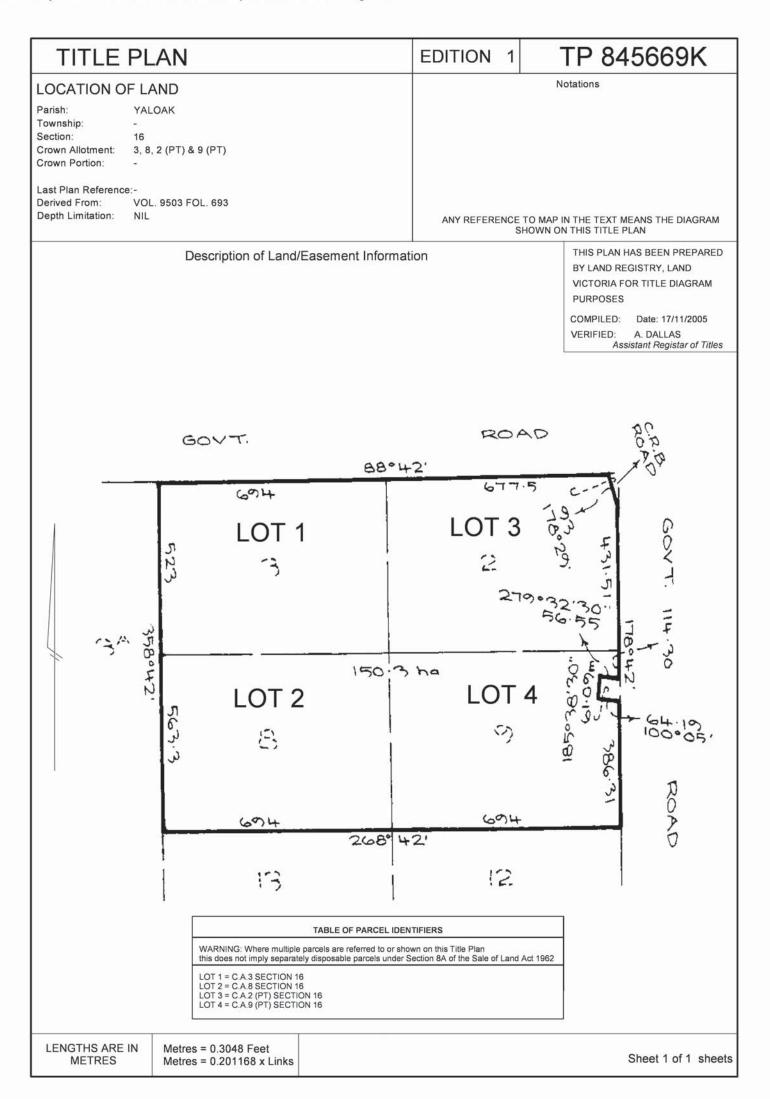
ACTIVITY IN THE LAST 125 DAYS

NIL

DOCUMENT END

Title 9503/693 Page 1 of 1

Imaged Document Cover Sheet


The document following this cover sheet is an imaged document supplied by LANDATA®, Land Victoria.

Document Type	plan
Document Identification	TP845669K
Number of Pages	1
(excluding this cover sheet)	
Document Assembled	09/08/2012 13:00

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. The State of Victoria accepts no responsibility for any subsequent release, publication or reproduction of the information.

The document is invalid if this cover sheet is removed or altered.

Extract of EPA Priority Site Register

Page 1 of 1

**** Delivered by the LANDATA® System, Department of Sustainability and Environment ****

PROPERTY INQUIRY DETAILS:

STREET ADDRESS: 4549 GEELONG-BALLAN ROAD

SUBURB: FISKVILLE

MUNICIPALITY: SHIRE OF MOORABOOL

MAP REFERENCES: Vicroads Eighth Edition, State Directory, Map 77 Reference E5 Vicroads Eighth Edition, State Directory, Map 77 Reference E4

DATE OF SEARCH: 9th August 2012

PRIORITY SITES REGISTER REPORT:

A search of the Priority Sites Register for the above map references, corresponding to the address given above, has indicated that this site is not listed on, and is not in the vicinity of a site listed on the Priority Sites Register at the above date.

IMPORTANT INFORMATION ABOUT THE PRIORITY SITES REGISTER:

You should be aware that the Priority Sites Register lists only those sites for which EPA has requirements for active management of land and groundwater contamination. Appropriate clean up and management of these sites is an EPA priority, and as such, EPA has issued either a:

Clean Up Notice pursuant to section 62A, or a Pollution Abatement Notice pursuant to section 31A or 31B of the Environment Protection Act 1970 on the occupier of the site to require active management of these sites.

The Priority Sites Register does not list all sites known to be contaminated in Victoria. A site should not be presumed to be free of contamination just because it does not appear on the Priority Sites Register.

Persons intending to enter into property transactions should be aware that many properties may have been contaminated by past land uses and EPA may not be aware of the presence of contamination. EPA has published information advising of potential contaminating land uses. Municipal planning authorities hold information about previous land uses, and it is advisable that such sources of information also be consulted.

For sites listed on the Priority Sites Register, a copy of the relevant Notice, detailing the reasons for issue of the Notice, and management requirements, is available on request from EPA for \$8 per Notice.

For more information relating to the Priority Sites Register, refer to EPA contaminated site information bulletin: Priority Sites Register & Contaminated Land Audit Site Listing (EPA Publication 735). For a copy of this publication, copies of relevant Notices, or for more information relating to sites listed on the Priority Sites Register, please contact EPA as given below:

EPA Information Centre Herald & Weekly Times Tower 40 City Road, Southbank 3006 Tel: (03)9695 2700 Fax: (03)9695 2710

[Extract of Priority Sites Register] # 13190463 - 13190463125546 '212163.2-DJL'

Appendix G 21 Pages

Fieldwork Record Sheets

Groundwater Sampling Field Records
Water Quality Meter Calibration Certificate
EPA Waste Transfer Certificates

Site / Project:									T B 1D :	h 2 2
Site / FTOJECL				TAWGUNG	ER CON	TAMIN	TA (1010	1	Number:
		+ 22E221	<u> </u>	INT					BH3	
Client:	CFA								Job No.	212163-2
Person Sampling		cus B	0.	d b			-		Initials:	MBB
Bore / Site Deta										
Bore Condition / Lo	ocked?	ED (3)	Mon	oe Protect. Co	VC cap	a. "	Во	ore Depth (bg	DC) - 21.00	
Inner casing/scree		meter:	Scr	een interval	(bgl):		SV	NL (bgl) zo.	625-0.928	
upvc	50 mm			15-21				(bTOC)	20.625	poet.
WL Measurement	Point CASING	F	RL	of measurem	nent point (m	AHD)	SV	VL Date/Time 20/0°		
Other Observations on Bore/Site										
Bore Purge Data	<u>a</u>									
Purge method:	ailer		Bor	re Volume (L)):	~	Pu	irge Date:	0/9/1)	Nace to
Purge rate (L/min):	1851.0	lmin 7	Tota	al Purge volu	ıme (L): 🚗	डे 23	LŊ	IAPL / PSH T	hickness (m	m)
Purge Field Phy	slochemic	al Measu	ire	ments:						
	Reading1	Reading 2	2	Reading 3	Reading 4	Reading	j 5	Reading 6	Reading 7	Reading 8
Start Time;	. 5.1 Krm	2:29		252	7 D D D D D D D D D D D D D D D D D D D		21000000			
		0			Baile	1 arel	G	== to 1	ow has	
DO (mg/L) ±10% (or ±0.2 if DO<2 mg/L)		The state of the s		67.0	belo.	Jora		· · · · · ·	or bail	2.5
EC (µS/Cm) ±3%		70)		.6647		1		. 1		
pH±0.1		C.		7.0						
Eh (mV) ±10mV		1		129.6						
Temp (°C)		23		15.5						
SWL (m) after	20.625	20.86	5	20.865						
Purged Volume (L)	Ø	1.5		0.8						÷
Cum, Volume (L)	0	1.5		2.3						-71
Water Colour		light brow	ev^.	brown						
Furbidity ±10%		nederate		increasing						
Other Observations / Notes		Sis gress	2.0							

Number of sample container: (Include QC samples)	1	2	3	4	5
Container Volume					
Container Type	,				
Filtration	:				
Preservation					
Sample Number (for Lab ID):	SH3_200	71.5			

QUALITY MANAGEMENT MANUAL

Site / Project:		LLE C		TAWDUNG	ER C	ron t	TAMIN	TAL	1010	Bore ID	Number:
Client:	CFA	-				• •			-	Job No.	212163-2
Person Sampling	MARC	us P	٠ ه ځ	d 16						Initials:	MBB
Bore / Site Detai											
Bore Condition / Lo		<i>n</i> 3	Typ	e Protect. Ca Monument/	p / Cove	r: 1400		Вс	re Depth (bgl		
Inner casing/scree			Scr	een interval ((bgl):		7.50	SV	VL (bgl) 19-8	55-p-488	=19-407
upvc	50 mm			14-20					(bTOC)	9-855m	
WL Measurement I		-	RL	of measurem	ent point	t (m	AHD)	SV	VL Date/Time 20/0ๆ	ho	·
Other Observations		te			· ,		•			112	
Bore Purge Data						4	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
	Sailer		Bor	e Volume (L)	:			Pu	rge Date:	0/9/12	
Purge rate (L/min):	0.1724/	-in	Tota	al Purge volu	me (L):	2.7	×-5	LN	IAPL / PSH TI	nickness (m	
Purge Field Phy	slochemic	al Meas	ure	ments:							
	Reading1	Reading	12	Reading 3	Reading	4	Readin	g 5	Reading 6	Reading 7	Reading 8
Start Time;	WHO	11;20	6								
				Little	20-00	ia	w.c.)				
DO (mg/L) ±10% (or±0.2 H DO×2 mg/L)		45 4		GUQ	} 1	13,0%	ranel	~~~	4	1	
EC (µS/Gm) ±3%		591.6		7		(a)	<u> </u>		0.1		
pH ±0.1	No.	7.9							*******		
Eh (mV) ±10mV		98.6									١-
Temp (°C)	1	15.0)								
SWL (m) after	20.160	20.17		·							
Purged Volume (L)	- Zu.	0.25	-								-
Cum, Volume (L)	Z	2.71	5							-	-9
Water Colour	brown	Proma	\						-		
Turbidity ±10%	high	high									
Other Observations / Notes	050 No	0=0 A=0									

Number of sample container: (Include QC samples)	1	2	3	4	5
Container Volume					
Container Type					
Filtration					
Preservation					
Sample Number (for Lab ID):	H \- 2009	12			
QC Dup Sample No.:					

QUALITY MANAGEMENT MANUAL

Site / Project:								
Site / Project. F15	KVILLE G	ROUNDWA	TER CON	TAMIN	MOITAL		D Number:	
0.	W 27577	MENT	. 🐫			BHS		
Client: CF						Job No	0. 212163-2	
Person Sampling: M	ARCUS B	a ro.			· · · · · · · · · · · · · · · · · · ·		: MBB	
Bore / Site Details								
Bore Condition / Locked?		Type Protect.	Cap / Cover:		Bore Depth (I	ogl); 2♂~		
Inner casing/screen type &		Monument/PVC cap Screen interval (bgl):			(h TOC) SWL (bgl) 1.310-0.683 = 0.6 27			
ulve 50m	w.	14-20			(bTOC) 1.310~			
WL Measurement Point Top of CASI	NC-	RL of measure	ment point (r	nAHD)	SWL Date/Time			
Other Observations on Bo	re/Site				20/0	9112		
Bore Purge Data					0			
Division months of	l F	Bore Volume (I	\.					
Valler			gengann		Purge Date:	20/9/12		
Purge rate (L/min):	796/nin 7	Total Purge vol	ume (L):	5	LNAPL / PSH None /	Thickness	(mm)	
Purge Field Physloche		rements:		el di di	1101197			
Readin			Reading 4	Reading	ı 5 Reading 6	Reading	7 Reading 8	
Start Time. 11:38	11:50	11:52					, reading e	
		1.	·			,		
DO (mg/L) ±10%							_	
(or ±0.2 if DiO =2 mg/L)		34.6						
EC (µS/Cm) ±3%		2970						
pH ±0.1	2	7.13						
Eh (mV) ±10mV	108	-28.0						
Temp (°C)	()	12.5						
SWL (m) after 1.310	1.92	2.0	1,31					
Purged Volume (L)	#L-2	0.5	å,			345		
Cum, Volume (L)	12	2.5			****	-	→ ·	
Water Colour	bean	brown -dar	2 Grown		,			
Furbidity ±10%	& high	high						
Other	i J	V .						
Observations / Votes	0=0.	0 = 0		÷	- ×/			

Number of sample container: (Include QC samples)	1	2	3	4	5
Container Volume					
Container Type					
Filtration					
Preservation					
Sample Number (for Lab ID): 🦿	H 5 - 200'	912	·	. 8	
QC Dup Sample No.:		*			

QUALITY MANAGEMENT MANUAL Doc: QF3.04 GW Sampling Field Record Last revised: 23 November 2011

Site / Project:	FISKVI	LLE G	ROUNDWAT MENT	TER CON	MIMATO	ATION	Bore ID	Number:
Client:	CFA						Job No.	212163-2
Person Sampling	MARC	us B	d ro			:	Initials:	
Bore / Site Detail	president Maria (1971)							
Bore Condition / Lo ৭০০১		EN	Type Protect. C	ap / Cover:		Bore Depth (bg	· · .	
Inner casing/screer	n type & dia	meter:	Screen interval			SWL (bgl) 10.0		9-395- 9.9
			12-18			(bTOC)	J.095m	(SU 0-70/A)
WL Measurement Point Top of CASING			RL of measurement point (mAHD) SWL Date/Time					77
Other Observations		te	•				. 1	
Bore Purge Data						170		(C. 1)
Purge method: Ba	iler		Bore Volume (L): _T		Purge Date:	20/9/12	
Purge rate (L/min):	<i>≈0.</i> 830	1/min	Total Purge vol	ume (L): 5		LNAPL / PSH T	hickness (r	
Purge Field Phys	slochemic Reading1	al Measi Reading		Reading 4	Readino	5 Reading 6	Reading 7	Reading 8
Start Time;	10:28	10:21	10:25	10:45	10:58			
		EL-	145			->> \	In Ded	
DO (mg/L) ±10% (or±0.2 k,00	3667	41.7	43.0		93.9		1	
EC (μS/Gm) ±3%	3104	2-859	2977		2578			
pH±0.1	6.91	6.92	6.93		6.95			
Etr (mV) ±10mV	549	F76	87.8		47-1			
Temp (®C)	15.5	15.9	16.0		16.3			
SWL (m) after	10.68	10.85	11.05	11.09	11.20			
Purged Volume (L)	3	pagaminta		2	1			
Cum. Volume (L)	~	4	5	armag arfore	8			2
Water Golour	Clear	, (.,	2	MOROT DI	DOLM .		
Turbidity ±10%	0	Ff	17	o .	:57:			
	124,020 -(_		Minors	5).		
Observations / Notes	lear roodour	ř,	/,	"	light 5.	on	•	

Number of sample container: (Include QC samples)	1	2	3	4	5
Container Volume				11.81	
Container Type					
Filtration					
Preservation					
Sample Number (for Lab ID): 🗘	1101-200	21PC			
QC Dup Sample No.:					

QUALITY MANAGEMENT MANUAL

Site / Project:	FISKVIL		GRO	AWTWN.	TER CON	TAMIR	TA1	100	Bore II	Number:
	A	SSES	SME	INT		. , , , , , , , ,				102
Client:	CFA				: `				Job No	212163-2
Person Sampling		us	B0>	(D					Initials:	MBB
Bore / Site Detail	Part of the second of the second		Ι							2,0070137.52
G00D	1 LOCKE		1/10	noment	Cap / Cover: / ఆ.caℓ	*	Bo	re Depth (b <i>ה</i> א)	gl): 24,23	3.5
Inner casing/screer		neter:	Scre	en interval	(bgl):		SW	/L (bgl)		
WL Measurement Point				7.5- 23	·5 ment point (n	V HD)	CVA	(bToc) L Date/Tin/		
To? OF CASING Other Observations on Bore/Site			112	, measure	ment point (ii	(UITA)	34/	20/0		
		9				•		•		
Bore Purge Data										
Purge method:	manurur o aaaaaasiidii teleri ma _{se}		Bore	Volume (L	.):		Pur	ge Date:	20/9/12	
Purge rate (L/min):			Tota	i Purge vol	ume (L):		LN	%PL/PSH	Thickness (ı	mm)
Purge Field Phys	slochemica	l Meas	surer	nenfs:			(INOI	rie)/	mm	
				4	Reading 4	Reading	15	Reading 6	Reading 7	Reading 8
Start Time:	12:11	-10		1				.		
	/ 1)	was			revel	. \				
DO (mg/L) ±10% (or±0.2 if Dio-2 mg/L)		tere	J.	1		1				
	- 1	-11	/ 1/	66-80	1	maist	1			
pH ±0.1	Sandy	<u> </u>	8111	y Sour	d; bros	J.	_			
Eh (mV) ±10mV										
Temp (°C)			-							
							- -			
SWL (m) after										
Purged Volume (L)										
Cum, Volume (L)										2
Water Colour					•					
Turbidity ±10%										
Other Observations4 ==							T			
Votes										
										

(Include QC samples) 1 2 3 4 Container Volume	5
Filtration	
Preservation	
Sample Number (for Lab ID): None taken, dry well.	

QUALITY MANAGEMENT MANUAL

Site / Project: FISKNI	LLE C	FROUNDWAT	ER CON	TAMIN	MOITA		Number:
	+ SSES 5	MENT				GWI	
Client: CFA			· ·				212163-2
Person Sampling: MARC	us P	aros				Initials:	MBB
Bore / Site Details							
Bore Condition / Locked? GOOD / LOCK		Type Protect. Co	ap / Cover:	.*	Bore Depth (b	gl): عج	
Inner casing/screen type & dia	meter:	Screen interval	(bgl):		SWL (bgl) 24.0	50-0.5525	
WL Measurement Point			5-29	*1150	SWL Date/Tin	29.050)
TOP OF CASING		RL of measuren	16 9/12				
Other Observations on Bore/Si	ite						
Bore Purge Data							
Purge method: Bailer	CALCO AND	Bore Volume (L)):		Purge Date:	0/9/12	
Purge rate (L/min): $\gtrsim 6$	1.0794	Total Purge volu	ıme (L):	> · · · · · · · · · · · · · · · · · · ·	LNAPL / PSH	Thickness (m	im)
Purge Field Physiochemic	al Meas	urements:					
Reading1	Reading		Reading 4	Reading) 5 Reading 6	Reading 7	Reading 8
Start Time: (1) \(\sigma\)	281/2						
	·	Dailed	welld	1. N	I enough	Cor	No house
DO (mg/L) ±10% (or 10.2 (1.00<2 mg/L)		Sam	In Inc		Sque	10	
EC (µS/Gm) ±3%	Athana.	Alle	JI Co	- V~0	2		
pH ±0.1	3	3	-	7	3 - 3 -		[
Eh (mV) ±10mV	7.00					-	
Temp (º€)	T N						1.
SWL (m) after 29.050	29.36	a					
Purged Volume (L)	1.5						
Cum. Volume (L)	1.5					· 83 ·	-7
Water Colour -	brown					200	
Turbidity £10%	high						
Other Observations / Notes	high						

Number of sample container: (Include QC samples)	1	2	3	4	5
Container Volume		-			
Container Type					
Filtration					
Preservation					
Sample Number (for Lab ID): 🧸	W103_20	092012			***************************************
QC Dup Sample No.:			-		

QUALITY MANAGEMENT MANUAL

Site / Project:		GROUNDWAT	ER CON	TANIN	MOITA	Bore ID N			
Client:	CFA		5 ¹⁸		=	Job No.	212163-2		
Person Sampling	MARCUS	BOYD			1)	an tioner or	MBB		
Bore / Site Detai			la sa é s			ed editor	godine.		
Bore Condition / Lo	ocked?	Type Protect. C	ap / Cover:		Bore Depth (bgl	gl): 26 0 c) —			
Inner casing/screer	n type & diameter:	Screen interval			SWL (bgl)				
upvc		14-26			(bTOC) -				
WL Measurement I		RL of measurer	nent point (m	AHD)	SWL Date/Time	SWL Date/Time			
Other Observations				*		, -			
Bore Purge Data									
Purge method:		Bore Volume (L):		Purge Date:				
Purge rate (L/min):	Purge rate (L/min): Total Purge volume (L): LNAPL / PSH Th None /					n)			
Purge Field Phys	siochemical Mea	surements:	124502						
20世紀日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本	Reading1 Read	ing 2 Reading 3	Reading 4	Reading	5 Reading 6	Reading 7	Reading 8		
Start Time:	Dry								
	Brown	n-red mip	N.		-				
DO (mg/L) ±10% (or ±0.2 if DO<2 mg/L)	2/		(1)			Т			
EC (μS/Cm) ±3%									
pH ±0.1			4:						
Eh (mV) ±10mV			= 11				\$3		
Temp (°C)							5		
SWL (m) after			4				e ⁽¹⁰⁾		
Purged Volume (L)							150		
Cum. Volume (L)						1	-9		
Water Colour					,				
Turbidity ±10%	11								
Other Observations <i>I</i> Notes		¥							

Sample Container & Preser	vation Data				
Number of sample container: (Include QC samples)	1	2	3	4	5
Container Volume					
Container Type					
Filtration				1	
Preservation					
Sample Number (for Lab ID):	SHIOF, 2	00912			
QC Dup Sample No.: —		y.			j.

Site / Project:		LE G	ROUNDWAT	ER CON	TANIN	MOITA	Bore ID	Number:	
,	CFA			, . :			· '	212163-2	
Person Sampling:	MARCU	is B	aro				Initials:		
Bore / Site Details	3								
Bore Condition / Loc	ked?		Type Protect. C	ap / Cover:		Bore Depth (bg			
Inner casing/screen		eter:	Screen interval	(bgl):		SWL (bgl)			
	50 mm		17-26			(bTOC)			
WL Measurement Po		F	RL of measuren	nent point (m	AHD)	SWL Date/Time 20/09/12			
Other Observations	on Bore/Site			<u> </u>			112		
Biograpia Diata									
Purge method:	on, and	I	Bore Volume (L):		Purge Date:			
Purge rate (L/min):			Total Purge volu	ıme (L):		LNAPL / PSH T	hickness (m	m)	
Purge Field Physi	ochemical	Measu	irements:						
	Reading1 f	Reading (2 Reading 3	Reading 4	Reading	15 Reading 6	Reading 7	Reading 8	
Start Time: 3	\$55 Fp~	~							
	Red-	brow	m mad.	n coffee	n. Acon				
DO (mg/L) ±10% (or £0.2 (FDO:2.mg/L)				and the same			I		
EG (µS/Gm) ±3%	Do	1							
pH ±0.1		/							
Eh (mV)±10mV ;		/ -							
Temp (°C)									
SWL (m) after			8						
Purged Volume (L)								-	
Gum. Volume (L)							-	2	
Water Gölour						1 .			
Turbidity £10%									
Other									
Observations <i>l</i> Notes									

Sample Container & Preserva	ation Data				
Number of sample container: (Include QC samples)	1	2	3	4	5
Container Volume					
Container Type					
Filtration					
Preservation					
Sample Number (for Lab ID): -					
QC Dup Sample No.:			,		

Site / Project:	FISKNI	LLE G	TROV	TAWGON	ER CON	TANIN	TAL	1010	Bore ID I	
		SSESS							GUIO	
Client:	CFA				"				Job No.	212163-2
Person Sampling	MARC	us P	408	D			-		Initials:	MBB
Bore / Site Deta										
Bore Condition / L	ocked?	67)	Туре	Protect. C	ap / Cover:		Во	re Depth (bg): 25·5	
Inner casing/scree				en intérval			SV	VL (bgl) —		
upvc	50 mm		1	8.5-2	5.5			(bTOC)	25.075	·
WL Measurement	Point CASING		RL o	f measuren	nent point (m	AHD)	SV	VL Date/Time 20 0 ዓ	9	
Other Observation		te	***************************************				ı		1	·
Bore Purge Date	ā -									
	ailer		Bore	Volume (L)): establisher		Pu	rge Date: 2	0/9/12	
Purge rate (L/min)	:_ 0.033	4/nin	Total	Purge volu	ıme (L):).75L	LN	APL/PSHT	hickness (mi mm	m)
Purge Field Phy	siochemic	al-Meas	urem	ients:			4			
	-Reading1	Reading	12	Reading 3	Reading 4	Reading) 5	Reading 6	Reading 7	Reading 8
Start Time:	4.05	q:28								
DO (mg/L) ±10% (ar±0.2 (f.DO<2 mg/L)		W.	5						!	
EC (µS/Cm) ±3%		7	v l							
рH±0:1		21	<u>}</u>							
Eh (mV) ±10mV		3	0	•						٠.
Temp (°C)		N.								
SWL (m) after	28.075	Da								
Purged Volume (L)		~A.J					,			
Cum, Volume (L)		20.7	15							-7
Water Colour		brown			·			1 .		
Turbidity ±10%		very								
Other		-	7	\						
Observations I		near s	Syd	3~						
Notes		050	.							

(Include QC samples)		O	4	5
Container Volume				
Container Type				
Filtration				
Preservation				
Sample Number (for Lab ID): Call 106	- 500917			

Site / Project:	FISKVI	LLE GR	TAWGNNO	ER Con	MINAT	ATION	Bore ID	Number:
-		t SSESS M					GWIC)7
Client:	CFA					-	Job No.	212163-2
Person Sampling	MARC	us Bo	Y D		*****		Initials:	
Bore/Site/Deta	ils							
Bore Condition / Lo		ED Ty	pe Protect. C	ap / Cover:	v	Bore Depth (bgl		
Inner casing/scree	n type & dia	meter: So	creen interval	(bgl):		SWL (bgl)		
upvc	50 mm		0.2-2			(bTOC)	0.120m	
WL Measurement	CASING		L of measurer	nent point (m	nAHD)	SWL Date/Time	112	
Other Observation	s on Bore/Si	te			,			
Bore Purge Data	1							
Purge method:	sailer	Bo	ore Volume (L):		Purge Date: 2	0/9/12	
Purge rate (L/min):		То	otal Purge volu	ume (L): 13	+-	LNAPL / PSH TI	hickness (m	m)
Purge Field Phy	siochemic	al Measure	ements:					
	Reading1	Reading 2	Reading 3	Reading 4	Reading	5 Reading 6	Reading 7	Reading 8
Start Time)	-3.56	3.27	358	3.30	3.3.2	3.35		
							->San	red
BO (mg/L) ±10% (or ±0.2 (100+2 mg/L)		17.3%	14.5	8.2	7-1	6.7	F	/
EC (μS/Cm) ±3% 。		1099	975M	970	726	797	•	
pH ±0/1		7.37	7.25	7-21	7-21	7-21		
Eh (mV) ±10mV		-120.9	-80.9	-78.7	73.5	-735		<u>-</u> -
Temp (°C)		11-6	11.7	(1-2	11-2	11-5		
SWL (m) after	0.120	0.FS	0,70	0.195	0.20	0.285		
Purged Volume (L)	0	2_	2	3	3	5		·
Gum, Volume (L)	6	2	4	7-	(O)	(•	-7
Water Colour		left brown	·		and the second of the second of the second or the second o			
Turbidity ±10%	600-170	low-mod	gital same that to the entry to the entry to	groups to the production of the formula of the form	y	200000000000000000000000000000000000000		
Other Observations <i>I</i> Notes		√00 0±0	***************************************					

Number of sample container: (Include QC samples)	1	1.2	2	3	4	5
Container Volume	***************************************					
Container Type					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Filtration						
Preservation	2					
Sample Number (for Lab ID): 🥇	7-0107	200	912.			
QC Dup Sample No. Q CO	0.0600		0,000	2000		

Site / Project:	FISVAL		-0 0.10 0.10	+C0 C+			Bore ID	Number:
			TROUNDWA: MENT	IEK CON	TANIN	ATION	Gal	
Client:	CFA			*- ·		***************************************		212163-2
Person Sampling:	MARC	us T	BOYD			-	Initials:	
Bore / Site Details							The state of the s	
Bore Condition / Loc	ked?	e 7.	Type Protect. 0	Cap / Cover:		Bore Depth (bg	1):	
Inner casing/screen			Screen interval			SWL (bgl) 90-93	50.735 =	W). 2
	50 mm	,,,,,,	30-50			(STOC)	40.935	
WL Measurement Po			RL of measure	ment point (m	AHD)	SWL Date/Time) 1,2,	
Other Observations	on Bore/Sit	te				70 0	112	
Bore Purge Data						100		
Purge method: Sa			Bore Volume (I	L):	S Office of the second street	Purge Date:	0/9/12	
Purge rate (L/min):	0.094	min	Total Purge vol	lume (L):	3 (LNAPL / PSH T	hickness (m	nm)
Purge Field Physi	and the second contract of the second contrac	Control of the Contro	urements:			1407.07		
	Reading1	Reading	g2 Reading 3	Reading 4	Reading	5 Reading 6	Reading 7	Reading 8
Start Time:	1.15	6:3						
DO (mg/L) ±10%							ļ	
(ox ±0.2 (f DO <2 mg/L) EC (µS/Cm) ±3%		/	144					
pH ± 0.1	· · · · · · · · · · · · · · · · · · ·	(XY \						
Eh (mV) ±10mV			· · · · · · · · · · · · · · · · · · ·					
Temp (°C)								
	10.935	ji/see						
Purged Volume (L)	gardener.	1.8						
Cum, Volume (L)	well-limite.	<u> 1. g</u>						-7
Water Colour		high i	harbidity.		,	1	,	,
Furbidity ±10%		light	Gram/		Did	ist filter	- meta	/5
Other		Vio						
Observations <i>i</i> Notes		050						-

		0	4	5
Container Volume	7			***************************************
Container Type				***************************************
Filtration				
Preservation				
Sample Number (for Lab ID): GWIOR	-200912			

QUALITY MANAGEMENT MANUAL

Site / Project:		- 4	r- <u>.</u>			**			Poro ID	Number:
				TAWGON	ER Co	UTANI	NAT	4017	GW1	
Client:		, SSES:	ME	TIM	-					
	CFA								Job No.	212163-2
Person Sampling	MARC	us I	r o 8	D					Initials:	MBB
Bore / Site Detai	March 1985 and the Control of the Co									
Bore Condition / Lo		r		e Protect. C			Bo	ore Depth (bg		
Inner casing/screer	_ L€CK<0		Scre	<u>t∺c /ex</u> een interval	<u>- ca√</u> (bal):		- 51	NL (bgl)	oc)	
upvc	50 mm			10 - F6	(591).		10,	. • /	96.70	granial htt:/-
WL Measurement I				of measurer	nent point (mAHD)	SI	VL Date/Time	e 10.70	
Top of Other Observations	CASING			\$1.00mm				20/00	1/12	
Other Observations	s on Bore/Si	te				•			•	
Bore Burge Data	I Later			1.2						
Purge method:	Pailer		Bore	Volume (L):	31000011000	Pu	irge Date:	20/9/12	
Purge rate (L/min):			Tota	l Purge volu	ıme (L):	ı	LN No	IAPL / PSH T	•	m)
Purge Field Phy	slochemic	al Meas	uren	nents:			,			
	Reading1	Reading	12	Reading 3	Reading 4	Read	ing 5	Reading 6	Reading 7	Reading 8
Start Time:	4.550	4.58	3							
		3.	alla	2015.6	ith la	ler.	COU	ld not	necon	2
DO (mg/L) ±10% (or ±0.2(f.00<2/mg/L)		80		Red		,			ı	
EG (µS/Cm) ±3%			plant	<u> </u>	_					
рН±0.1					-					
Eh (mV) ±10mV										
Temp (90)			\perp		·					
SWL _i (m) after	96.705									
Purged Volume (L)	٥									
Cum; Volume (L)	0									-1
Water Colour										
Furbidity ±10%							•			
Other										
Observations / Notes										

Sample Container & Preserv	ation Data 👻				
Number of sample container: (Include QC samples)	1	2	3	4	5
Container Volume Container Type					
Filtration Preservation					
Sample Number (for Lab ID):	, raz				
QC Dup Sample No.:					

QUALITY MANAGEMENT MANUAL

Site / Project:	400	-					T Dave ID	\$1
one / Fojeot.			THWGUNDA	TER CON	TANIN	ATION	1	Number:
		+ 22E221	MENT				GUIK	
Client:	CFA							212163-2
Person Sampling	MARC	us B	aro			•	Initials:	MBB
Bore / Site Deta	SECTION AND ADDRESS OF THE PARTY OF THE PART							
Bore Condition / Lo	ocked?		Type Protect. C	ap / Cover:		Bore Depth (bg		
Inner casing/scree	n type & dia	meter: {	<i>حمالاح</i> Screen interval	/ex-cay (bal):	-	SWL (bgl) 0 = 9		2
upvc	50 mm	4,	0.3-1			,	0.850	
WL Measurement		F	RL of measurer		nAHD)	SWL Date/Time	;	
Tot of Other Observations	CASING e on Bore/Si	ita	an		- 1	20/09	112	
		16				·		
Bore Purge Data								
Purge method:	xiler	E	Bore Volume (L	.):		Purge Date: 24	0/9/12	
Purge rate (L/min):		7	Total Purge volu	ume (L):		LNAPL / PSH T	hickness (m	ım)
						None /	mm	
Purge Field Phy								
	Reading1	Reading 2	2 Reading 3	Reading 4	Reading	5 Reading 6	Reading 7	Reading 8
Start Time:	5.05	5.07	5.09	5.11	2.13			
						- Sair	roled	
DO (mg/L) ±10% (or ±0.2 (f.00×2 mg/L)		58-0	. 55.5	56.0	583			
EC (μS/Gm) ±3%		1087	726	7.13	718		-	
) pH ±0.1		7-02		7.22	7.2	r4	· · · · · · · · · · · · · · · · · · ·	
Eh (mV)±10mV		91.5	95.2	92.9	92.1	<u> </u>		, .
Temp (°C)			T. 1					l .
-		\2-1	12.1	12-1	12.1			
SWL (m) after	0.950	0.855	0.970	1.095	1.091			
Purged Volume (L)	0	>	1	1 .	.			
Cum, Volume (L)	0	3	4	2	6			~
Water Golour	**************************************	clear	17	ir	tr			
Turbidity ±10%	en e	None	s.y	'1	ιί			
Other		V=0	r.					
Observations / Notes	Processor 1	0=0	. 9	·(1	4			
		l			ļ			İ

Sample Container & Presen	vation Data 🕒				
Number of sample container: (Include QC samples)	1	2	3	4	5
Container Volume		-			
Container Type					
Filtration					
Preservation					
Sample Number (for Lab ID):	10110-20c	2912	•		
QC Dup Sample No.: 📿 С ら 🦠	200918	& QC	09-200	59/2	4

QUALITY MANAGEMENT MANUAL

Start Time: 2.5 \ 3:13 Bailed SWL to low lavel and a	63-2
Person Sampling: MARCUS BOYD Initials: MSB Bore / Site Details Bore Condition / Locked? GOD / LOCKED Inner casing/screen type & diameter: UNC 50 mm WL Measurement Point Tot of CASING Other Observations on Bore/Site Bore Volume (L): Purge method: Purge pata Purge rate (L/min): Purge Field Physiochemical Measurements: Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 7 Reading 1 Reading 7 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 7 Reading 1 Reading 2 Reading 6 Reading 7 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 6 Reading 7 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 6 Reading 7 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 6 Reading 7 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 6 Reading 7 Reading 1 Reading 2 Reading 3 Reading 4 Reading 6 Reading 7 Reading 1 Reading 2 Reading 3 Reading 4 Reading 6 Reading 7 Reading 6 Reading 7 Reading 1 Reading 1 Reading 2 Reading 3 Reading 6 Reading 7 Reading 7 Reading 6 Reading 7 Reading 8 Rea	63-2
Bore / Site Details Bore Condition / Locked? GOOD LOCKED Control Con	
Type Protect. Cap / Cover: Bore Depth (bgl): \$.5m (b.Toc)	
Inner casing/screen type & diameter: UNC 50 mm WL Measurement Point Tot of CASING Other Observations on Bore/Site Bore Purge Data Purge method: Purge rate (L/min): Purge Field Physiochemical Measurements: Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 7 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 7 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 7 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 7 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 7 Reading 1 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 7 Reading 1 Reading 1 Reading 1 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 2 Reading 1 Reading 1 Reading 1 Reading 2 Reading 3 Reading 3 Reading 4 Reading 5 Reading 7 Reading 1 Reading 1 Reading 1 Reading 2 Reading 3 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 1 Reading 1 Reading 1 Reading 1 Reading 1 Reading 2 Reading 3 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Rea	
Inner casing/screen type & diameter: UNITY SO MAN WL Measurement Point Top of CASING Other Observations on Bore/Site Bore Purge Data Purge method: Purge rate (L/min): Purge Field Physiochemical Measurements: Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Start Time: SWL (bgl) (570C) 3.985 SWL (bgl)	
WL Measurement Point Tot OF CASING Other Observations on Bore/Site Bore Purge Data Purge method: Purge rate (L/min): Organia Measurements: Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 7 Reading 2 Reading 5 Start Time: Start Time: But of measurement point (mAHD) SWL Date/Time 20/01/12 Purge Date: 20/9/12 Purge Date: 20/9/12 Purge Pield Physiochemical Measurements: Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 1 Reading 1 Reading 2 Reading 1 Reading 2 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 2 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 1 Reading 1 Reading 1 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 1 Reading 2 Reading 1 Reading 1 Reading 1 Reading 1 Reading 1 Reading 2 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 1 Reading 1 Reading 1 Reading 2 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 1 Reading 1 Reading 2 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 R	
Other Observations on Bore/Site Bore Purge Data Purge method: Purge Date: 20/9/12 Purge rate (L/min): Orași Maria Total Purge volume (L): 18 LNAPL / PSH Thickness (mm) Norie) /	
Other Observations on Bore/Site Bore Purge Data Purge method: Date	
Purge method: Purge Date: 20/9/12 Purge rate (L/min): 0.095 L/min Total Purge volume (L): 1.8 LNAPL / PSH Thickness (mm) None /mm Purge Field Physiochemical Measurements: Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 2 Reading 5 Reading 5 Reading 7 Reading 6 Reading 7 Reading 8 Reading 8 Reading 8 Reading 8 Reading 9 Readi	
Purge method: Purge Date: 20/9/12 Purge rate (L/min): 0.095 L/min Total Purge volume (L): 1.8 LNAPL / PSH Thickness (mm) None /mm Purge Field Physiochemical Measurements: Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 2 Reading 5 Reading 5 Reading 7 Reading 6 Reading 7 Reading 8 Reading 8 Reading 8 Reading 8 Reading 9 Readi	
Purge rate (L/min): 0.095 L/min Total Purge volume (L): 1.8 LNAPL / PSH Thickness (mm) None /	
Purge Field Physiochemical Measurements: Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 1 Reading 2 Reading 3 Reading 4 Reading 5 Reading 6 Reading 7 Reading 8 Reading 8 Reading 8 Reading 8 Reading 9 Read	
Start Time: 2.5 \ 3:13 Bailed SWL to low lave (or dr.) BO (mg/L) ±10% (01-10.2 \ HD 0-2 mg/L)	
Bailed SWL to low lavel for dry	ina 8
BO (mg/L) ±10% (or 10.2+000-2 mg/L)	
DO (mg/L) ±10% (gr 10.24 DOC2 mg/L)	
EC (μS/Cm) ±3% pH ±0.1	
Eh:(mV) ±10mV	
Temp (°C)	
SWL (m) after 3.985 5.356	
Purged Volume (L) 0 1.8	
Cum. Volume (L).	ব
Water Colour in the Local in the Colour in t	
Turbidity ±10%	<u></u>
Other Jro	
Observations / Notes Cane up with harm	- 1

Number of sample container: (Include QC samples)	1		2	3	4	5
Container Volume						
Container Type						
Filtration						
Preservation						
Sample Number (for Lab ID): 《	24111-201	0912				

EQUIPMENT QUALITY REPORT Water Quality Meter:

The following equipment has been issued as follows:

Equipme	ent is clean	Į	Impeller	and probe che	ck
	t the following items	Factory C 7.00 3.99 12891 0 % 240	mV and all items are		
before retuning.	A minimum \$20 ser	rvice/repair c	harge applies t	o any unclear	or damaged items.
Item			HT Id No.	Sont	Returned
Market Company of the	leter Hanna/Hydrola	1.135 10 10 10 10 10 10 10 10 10 10 10 10 10		>6III	Actumed
Manual		<u> </u>	476 N/A	_	
Probe Cluster	Terfe vortiek oppress allege tekon is 2 ek annada i		_		PLOSE INCIDENCE IN COLUMN TO THE PARTY OF TH
In situ monitorin	g cage		N/A		
Storage cup			N/A	/	
Flow through Ce			N/A		
Calibration cup a			N/A		
Spare Batteries /			N/A		
Test and Tag req	uested		· · · · · · · · · · · · · · · · · · ·		
Date:	18-9-12		re-Delivery Cali	bration confir	mation Test
Checked by:	DW		- Company		
HT JOB NO:	673	>7 C	LIENTS REF: F	P/O No: 2	12163.2
RETURN DATE	E: / /	C	ONDITION ON	RETURN:_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TIME: NOTES:					-
-	2 Wingrove S	Street • Alphi	ngton • VIC• 3	078 • Austral	lia

Telephone: 03 9490 1422 •

Fax: 03 9490 1452

Email: info@hydroterra.com.au

Internet: www.hydroterra.com.au

949368

COPY 2

1. Name of Waste Producer Acides of State of Waste Source Postcook State Postcook					
Amount of Waste Amount of Waste Advisor		r of the Waste.		Address of Site of Waste Source LCLGGCCCGGCAGGAGAGAGAGAGAGAGAGAGAGAGAGAG	t
Amount of Waste Amount of Waste Amount of W		roducer	3.		
Amount of Waste Amount of Waste Advisor	2	T e Pr	4.	Description of Waste	
Amount of Waste Amount of Waste Advisor		D S		DiRilling vina	
Amount of Waste Amount of Waste Advisor		eted			
Amount of Waste Amount of Waste Advisor		ое сотр	5.		TTERS
Signature Date 2009 PR Address Vehicle No. 1 Registration Transport Permit No. Vehicle No. 2 Registration Transport Permit No. 2 Registration Transport Permit No. 2 Registra		인			LOCK LE
6. Name of Transporter Address Vehicle No. 1 Registration Transport Permit No. Vehicle No. 2 Registration Transport Permit No. Vehicle No. 2 Registration Transport Permit No. Permit				I declare that to the best of my knowledge and belief the above information is true and correct. Name and Position MAGUOUS STORY OF CONTROL OF	PLEASE USE B
Address Vehicle No. 1 Registration Transport Permit No. Vehicle No. 2 Registration Transport Permit No. Part Company Com		·	e		1
Tacknowledge receipt of the waste described in part A. Name (in block letters) Signature 7. Name of Disposal/Treatment/Storage Facility Address Type of Treatment (List 5) Address Type of Treatment (List 5) Briefly note discrepancy: 10. Name and address of any other waste receiver to which the waste receiver intends that the waste be transported 11. I hereby acknowledge acceptance of the waste described in part A. Name	y the ier.		Address		
Tacknowledge receipt of the waste described in part A. Name (in block letters) Signature 7. Name of Disposal/Treatment/Storage Facility Address Type of Treatment (List 5) Address Type of Treatment (List 5) Briefly note discrepancy: 10. Name and address of any other waste receiver to which the waste receiver intends that the waste be transported 11. I hereby acknowledge acceptance of the waste described in part A. Name	ted b				
Signature Date 7.0 C 1 /2 7. Name of Disposal/Treatment/Storage Facility Licence No. Address Type of Treatment (List 5) 8. Amount of Waste 9. Are there any discrepancies between the wastes described above and the waste received? YES NO Briefly note discrepancy: 10. Name and address of any other waste receiver to which the waste receiver intends that the waste be transported 11. I hereby acknowledge acceptance of the waste described in part A. Name Name	a	nple Tran		W. C. G. 7.7 4 EP. 6.5.0.7.4. EP.	
Signature Date 7.0 C 1 /2 7. Name of Disposal/Treatment/Storage Facility Licence No. Address Type of Treatment (List 5) 8. Amount of Waste 9. Are there any discrepancies between the wastes described above and the waste received? YES NO Briefly note discrepancy: 10. Name and address of any other waste receiver to which the waste receiver intends that the waste be transported 11. I hereby acknowledge acceptance of the waste described in part A. Name Name	PA	e cor aste			P. C
Name 1 21012 Name 2 2005/2		To b W		Name (in block letters)	
Name 1 21012 Name 2 2005/2				Signature Date [7,6 6 ?] 12	NOX FINOS
Name 1 21012 Name 2 2005/2			7.	Name of Disposal/Treatment/Storage Facility Licence No.	원
Name 1 21012 Name 2 2005/2		<u>.</u>		Address Type of Treatment (List 5)	× ×
Name 1 21012 Name 2 2005/2		Was		Type of Treatment (List 5)	MPA
Name 1 21012 Name 2 2005/2		iving	R	Amount of Waste	N/C
Name 1 21012 Name 2 2005/2		Эесе	0.		ERSC
Name 1 21012 Name 2 2005/2	(pot F			H H
Name 1 21012 Name 2 2005/2	ון ב	e De	9.	Are there any discrepancies between the wastes described above and the waste received?	BY⊤
Name 1 21012 Name 2 2005/2	5	by th		YES NO Briefly note discrepancy:	NED
Name 1 21012 Name 2 2005/2		eted	10.	Name and address of any other waste receiver to which the waste receiver intends that the waste be transported	ETAI
Name 1 21012 Name 2 2005/2		Jupl			H
P Name 2002		be co	11.	I hereby acknowledge acceptance of the waste described in part A.	
Signature		7		Name 7	
		, g ^{all} s		Signature	Ö

지 이 이 의 이	<u> </u>		Capping Carrier	Reorder Code	997268		
CONTRIBUTE OF THE CONTRIBUTION DOCKET DOCKET INT. REHAT/KC/279589	WST RECD INV COLLECTED	M218	Nige Liss				13
)C#1	00FR 80LP 2-LFS 80EP 1	00FL NA 00LP 2-LFS 00SW 2-T19				
43	18/89	ROURLY 200 LT/KG EACH	200 LT/K6 200 LT/K6				M-M-SITE DRUMS
(03) 9369	02:54:23:FM	1. 999 1. 999 1. 95 1. 999 1. 990 1. 900 1.	3				. ##
LAVERTON NORTH 126 AUSTRALIA 59 4222 Fax: (1gin 7829 NUMBER 28788 BER 212163.2	ETY.	(COZ *~34.1					##TolnsT CCT ON US BOYD EFA. L E 0411
RYY D, O, O, O, O, MER. ABM	H#: 0450070849 PACK GRP, RISK ACTUA	, ^{re}	· · · · ·				######################################
	ECIM WIN W	111 - 2482	48 3077 111 30XY 111				7 / 2 /
Enquiries: 83 DOMERTY VICTORIA Phone: (0 Ma	Ø≾9585ØlØØ S POISON HAZCHEM	>*; €.4	AN A				
	TEL# # 003	3 PRODUCTS - 9	na 9 nh ssted			X	DATE DATE DATE DATE DATE DATE CUT TORIGINALLY CHARGES.
alia Ltd. IN SITES ING GROUND AN RD	DZGEDEZS11 FIDK	THE FOLLOWING PRODUCTS TO DEPOT 9	CEVY FUEL CONTAMINATED WASTE CONTAMINATED WATER is for additional Items not Manifested	2.2		AUTHORISED L	Drisati
SACAL. Polomatrix Australia Ltd. Remit to: 240; NORTH, A 3025 T: GRETCHEN SIT CANEPIPER CFA TRAINING GR ELONG-BALLAN RD LE	FAX: M396M	FOR WASTE DISPOSAL OF THE FOLLOWING COLLECTION-FEE-DEPOT TO DEPOT DRILLING MUD EPA TRANSPORT CERTIFICATE CHARGE	CEVY FUEL CONTAMINATED WASTE CONTAMINATED WATER is for additional It				∠ ⊢
A Division of Dolowatrix Australia Please Remit to: PO BOX 240, ALTONA NORTH, VICTORIA 3025 VICTORIA 3025 CARDNO LANEFIFER JOB AT CFA TRAINING 4549 GEELONG-BALLAN FISKVILLE	CLIENT FA	L.C.	H 79805 CEVY FUEL R 29247 CONTAMINA H 61177 CONTAMINA This area is for ad			##COLLECT	ORIGINATOR OPERATIONS TRANSPORT TIME IN *** ADDITIO

E-8923

956977

		,		
		1.	Name of Waste Producer	
			Address of Site of Waste Source	
			45,48, (16,6,1,0,0,9,-,B,a,1,14,n,7,d,2)	ı
			Name of Emergency Contact Postcode Postcode Frygronmental	ı
	ste.		L.A. J. R. C.M A. Y. A. W. Phone 5. 4. Y. S. 9. 8. 5. 3. 2. 3. Performance Unit	t
	e Was	2.	Proposed Disposal/Treatment/Storage Site GPO BOX 4395 MELBOURNE 300	11
	r of the		P. 1. S. P. C. S. M. E	
	Completed by the Producer of the Waste.	3.	Intended Disposal Route — Recycling Landfill Energy Recovery Chem/Phys Treatment Storage Incineration Immobilisation Biodegradation Other .	
ļ	PARI	4.	Description of Waste	
7	d by			
	plete	_		
	be com	5.	Waste Code No. (List 1) Hazard Category Contaminants (List 3) Waste Origin (List 4) S D 2 1 0 (List 2) 7, 8, 29	BLOCK LETTERS
	To 1		U.N. Number Class Packing Group Bulk/No. of Packages	CK LE
			3077	
			Amount of Waste , , , , kilograms or , , t cubic metres or , ,	USE
			I declare that to the best of my knowledge and belief the above information is true and correct.	PLEASE USE
			Name and Position	4
			Signature Date 1,2 1,1 (1)	
	pe .	6.	Name of Transporter	
α	leted by the ansporter.		Address 83 JOHEKTYS RO LACERTON ATIH	
F	letec ansp		Vehicle No. 1 Registration Transport Permit No. Vehicle No. 2 Registration Transport Permit No. EP 7 4 8 EP EP EP	 _m <
7	comp (aste Tr		I acknowledge receipt of the waste described in part A.	T A & PART
-		-	Name (in block letters)	PAR
	-		Signature Date 12 1,1 12	MELE
		7.	Name of Disposal/Treatment/Storage Facility Licence No.	TO EPA WITHIN SEVEN (7) DAYS WITH PART THE PERSON/COMPANY WHO COMPLETED F
	<u></u>			
	Vaste		Address Type of Treatment (List 5)	EVEN PAN,
i	ing V			IN SI
	eceiv	8.	Amount of Waste cubic metres or litres	WIT NOS
(ָלֱ לֵ		the grant of the g	E PEI
ŀ		9.	Are there any discrepancies between the wastes described above and the waste received?	[유문
3	\$ \$ \$		YES NO Briefly note discrepancy:	ARDE TE B
•	eted t	10.	Name and address of any other waste receiver to which the waste receiver intends that the waste be transported	BE FORWARDED COMPLETE BY
	To be completed by the Depot Receiving Waste	e e		
	pe c	11.	I hereby acknowledge acceptance of the waste described in part A.	오.
	ျ		Name 2	۲ 1
			Signature	COPY 1
1			·	

956978

	1.	Name of Waste Producer	
		Address of Site of Waste Source	
		4,2,4,8,6,4,6,0,1,0,0,0,2,5,6,0,1,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,1,1,0,1,1,1,0,1	A **
		Postcode 3342 VICTORIA	
	. '	Name of Emergency Contact Environmental	
aste		L _Λ , υ, ν, ν, ν, κ, γ, Α, ν, Phone υ, φ, φ, φ, φ, φ, σ,	
e	2.	Proposed Disposal/Treatment/Storage Site State MELBOURNE 300)1
†	5	$p_{i,j,s,p,o,s,A,Z_{i,j}}$ $V_{i+\varepsilon}$	
T A	3.	Intended Disposal Route – Recycling	
PART by the Pr	4.	Description of Waste	
D A		$g_{1}, g_{1}, g_{2}, g_{3}, g_{4}, $	
leted			
PART A To be completed by the Producer of the Waste	5.	Waste Code No. (List 1) Hazard Category Contaminants (List 3) Waste Origin (List 4) L L 100 (List 2)	TTERS
1 Q		U.N. Number Class Packing Group Bulk/No. of Packages	BLOCK LETTERS
		Amount of Waste) E BI
		kilograms or cubic metres or 2.06 litres	PLEASE USE
		I declare that to the best of my knowledge and belief the above information is true and correct. Name and Position	LEAS
		Signature AUREN RYAN Junify Date 1,21,11,2	
Ф	6.	Name of Transporter	
w ₹	Ţē.	Address 83 QOHEKTYS LO LASEKTON WITH	
TB eted by the	insporter	Vehicle No. 1 Registration Transport Permit No. Vehicle No. 2 Registration Transport Permit No.	
A John C	aste Ira		TA&B PART
	Vaste	I acknowledge receipt of the waste described in part A.	ART /
T ₂	>	Name (in block letters) MATTTHEW BEZZINA	IH P/
_		Signature Date 12 1,1 12	(7) DAYS WITH PART
	7.	Name of Disposal/Treatment/Storage Facility Licence No.	PAG
<u>ن</u>		Address Type of Treatment (List 5)	
Was		Type of Treatment (Elst o)	SEVE MPAI
Ving	8.	Amount of Waste	EPA WITHIN SEVEN (
Becel	0.	kilograms or , cubic metres or , litres	WIT
O to			1 111
7	9.	Are there any discrepancies between the wastes described above and the waste received?	T C X
PART by the De	,	YES NO Briefly note discrepancy:	ARDI
-	10.	Name and address of any other waste receiver to which the waste receiver intends that the waste be transported	BE FORWARDED COMPLETE BY
PART C be completed by the Depot Receiving Waste	- [· `		[监8
<u>8</u>	11.	I hereby acknowledge acceptance of the waste described in part A.	阜
100		Name 2	\ \ -
		Signature Date	COPY 1
1	- 1		I

956979

COPY 1

	1.	Name of Waste Producer	
		$C_1F_1A_1$	
		Address of Site of Waste Source	4
		7,5,98, 9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	
		$f_{1}f_{2}S_{1}K_{1}J_{1}f_{1}L_{1}L_{2}S_{1}$ VICTORIA	X 1
		Name of Emergency Contact Environmental	ıit
laste		GPO BOX 4395	5
S	2.	Proposed Disposal/Treatment/Storage Site State MELBOURNE 30	01
j.	; ·	$[O_1 I_1 S_1 P_1 O_1 S_1 A_1 C_1] + [V_1 P_1 C]$	
a Sec	3.	Intended Disposal Route – Recycling 🗌 🔎 Landfill 🗌 Energy Recovery 🗌 Chem/Phys Treatment 🗌	T .
	. U.	Storage Incineration Immobilisation Biodegradation Other	
PART by the Pr	4.	Description of Waste	
A		CONTANTIAL MASTE	
ted			
Joble	5.	Waste Code No. (List 1) Hazard Category Contaminants (List 3) Waste Origin (List 4)	က္ဆ
PART A To be completed by the Producer of the Waste.		S N 2 1 0 (List 2) 7 8 2 9	BLOCK LETTERS
o		U.N. Number Class Packing Group Bulk/No. of Packages	<u> </u>
		5017	Ö
		Amount of Waste	
	i	cubic metres or litres	ls.
,		I declare that to the best of my knowledge and belief the above information is true and correct.	PLEASE USE
		Name and Position	급
		Signature Van Kyn LAUREN RYAN Date 12/11/2	
-	6.	Name of Transporter CHENGSAL	1
T B eted by the		$\sigma \in \Omega$	
w $\frac{b}{a}$	insporter	Vehicle No. 1 Registration Transport Permit No. Vehicle No. 2 Registration Transport Permit No.	
P lete	rans	ZJ,0,407 [P,7,1,48]	B ₹
🗶 lb.	ejg E	l acknowledge receipt of the waste described in part A.	TA 8
~	\ X	Name (in block letters)	PAR
<u>ا</u> کے ا		Signature Date 12 1.1 12	TEN PLAN
-			§ 00 § 00 § 00
	7.	Name of Disposal/Treatment/Storage Facility Licence No.	TO EPA WITHIN SEVEN (7) DAYS WITH PART A & I THE PERSON/COMPANY WHO COMPLETED PART
<u> </u>		Address Type of Treatment (List 5)	
Was			SEVE MPA
jna			- <u>2</u> 2
acel	8.	Amount of Waste kilograms cubic metres cubic	WIT
ا ا ا ا ا		Allogramo Si	EPA
PART C be completed by the Depot Receiving Waste.	9.	Are there any discrepancies between the wastes described above and the waste received?	[오본
PAR by the [YES NO Briefly note discrepancy:	OEE
		TES Shelly hote discrepancy	BE FORWARDED
letec	10.	Name and address of any other waste receiver to which the waste receiver intends that the waste be transported	E S
000			H C
pe c	11.	I hereby acknowledge acceptance of the waste described in part A.	유
<u>م</u>		Name	<u>-</u>
		Signature	COPY 1
1.		Signature	1

Control Contro	. Niferi	SHOWVE		<u> 23</u>			
Remit to: 83	IYS RD.	LAVERTON NORTH		Ē		COLLECTION	
VICTORIA Phone:	3825 83) 9369	, AUSTRALIA 4222 Fax: (03)	7 / 3) 9369 438 0	€Ti:		DOCKET	
Sazs					DATE	37/11/08+0	
SOLD TATT: LAUREN RYAN CARDNO LANEPIPER	Waste Origin CUSTOMER NUMBER	7 7824 H 28788			NI REB	NI BERITANA 282111	
AT CFA TRAINING GROUND	ORDER NUMBER	LAUREN RY					
FISKVILLE	**************************************	Required 12.	77.77.77.77.77.77.77.77.77.77.77.77.77.		PAGE NO		
111	MOB#: 0448	0448485323 03:20	03:28:52:PM 07:	07/11/2012	LOW L	RECD INV	\
CODE ITEM DESCRIPTION CLASS POISON HAZCHEM L	UNA PACK GRF. RISK	ACTUAL QTY	OUANTITY UNIT	DISP.	LOCATION EPA	COLLECTED EPA DKT#	/
FOR WASTE DISPOSAL OF		-	1	,			т
H 79899 COLLECTION FEE-DEPOT TO DEPOT H 79747 CONTAMINATED WASTE	111 2282	1 x 200 L	. 3.000 HOURLY	ක ස ක ස ලැ ස ලැ ස	9-1 FR		
61177 CONTAMINATED WATER		1 x 200 L	200	#5 9 9		1156	
29513 DRILLING MUD 9 2X	3 0 77 III	7.507.755. 7.007.755.		9180	•	N218	
H 22341 DRUM ZBBL! CLEAN H 69189 FPA TRANSPORT FERTIFICATE CHARGE		14.14.14.14.14.14.14.14.14.14.14.14.14.1	1.080 COLLECT	88811 9850	1-4EGT	:	
79905 LEVY FUEL NA NA	\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			1000	· · · · · · · · · · · · · · · · · · ·		
ha ha		***************************************	1.000 EACH	*899	64		
. CUMBINATION OF 35 DRUMS TO BE COLLECTED - EMPTY & FULL. This area is for additional Items not Manifested							
				,			
	- 4 - 4 - 7 - 7			_			
			•				
						_	
				_	* * * * * * * * * * * * * * * * * * * *	1	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_			
##COLLECTION AUTHORISED	<u>Z</u> ;						
	140年	HERLEY FRITCH NOT RUCT IONS	:swoi				
(INIT)	SITE SA48 77 12 13 14 15 15 15 15 15 15 15	CONTACT: 485 323	LAUREN RYAN				
** ADDITIONAL ITEMS NOT ORIGINALLY MANIFEST WILL ATTRACT EXTRA CHARGES.	- Q	DIRECTORY REF -	B EAGE				!

Appendix H

Groundwater Database Search

Table I-1: Groundwater Database Search Results

<u> </u>	_					l					l				l	ı -		l		l					
Direction	from Site	NN	Μ	SSW	SSW	S	S	S	S	z	S	×	NNE	Μ	SE	SE	SE	SE	SE	SE	SE	SE	SE	NN NN	NN
Distance	from Site	7.40	7.43	4.18	4.35	2.36	3.94	3.47	2.43	2.78	1.03	1.70	3.31	4.96	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.09	2.93
Lithology		Z	Т	Z	z	>	>	>	>	z	z	>	>	Z	z	z	Z	z	Z	z	Z	Z	Z	>	>
Type		NKN	LS	Λl	Δ	꼰	MQ	MQ	ST	Λ	Δ	Δ	DM/ST	9N	9N	9N	9N	9N	9N	9N	9N	9N	9N	SO	DS
Screen	Interval		1.000					5.000	42.670			29.000	21.000											0	0
Screen	Lower		38.000					20.000	096.09			61.000	76.000											0	0
Screen	Upper		37.000					45.000	18.290			2.000	55.000											0	0
Depth		82.300	40.0	55.160	096'09	33.000	56.380	50.3	91.440	21.3	73.8	61.000	76.000	81.690	46.3	0.500	41.500	15.350	30.000	6.300	16.250	6.3	16.8	0.09	61
Date		12-Mar-68	26-Apr-83	31-Dec-39	31-Dec-39	23-Dec-78	17-May-82	19-May-82	9-Feb-83	31-Dec-39	31-Dec-39	2-Mar-83	15-Mar-98	31-Dec-22	31-Dec-19	2-Jun-83	22-Jul-83	11-Aug-83	1-Sep-83	16-Aug-83	23-Aug-83	29-Aug-83	2-Sep-83	28-Jun-04	29-Mar-04
Easting 55 Northing 55		5828800	5824950	5821360	5821244	5822663	5821100	5821600	5822750	5829028	5824179	5826050	5829300	5824800	5823066	5821962	5821962	5822145	5822125	5822145	5822116	5822116	5822097	5828624	256604.101 5828947.238
Easting 55		247100	246500	252537	252296	255155	254900	255400	253800	253888	254230	252300	256200	248981	259863	257123	257123	257222	257166	257222	257204	257204	257144	252129	256604.101
Site ID		31877	31880	32150	32151	32152	32153	32154	32155	75809	75810	75812	94018	100340	100395	100396	100397	100398	100399	100400	100401	100402	100403	140774	140177
Bore ID		B53091	B53094	B53380	B53381	B53382	B53383	B53384	B53385	B106570	B106571	B106573	B135442	B302754	B302811	B302812	B302813	B302814	B302815	B302816	B302817	B302818	B302819	BG8010825/01	BS9019239/1

NKN = Not Known; ST = Stock; IV = Investigation; IR = Irrigation; DM = Domestic; NG = Non-groundwater; DS = Domestic and Stock

Appendix I 3 Pages

Information About Environmental Reports

About Site Environmental Assessment Reports

1. Introduction

This document explains the Environmental Site Assessment (ESA) process and the context that applies to the use of Environmental Reports issued by Cardno Lane Piper.

2. What is an ESA?

Environmental Site Assessments (ESA) are undertaken for a range of purposes, specific to the brief issued by the client in each case. The scope may include one or a combination of any of the following:

- ☐ A factual report of the condition of a portion of the site or one aspect of an entire site.
- □ Assessment of the contamination levels in soil to be removed from a site – a waste classification assessment.
- ☐ Validation of the success of remediation of a site or a portion of a site.
- ☐ Provision of a professional opinion about the suitability of a site for one or more uses, in terms of its contamination status.

The scope of any ESA needs to be defined at the outset

An ESA is not an Environmental Audit. Such audits are undertaken in accordance with the provisions of regulations enacted in various states of Australia, and are referred to as Site Audits in some jurisdictions. Statutory audits provide certification by EPA accredited auditors that a site is suitable for one or more uses. An ESA may provide similar advice but cannot be used in place of an audit if the latter is required by regulation in any instance. However in some circumstances and jurisdictions an ESA is sufficient to provide "environmental sign-off" of a site.

An ESA may be undertaken for due diligence purposes, to establish whether the site has been impacted to the extent that some beneficial uses of the site may be precluded. Due diligence audits in many cases may be completed as non-statutory Audits, although in some jurisdictions they can also be statutory audits, if defined as such at the outset.

3. The ESA Process

The Client generally initiates the ESA process by specifying a brief which identifies the specific objectives of the assessment. If not, it is the consultants' duty to so specify the ESA

In the case of an ESA to provide an opinion about the suitability of the site for use, it would be conducted in accordance with NEPM (Site Assessment). Such ESA would not commence until a thorough site history assessment (Phase 1 Assessment: to identify the potential for significant contamination at a site) is conducted. However, where the history is unclear, a broad screening of chemical parameters can be used to test environmental media. This normally includes a broad range of organic and inorganic compounds and elements, often referred to as an Environmental Screen.

(In the case of an ESA for a purpose other than to provide an opinion about the suitability of the site for use, it is not always necessary to undertake a Phase 1 assessment.)

The ESA requires sampling of soil at representative locations across the site. A NATA accredited laboratory performs the analysis of soil. It is impractical for all of the soil to be assessed. The ESA is often based on a statistical method of grid or random sampling, augmented by targeted sampling at locations known or suspected to be contaminated. Guidance on sampling strategy and density is provided in Australian Standard AS4482.1–2005. However, some considerable degree of judgement is still required in the application of any sampling and testing strategy. For example the blanket application of the "hot spot" method presented in this standard is often inappropriate given its limitations.

The field program also investigates the likelihood of contamination below the site surface. Field investigations must sample and test fill as well as the natural soils. If contamination is found then it is common for further work to be undertaken to characterise, to the extent practical, its vertical and horizontal extent. However, where fill is encountered and testing shows it to be uncontaminated, it must be realised that the heterogeneous nature of the material might mean that not all pockets of contaminated material can be detected using normal sampling regimes.

EPA guidelines for auditors, that may be relevant for an ESA, indicate the need in all cases to consider the potential for groundwater contamination in any site. This does not mean all sites need to be drilled to sample groundwater, but it is most often the case. Most hydrogeological settings and groundwater conditions are complex and vary in space and time. The condition of groundwater is investigated to identify if any beneficial use or environmental value of groundwater is precluded due to contamination.

As previously stated for soil, all groundwater at the site cannot be tested. The environmental investigations are conducted in accordance with industry standards and guidelines (e.g. EPA Vic Pub 668). This provides a level of confidence that a sufficiently comprehensive assessment of the groundwater at the site is achieved.

Where an investigation shows that groundwater is polluted, consideration should be given to assessing the risks and the need for and practicality of any clean up.

4. Environmental Assessment Report

The ESA Report details the findings of the ESA. It provides summary information on the site definition, the reasons for the assessment and other relevant facts. It reviews the scope and quality of the site investigations, laboratory testing and data analyses undertaken. These reports also present a review of the contamination status of the site, the need for any further clean up, and an opinion on the suitability of the site for a range of beneficial uses and land uses such as "residential – low density", "commercial" etc, as appropriate.

However, as noted above, some ESA have a narrow scope such as for classification of waste soil for removal from site, and do not make conclusions on suitability of site for use.

The ESA Report generally includes copies of other documents and reports, necessary to support the assessment findings, presented as appendices. These can contain more detailed information than the body of the ESA Report. Care should be taken to also read the appended documents and the ESA report in full.

Cardno Lane Piper generally issues reports in electronic form (e-Report) on CD ROM. ESA Reports are issued in this format as Adobe AcrobatTM PDF files. However, a paper copy of the executive summary of the ESA Report is generally issued to the client, and others as required by the brief or by regulation.

5. Limitations of Environmental Assessment Report

The ESA Report is prepared in a manner that can be easily read by a lay person with a legitimate interest in the contamination status of the site, such as the site owner or occupier, EPA and Local Planning Authority. The ESA report is not intended for use by other parties or for other purposes. Anyone who uses the assessment report for purposes other than specified in the report, does so at their own risk.

The site should only be used for one or more of the beneficial uses and land uses identified in the ESA as suitable.

The conditions and qualifications may apply to the suitability of the site for use, and it is the responsibility of the Client to be cognizant of and accept these in accepting the report. Cardno Lane Piper are only responsible for the issuing of the ESA report but accepts no liability for the costs incurred in the implementation of ESA findings.

The ESA provides a "snapshot" of the site conditions at the time of the site investigation. Consequently, the report may not be valid at a later time if there has been any change to the contamination status of the site in that time. Verification of the status of the site may be required in cases where a significant time has elapsed, or site conditions have changed since the assessment and audit.

The ESA is necessarily limited by constraints such as time, cost and available information; although normal professional practice at the time has been applied with all due care to prepare the report. A necessary requirement of this process is the horizontal and vertical interpolation of data from discrete locations. However, site conditions are homogenous not discrepancies will occur between the actual and predicted results at locations not directly sampled. There is a risk that contamination may occur at the site and not be identified by a competent investigation and assessment. The approach adopted in sampling (a combination of statistically based grid and judgmental sampling) seeks to reduce, but cannot eliminate, this risk.

Where unexpected occurrences of contamination arise, subsequent to the issue of the ESA Report, Cardno Lane Piper should be permitted to make an interpretation of these facts in relation to the ESA Report findings. Consequently, the Client should inform Cardno Lane Piper and seek their opinion. Cardno Lane Piper accepts no liability for costs incurred due to such unexpected

occurrences, given the inherent uncertainties in the assessment process.

Cardno Lane Piper uses information provided by other parties as the basis for the ESA, and reliance on this information is at the discretion of Cardno Lane Piper. However, however Cardno Lane Piper cannot guarantee any of the facts, findings or conclusions presented by other parties. Cardno Lane piper will not be liable for the use of information, provided by others that is subsequently found to be intentionally misleading.

The ESA Report is not and does not purport to be anything other than a contaminated land ESA. It is not a geotechnical report and bore logs reproduced are for interpretation of the likely distribution of contamination. They are not intended for geotechnical interpretations and may not be adequate for this purpose.

The ESA Report is not intended to be a comprehensive analysis of the presence and associated risk of asbestos in buildings and services. Where asbestos in buildings and services is known or likely, the report may only caution that an appropriately qualified person be engaged to undertake demolition to avoid contamination of the site.

Cardno Lane Piper Pty Ltd

1 July 2011