

Shaping the Future

Privileged and Confidential Human Health Risk Assessment - Downstream Users Fiskville Training College 4549 Geelong-Ballan Rd, Fiskville Victoria Ref No: 212163.17 Prepared for Ashurst March 2014

Shaping the Future

DOCUMENT CONTROL

© Copyright 2014 Cardno Lane Piper Pty Ltd (ACN 120 109 935) Bldg 2, 154 Highbury Road, Burwood Vic 3125 Australia Tel: +61 3 9888 0100 Fax: +61 3 9808 3511 www.lanepiper.com.au www.cardno.com

This report is prepared solely for the use of Ashurst (the client) to whom this report is addressed and must not be reproduced in whole or part or included in any other document without our express permission in writing. No responsibility or liability to any third party is accepted for any damages arising out of the use of this report by any third party.

Report Title:	Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria			
Doc. Ref:	212163.17Report04.5			
Date	31 March 2014			
Client:	Ashurst			
Signatures:	Prepared By: Authorised By:			
	Giorgio De Nola	Anthony Lane CEnvP		
	Senior Environmental Risk Assessor	Senior Principal		

Documents Distribution:

No of Copies	Туре	Recipient Name	Position & Company	
1	1 Electronic Rob Jamieson		Partner, Ashurst	
1	1 Electronic 212163.17		Cardno Lane Piper	

HUMAN HEALTH RISK ASSESSMENT - DOWNSTREAM USERS

4549 Geelong-Ballan Rd, Fiskville Victoria

EXECUTIVE SUMMARY

Cardno Lane Piper was engaged by Ashurst ("the Client") on behalf of the Country Fire Authority (CFA), to prepare an assessment of risk to human health to 'downstream water users' from CFA Fiskville Training College ("the Site"). This Human Health Risk Assessment (HHRA) has been prepared in response to recommendations in the Report of the Independent Fiskville Investigation Report (IFI Report).

Scope of the HHRA

This HHRA was prepared to address risks for people downstream of the site who are potentially exposed to contaminants in water from the creeks¹ and the Moorabool River downstream of the site. This relates specifically to IFI recommendation 3. The scope of work is to:

- 1. Conduct a Human Health Risk Assessment to estimate the potential for impacts upon the health of persons exposed to contaminants in on-site water bodies that discharge to the downstream creeks from the Site as a result of fire-fighter training activities.
- 2. Provide recommendations regarding actions required to eliminate or effectively manage identified risks.

The scope of the HHRA was expanded further during the course of this investigation to assess risks to downstream users who are potentially exposed (directly or indirectly) to wind-blown materials such as wind-blown foams², spray drift³ and any potentially resultant impacts (e.g. soil, grass, rainwater in water tanks etc.).

HHRA Methodology

The methodology employed in this section is consistent with the guidelines of the Australian enHealth Council (enHealth 2012), and the Australian National Environmental Protection Measure for contaminated sites (NEPC 1999) and was conducted in the following four steps:

- 1. Issue identification;
- 2. Exposure assessment;
- 3. Dose Response; and
- 4. Risk characterisation.

The risk characterisation of the HHRA is conducted in a qualitative manner. It relies on risks characterised in an assessment of fish consumption performed in a HHRA for the Fiskville

³ Spray drift results from the use of water spray in training exercises. Spray drift is unlikely to have contained PFC since June 2012, when CFA ceased using recirculated dam water in training and switched to town mains water only for training purposes.

¹ The Beremboke Creek, the drainage channel and the Eclipse Creek are referred to in this report collectively as "the creeks". Dams are also found along the creeks and are included in the definition of the creeks. See Section 3.1 for a description of the creeks.

² Wind-blown foams means clumps of aerated foam resulting from two sources: i) use of foam products in training and ii) foams generated in Dam 1 as a result of a mechanical aerator. The makeup of the foam is dependent on the source of foam

Community (Cardno Lane Piper 2014a) which included a combination of methodologies for characterising risk.

Chemicals of Potential Concern

Perfluorinated chemicals (PFCs) were identified as Chemicals of Potential Concern (CoPC) in water (Section 3.2). At the Site, various PFCs are present in Class B fire-fighting foams used in the instruction of fire-fighters to fight liquid fuel fires. The PFCs have been identified in a range of media including water, sediment, soil, grass, rabbit and fish.

CoPC in this HHRA are restricted to those attributed to site related activities, i.e. fire-fighter training activities. This does not include assessment of risks of chemicals, including microbial pathogens, which may be present as a result of regional influences (e.g. Thermotolerant coliforms sourced from animal droppings which are washed into waterways).

Note that PFCs were identified as CoPC as selected in a screening process which considered data for a large number of chemicals and indicators included in the analytical schedule for surface water and sediment. The chemicals and indicators included: inorganic chemicals and indicators (e.g. ammonia and biological oxygen demand) biological measures (e.g. faecal coliforms), organics chemicals (e.g. petroleum hydrocarbons, pesticides and perfluorinated chemicals) and metals (e.g. arsenic, copper, and zinc).

A range of exposure pathways are assessed in this HHRA (see Section 3.4) including:

- Direct exposure pathways, such as incidental consumption of water for people who infrequently enter the creeks; and
- Secondary exposure pathways, which include consumption of fish caught from the Moorabool River.

Potentially complete exposure pathways are identified and used as the basis for defining four different scenarios.

Exposure Scenarios

The amount of exposure assumed for each scenario was ranked based on a qualitative assessment (Section 4), the outcome of which is shown in Table 1.

- Scenario S1: Very low exposure for people who potentially drink water contaminated with spray drift⁴;
- Scenario S2: Very low exposure for people who enter the creeks (or associated dams) infrequently;
- Scenario S3: Low exposure for people who consume fish caught recreationally from the Moorabool River; and
- Scenario S4: Low exposure for people who consume meat from animals, including wild rabbit (Scenario S4a) and farmers immediately downstream of the site who consume meat from livestock (Scenario S4b) that drink contaminated water from the creeks.

The assumed exposures have been assessed qualitatively relative to people who have consumed fish from Lake Fiskville as assessed by Toxconsult (2014). Due to the very high concentrations of PFC in fish in Lake Fiskville the exposure from this pathway is considered to be much higher (potentially orders of magnitude higher) than primary exposure pathways (e.g.

⁴ Spray drift results from the use of town mains water only in training exercises. Spray drift is unlikely to contain PFC since town mains water only has been used in training since 2012.

contact with creek or river water) and also some secondary exposure pathways (e.g. consumption of local produce).

The qualitative ranking of exposure does not indicate the risk level for each scenario. This is dealt with in Section 4, Exposure Assessment.

PFCs in water from the Moorabool River were lower than laboratory levels of reporting. Therefore, the following exposure pathways were considered incomplete along the Moorabool River:

- Exposure to treated drinking water collected from the Moorabool River (Sheoaks dam); and
- Consumption of local produce irrigated with water from the Moorabool River.

Therefore exposure associated with these pathways is considered negligible and as such it has been determined that these pathways do not warrant further evaluation.

Assessment of Chemical Risks

Risks characterised qualitatively are as follows for the four human health scenarios considered in this HHRA:

- <u>Risks are considered negligible</u> for people who:
 - Engage in infrequent activities along the creeks, such as farmers (Scenario S1);
 - Drink tank water potentially contaminated with PFCs (Scenario S2);
 - Consume fish caught recreationally from the Moorabool River (Scenario S3), noting that the amount of fish in the ephemeral creeks between the site and the river is likely to be very limited; and
 - Consume meat from rabbits caught along the creeks (Scenario S4a).
- <u>Further assessment is currently underway</u> for people who consume meat from livestock from adjoining properties (Scenario S4b). This assessment is being conducted by ToxConsult ⁵ and will be reported separately

The finding of negligible risk for downstream users who consume fish caught recreationally from the Moorabool River (Scenario S3) or rabbit meat (Scenario S4a) is based on findings of negligible risk from a health impact assessment for people who have consumed fish from Lake Fiskville (ToxConsult 2014). Blood serum concentrations of PFC were measured in people collected as part of the CFA health surveillance program. This program included people considered to be within the 'medium' and 'high' relative risk of exposure group identified in chapter 7 of the IFI Report (Joy 2012). The program was extended to include people who reported eating fish from the lake⁶ and other workers at the site who were concerned about potential exposures to PFC. PFC serum concentrations were used for the following reasons:

- Significant uncertainties in the data precluded assessing health risk from eating fish using a traditional tolerable daily intake (TDI) approach; and
- Toxicological effects of PFOS are directly related to serum concentrations

⁶ Twelve of the 22 participants in the 'fish consumption' study indicated that they had eaten fish or eel from the Lake in the past

⁵ ToxConsult is a Melbourne-based toxicology consulting company, providing specialist advice regarding toxicology issues to a range of industries and government (see <u>http://toxconsult.com.au/</u>).

Toxicologist Dr Roger Drew and the CFA medical officer (ToxConsult 2014) both concluded that they do not expect there to be any health implications arising from the concentrations of PFOS⁷ measured in the serum of the persons investigated. This is based on observations that:

- A few individuals had PFOS concentrations at, or slightly above, the upper edge of the background range⁸; and
- None of the individuals examined had changes in their blood parameters characteristic of PFOS, or which correlated with their PFOS serum concentration⁹.

Conclusions

The risks calculated for downstream users potentially exposed to PFCs present in water, fish and/or rabbits are considered negligible. Further assessment is currently underway for people who consume meat from livestock. There are no recommended actions arising from the conclusions of this HHRA for Downstream Water Users.

Cardno Lane Piper March 2014

⁹ Some persons had blood parameters outside the reference ranges but these were associated with existing health conditions, medication or admitted lifestyle factors.

⁷ Perfluorooctyl Sulphonic Acid (PFOS) is a PFC that has been identified at concentration in environmental media that are significantly higher than other PFC.

⁸ These results are higher than what is expected for the majority (95%) of the general population. Nevertheless they were still markedly less than serum concentrations in factory workers making PFOS, and for whom there are no PFOS associated changes in blood parameters or demonstrable illness.

HUMAN HEALTH RISK ASSESSMENT - DOWNSTREAM USERS

4549 Geelong-Ballan Rd, Fiskville Victoria

Table of Contents

DO	CUME	ENT CONTROL	. I
EXE	ECUT	IVE SUMMARY	
1	INTR	RODUCTION	. 1
	1.1	Background	1
	1.2	Other Related Recommendations from the IFI Report	2
	1.3	Brief Description of the Creeks	3
	1.4	Purpose and Objectives of the HHRA	4
2	RISK	ASSESSMENT CONTEXT & METHOD	5
	2.1	What is a risk assessment?	5
	2.2	HHRA Methodology	5
3	ISSU	IE IDENTIFICATION	8
	3.1	The Creeks and Land Uses Downstream	8
	3.2	Chemicals of Potential Concern in the Creeks	11
		3.2.1 Water and Sediment Investigations	11
		3.2.2 Chemicals Assessed in the HHRA	12
		3.2.3 Summary of Perfluorinated Chemicals in Various Media	14
	3.3	Exposure Pathways for Downstream Users	16
	3.4	Exposure Scenarios	20
4	EXP	OSURE ASSESSMENT	21
	4.1	Exposure for Scenarios Considered in this HHRA	21
	4.2	Exposure Assessment of Fish Consumption	23
5	DOS	E RESPONSE ASSESSMENT	25
	5.1	Acute Risks for Perfluorinated Chemicals	25
	5.2	Chronic Risks of Chemicals of Potential Concern	25
6	RISK	CHARACTERISATION	27
	6.1	Risks from Drinking Contaminated Drinking Water (Scenario S1)	27
	6.2	Risks for People Who Enter the Creeks (Scenario S2)	29
	6.3	Risks from Consumption of Fish (Scenario S3)	29
	6.4	Risks from Consumption of Meat (Scenario S4)	30
		6.4.1 Risk Findings for Consumption of Meat from Wild Rabbit (Scenario S4a)	30
		6.4.2 Risks from Consumption of Meat from Livestock (Scenario S4b)	31
	6.5	Summary of Risk Findings	31
7	ASS	UMPTIONS, UNCERTAINTIES AND DATA GAPS	32
	7.1	Uncertainty Analysis	32
	7.2	Data Gap Analysis	34
8	CON		36
9	REFI	ERENCES	37

Text Tables

Table 3-1: Off-Site Surface Water Bodies and Lake Fiskville	. 10
Table 3-2: Chemicals of Potential Concern Identified in Water (µg/L)	. 13
Table 3-3: PFCs in media along the creeks and Moorabool River	. 14
Table 3-4: Potential for Fall-out of Wind-blown Foams and Spray Drift from the FL PAD	. 16
Table 3-5: Potential Human Exposure Pathways for Downstream Users of The Creeks and the	ne
Moorabool River	. 18
Table 4-1: Qualitative Assessment of Exposures for Scenario 1 to Scenario 5 (S1 to S5)	. 21
Table 5-1: Toxicity rating for PFOS and PFOA	. 25
Table 6-1: Risk Conclusions reached by ToxConsult (2014) for Fish Consumption	. 29
Table 7-1: Uncertainty related to Exposure Assumptions	. 32
Table 7-2: Summary of Data Gaps and Comment	. 34

Text Figures

Figure 2-1: Outline of the Health Risk Assessment process and other related programs	6
Figure 3-1: Beremboke Creek downstream of the Site (19/06/2013)	8
Figure 3-2: Off-site Surface water bodies and Lake Fiskville	9
Figure 3-3: Conceptual Exposure Model for Downstream users of the creeks and the M	loorabool
River	17

Appendix

Appendix A7 Pagendix A.	ges
Figures	
Figure A1: Site location	
Figure A2: Creek Surface Water Results - A	
Figure A3: Creek Surface Water Results - B	
Figure A4: Creek Sediment Results - A	
Figure A5: Creek Sediment Results - B	
Figure A6: On-site Results (away from training areas)	
Figure A7: Off-site Results	
Appendix B14 Pag	ges
Description of On-site Creeks and Downstream Land Use Assessment	
Appendix C 29 Da	a
Appendix Comments of Potential Concern, Data Quality and Data Cans	yes
monitoring results, chemicals of Potential Concern, Data Quanty and Data Gaps	
Appendix D	aes
Soil Sampling and QA/QC	9
Appendix E	ges
Fish Sampling and QA/QC	
Appendix F	ges
Rabbit Sampling and QA/QC	
Annondiy C	a • •
Appendix G	yes
Health Effects Assessment: Consumption of Fish	

Appendix H	23	Pages
Toxicological Profile of PFC		-

LIST OF ABBREVIATIONS AND UNITS

Chemical Names

- 6:2 FTS 6:2 fluorotelomer sulphonic acid
- OPC Other perfluorinated chemicals
- PFCs Perfluorinated chemicals
- PFAA Perfluorinated alkyl carboxylic acids
- PFAS Perfluorinated alkyl sulfonic acids
- PFOA Perfluorooctanoic acid
- PFOS Perfluorooctane sulphonic acid
- VOC Volatile Organic chemicals

Technical Terms

CoPC	Chemicals of Potential Concern
enHealth	Environmental Health Committee (<i>enHealth</i>), a subcommittee of the Australian Health Protection Committee (AHPC).
HHRA	Human Health Risk Assessment
NHMRC	National Health and Medical Research Council
N/A	Not Applicable
NEPM	National Environmental Protection Measure
OHS	Occupational Health and Safety
TIT	Triple Interceptor Trap
TRV	Toxicity Reference Value
USEPA	United States Environment Protection Authority
WHO	World Health Organisation

Units

mg/kg	Milligram per Kilogram (approximately equivalent to ppm)
mg/L	Milligram per Litre
ppb	Part per Billion
ppm	Parts per Million
µg/kg	Microgram per Kilogram (approximately equivalent to ppb)
µg/L	Microgram per Litre

Site Specific

CFA	Country Fire Authority
FL PAD	Flammable Liquids PAD
IFI	Independent Fiskville Investigation
MMFB	Melbourne Metropolitan Fire Brigade
PAD	Practice Area for Drills
RTG	Regional Training Ground
WS Pit	Water Supply Pit

HUMAN HEALTH RISK ASSESSMENT - DOWNSTREAM USERS

4549 Geelong-Ballan Rd, Fiskville Victoria

1 INTRODUCTION

1.1 Background

Cardno Lane Piper was engaged by Ashurst ("the Client") on behalf of the Country Fire Authority (CFA), to prepare an assessment of risk to human health to 'downstream water users' from CFA Fiskville Training College ("the Site" or "FTC") based on recommendation in the IFI Report prepared by Professor Rob Joy (Joy 2012). The Site is located at 4549 Geelong-Ballan Rd, Fiskville, Victoria as shown in Appendix A, Figure A1. Downstream water users include people who access "the creeks" (Beremboke Creek, Drainage Channel and the Eclipse Creek) and/or the Moorabool River downstream of the site.

The IFI Report concluded, amongst other things, that:

- Persons involved in hot-fire training at Fiskville in the past were potentially exposed to a range of compounds including flammable chemicals.
- People potentially exposed to water and sediment in Dams 1 & 2 may need to be better protected from contamination in the water bodies.
- The water and sediment in the dams and Lake Fiskville are contaminated and can flow to the creeks downstream.
- While the likely exposure of people downstream to contamination is extremely low, this should be assessed further.

The IFI Report made a number of recommendations relevant to risk assessment. These have been interpreted in the context of the overall understanding of the key risk issues for human health and the ecology both on- and off-site. The approach taken by Cardno Lane Piper to the assessment of risks and how this relates to the IFI recommendations is summarised as follows (with emphasis added to highlight the relevance to this report):

IFI Report Recommendation 3:

"……that further investigation be undertaken into surface waters in and discharging from Lake Fiskville to:

- <u>Better quantify the risk to downstream human health receptors</u>, taking into account downstream dilution and environmental fate and transport mechanisms;
- Investigate potential sources of PFOA and PFOS discharges to Lake Fiskville and discharging off site, if the potential risk of adverse impact on downstream human health receptors is found to be unacceptable;
- Collect surface water samples at a representative location to assess whether the reported copper and zinc concentrations are consistent with background levels; and assess the ecological condition of Lake Fiskville."

The scope of this Human Health Risk Assessment (HHRA) was initially focussed on potential exposure to water and sediment in surface water bodies downstream of the site. However there

was a need to expand the scope of this HHRA during the course of this investigation to assess other impacts identified off-site including downstream users who may potentially be exposed to chemical compounds¹⁰ in food products (e.g. fish, rabbits and livestock meat). Assessment of impacts related to wind-blown foams¹¹ and spray drift¹² from the training area of the site was also included in this HHRA.

In response to the IFI Report, Cardno Lane Piper has undertaken the following investigations (reported separately):

- The risks to human health for people from the Fiskville Community are being assessed in another HHRA in a document titled "Human Health Risk Assessment – Fiskville Community" (Cardno Lane Piper 2014a).
- The potential sources of PFOS and PFOA and a range of other chemicals and metals has been documented in a report titled "Surface Water and Sediment Contamination Assessment, CFA Fiskville Training College" (Cardno Lane Piper 2014b)
- The ecology of Lake Fiskville and the water bodies downstream has been assessed and is documented in a report titled *"Aquatic Ecology Assessment, Fiskville Training College"* (Cardno 2014).

1.2 Other Related Recommendations from the IFI Report

The IFI Report made a number of other recommendations relevant to risk assessment. These have been interpreted in the context of the overall understanding of the key risk issues for human health and to identify impacts on the aquatic ecology both on-site and off-site. The approach taken by Cardno Lane Piper to the assessment of risks and how this relates to the other IFI recommendations is summarised as follows:

IFI Report Recommendation 5:

"....that any subsequent study of possible linkages between exposure of persons during training at Fiskville to materials such as flammable liquids and health effects evaluate the usefulness of the qualitative assessment of relative risk of exposure of different groups developed in Chapter 7".

Cardno Lane Piper has not undertaken any work in relation to this as it relates to exposures of personnel in the past. These past exposures are being addressed in a separate study undertaken by Monash University.

IFI Report Recommendation 6:

"...that procedures be put in place to protect the health of personnel potentially exposed to waters and sediments in Dams 1 and 2 of the firewater treatment system and, in particular, to manage the risks to individuals who have the potential to come into contact with sediments in the dams during routine maintenance".

¹² Spray drift results from the use of water in training exercises. Spray drift is unlikely to contain PFOS and PFOA since June 2012, as CFA ceased using recirculated dam water in training and switched to town mains water only for training purposes.

¹⁰ Compounds may be defined as a substance that is made of two elements chemically combined (i.e. a chemical) or more broadly as a substance composed of multiple parts or ingredients (e.g. soap). The term chemical is used in this HHRA when referring to chemical compounds.

¹¹ Wind-blown foams results from two sources: i) use of foam products in training and ii) foams generated in Dam 1 as a result of a mechanical aerator. The makeup of the foam is dependent on the source of foam

In response, Cardno Lane Piper has reviewed the potential exposures of current day CFA personnel including maintenance workers for the purpose of developing the current risk assessment and also preparing advice on upgrading the CFA Standard Operating Procedures for Health & Safety Management. The response to this recommendation has been extended to consider the health risk to personnel involved in hot-fire training drills using the Dam 2 water (and was reported in a document titled *"Summary report - Human Health Risk Assessment – CFA Training Personnel"* (Cardno Lane Piper 2014c). This HHRA is used to inform many of the decisions to be made in relation to upgrades to water systems and practices for future hot fire training. It will also provide the basis for development of a 'fit for purpose' non-potable and sustainable fire-training water supply into the future. This is documented in a report *"Fire Training Water Quality Criteria – CFA Training Grounds, Victoria"* (Cardno Lane Piper 2014d).

IFI Report Recommendation 8:

"....that historical landfill 1 which has been disturbed by the construction of a walking track needs to have its extent clearly identified, have an appropriate impermeable and properly drained cap constructed and be revegetated with shallow rooting species that will not compromise the integrity of the cap. This should ensure the safety of any people using the walking track".

In response, Cardno Lane Piper has undertaken an investigation into the landfill area to assess risks to people potentially exposed to the landfill area including those using the running track. This is documented in a separate report titled "*Investigation of Risks at Former Landfills, Fiskville Training College*" (Cardno Lane Piper 2014e).

IFI Report Recommendation 10:

"……that the site specific recommendations of the Golder Associates' Preliminary Site Assessment – CFA Regional Training Grounds be adopted including recommendations to:

- Undertake targeted soil and groundwater investigations at sites where possible sources of contamination have been identified;
- Assess fire fighting water quality for contaminants associated with flammable liquids and extinguisher foams;
- Assess water quality where discharges occur to the environment".

In response, Cardno Lane Piper has commenced a program of assessments of the Regional Training Grounds (RTGs). The findings of the human health and ecological assessments being prepared for the Fiskville Site are likely to be relevant to the future management of the RTGs, including the use of fire training water.

1.3 Brief Description of the Creeks

The Creeks¹³ downstream of the Fiskville Training College wind through a farming community and include:

- The Beremboke Creek downstream of the site;
- An agricultural drainage channel; and
- The Eclipse Creek.

¹³ The Beremboke Creek, the drainage channel and the Eclipse Creek are referred to in this report collectively as "the creeks".

The creeks, a highly modified ecosystem, contain a number of small farm dams and connect to the Moorabool River more than 20 km downstream from the site. The Moorabool River contains water holes suitable for swimming and at one location water is drawn to be used for town drinking water (at Sheoaks).

The creeks, described further in Section 3.1, are impacted by contaminants in water discharged from Lake Fiskville. The contaminants, sourced from fire-fighter training activities on the Site, are released into Lake Fiskville via a series of water retention dams and a drainage channel connecting them to the lake which forms the fire training water treatment system at the Site. Therefore, a potential pathway exists for people to be exposed to contamination from fire-fighting training via discharges to the creeks and the Moorabool River.

1.4 Purpose and Objectives of the HHRA

The purpose of this HHRA is to identify risks to downstream users of the creeks and the Moorabool River. The specific objectives of the HHRA are to:

- 1. Conduct a Human Health Risk Assessment to estimate the potential for impacts upon the health of persons exposed to contaminants discharged to the downstream creeks from the Site as a result of fire-fighter training activities.
- 2. Provide recommendations regarding actions required to eliminate or effectively manage identified risks.

2 RISK ASSESSMENT CONTEXT & METHOD

2.1 What is a risk assessment?

A HHRA is the process that estimates the potential for impact on specified human population(s) as a result of exposure to chemical hazards for a certain period of time (enHealth 2012a). The impacts may be assessed as a result of the exposure of people to chemical contaminants in air, water, soil and/or food or pathogenic microbiological contaminants in food and water.

A risk assessment is a tool that gathers and organises information to ascertain whether further management action is necessary. This then allows the risk assessment to be used as a tool "to provide complete information to risk managers, specifically policymakers and regulators, so that the best possible decisions are made" (Paustenbach 1989).

Risk assessments may be performed in a "screening" manner in which the evaluation of risk is inherently conservative by use of conservative assumptions. This is termed a Tier 1 Risk Assessment and is considered a cautious approach. This approach is adopted if little is known about exposure, a quick assessment is being conducted and/or the level of uncertainty in the risk assessment is high. The level of risk identified in a screening assessment may necessitate that more site-specific data be acquired which escalates the assessment to a Tier 2 or Tier 3 Risk Assessment. The collection of more site specific data typically serves to decrease the level of uncertainty in an assessment of risk.

Scenarios in this HHRA are assessed in a qualitative fashion which is consistent with a Tier 1 screening level risk assessment. Scenarios that require further assessment are not considered further in this HHRA. Site specific data will be collected and risks for these scenarios will be reported separately by Dr Roger Drew¹⁴ from ToxConsult ¹⁵.

2.2 HHRA Methodology

This HHRA is conducted to establish the risks associated with exposure to chemical substances in surface water of Lake Fiskville as briefly described in the objectives above. Risk to human health was assessed for 'acute' (short one-off) and 'chronic' (prolonged and/or repeated) exposure types.

The steps used in conducting this HHRA are shown below in Figure 2-1. It includes the following four steps as per Australian guidelines for conducting risk assessments which are accepted by the Environmental Protection Authority (EPA) and the Department of Health (DoH), namely enHealth (2012a):

- **Issue Identification:** Identifying the people who are exposed, where they are exposed and how they are exposed to the Chemicals of Potential Concern (CoPC) present in water and/or sediment.
- **Exposure assessment**: A description of assumed exposure for various risk scenarios being considered.

¹⁵ ToxConsult is a Melbourne-based toxicology consulting company, providing specialist advice regarding toxicology issues to a range of industries and government (see <u>http://toxconsult.com.au/</u>).

¹⁴ Dr Roger Drew, PhD, DABT, Toxicologist and Risk Assessor, is one of Australia's leading toxicologists and has over 40 years of experience in his field of expertise.

- **Hazard Assessment:** This includes a summary of the relationship between a dose of a CoPC and adverse health effect(s) based on latest toxicological information from published human and/or animal exposure studies.
- **Risk Characterisation**: This considers the significance of risks to people exposed to CoPC (issue identification) by comparing the level of exposure (exposure assessment) with a tolerable dose (hazard assessment).

A qualitative assessment of risk is primarily conducted for scenarios considered in this HHRA unless warranted and exposure assessment is well defined.

Figure 2-1: Outline of the Health Risk Assessment process and other related programs

A qualitative assessment of risk is primarily conducted for scenarios considered in this HHRA. This qualitative assessment is compared with a quantitative assessment of risks which has been performed by Dr Roger Drew¹⁶ (ToxConsult 2014, Appendix G) for people who consumed fish caught recreationally from Lake Fiskville (see Section 4). These consumers of fish are considered to represent the assumed highest exposure group over the long-term in the Fiskville Community. The assessment performed by ToxConsult (2014) is based on site specific data, i.e. PFC blood serum data collected from people in the Fiskville Community who volunteered to take part in a health surveillance program. It includes people who consumed fish from Lake Fiskville as well as workers from the training area considered to be within the 'medium' and 'high' relative risk of exposure group as identified in chapter seven of the IFI Report (Joy 2012). This PFC serum concentration was:

- Compared against background exposures; Background concentrations of PFC in the general communities was identified as <0.1mg/L. People with serum concentrations below this level were considered to have levels at background concentrations;
- Compared against a safe serum concentration: A human serum level considered without effect of 2 mg/L based on a number of methods (occupational epidemiological studies, no observable effect levels in animals and tolerable daily intakes); and
- Used to calculate a Margin of Exposure (MOE): "Calculation of margin of exposure is a standard risk characterisation method widely used by Australian Authorities" (ToxConsult 2014).

¹⁶ Dr Roger Drew, PhD, DABT, Toxicologist and Risk Assessor, is one of Australia's leading toxicologists and has over 40 years of experience in his field of expertise.

3 ISSUE IDENTIFICATION

This HHRA addresses potential exposures and risks to Downstream Users of the creeks and the Moorabool River. The following is included as part of the issue identification process described in this section:

- Description of the creeks and Land Uses Downstream (Section 3.1);
- The Chemicals of Potential Concern (CoPC) (Section 3.2);
- Identification of the potential exposure pathways (Section 3.3); and
- Detailing the Scenarios considered in this HHRA (Section 3.4).

Downstream Users in this assessment include any person who has access to the creeks and the Moorabool River.

3.1 The Creeks and Land Uses Downstream

The creeks downstream of the FTC are in a landscape altered by various types of farming enterprises. The creeks include:

- The Beremboke Creek: A small ephemeral creek (shown in Figure 3-1) that leaves the Fiskville Training College Site at its southern boundary (near the south-west corner of the Site). NB: It is connected to Lake Fiskville, an artificial lake located on the Site;
- A drainage channel: This channel runs through a reclaimed marsh/swamp area which was drained to allow for agriculture; and
- The Eclipse Creek: an ephemeral creek which includes waterholes that are not considered large enough for swimming.

Figure 3-1: Beremboke Creek downstream of the Site (19/06/2013)

The layout of the creeks (including upstream of the Site), the Moorabool River and Lake Fiskville (on-site) is shown in Figure 3-2 below. A summary of various sample locations taken in waterways, including up-stream of the Beremboke Creek (off-site upstream locations and on-site locations), along the creeks and in the Moorabool River is provided in Table 3-1.

Figure 3-2: Off-site Surface water bodies and Lake Fiskville

		Distance		
Area	ID	from Site ¹	Description of surface water body location	
Off-site upstream locations				
Creek Upstream	Location M	4 km	The furthest point upstream of the creek (i.e. at Swamp Gully ²) that enters Lake Fiskville	
Adjacent Creek (Upstream)	Location N	1.2 km	Parallel creek to the west of the Site ³ .	
On-site locations				
Creek (North)	Location A		Adjacent to the Northern site boundary as the creek enters the Site.	
Lake Fiskville	Locations LFA to LFE	On-site	Lake Fiskville is located in the South Western quadrant of the Site.	
Creek (South)	Location B		Adjacent to the Southern site boundary as the creek leaves the Site.	
Off-site downstream lo	ocations			
Creek and dams	Locations C, D and E	<2kms	The creek as it leaves the Site and at the input to two dams within 2km of the Southern boundary to Fiskville.	
Marsh Swamp Area	Not accessible	-	Area was not accessible. Area shown in Figure 3-2 as " <i>Marsh/Swamp Drained Area</i> ".	
Eclipse Creek (end of drainage channel)	Location F	9.5 km	Furthest upstream point of the Eclipse Creek at the end of the artificial drainage channel.	
Surface Runoff point	Location G	11 km	A surface runoff point at the end of the drainage channel exiting the Marsh/Swamp area ⁴ .	
Eclipse Creek	Location I	18.5 km	9km along the Eclipse Creek just prior to its confluence point with the Moorabool River.	
	Location J	28 km	The nearest point downstream of the confluence of the Eclipse Creek and the Moorabool River.	
Moorabool River	Location K	35 km	Approximately 7km along the Moorabool River	
	Location L	44 km	Downstream from the intake for the Moorabool Water Treatment Plant at She Oaks.	

Table 3-1: Off-Site Surface Water Bodies and Lake Fiskville

Note:

1. The reference to approximate distances to site are based on the northern site boundary and the distances are not linear as it takes into account the meandering of the creek, drainage channel and the Moorabool River.

2. The Ballan Geological Map Series 1:50,000 (1986), identifies the surface water body upstream of Lake Fiskville as *Swamp Gully*, and the surface water body downstream of Lake Fiskville as *Beremboke Creek*. However, for the purpose of this report, the natural surface water body running across the site will be identified as the Beremboke Creek.

3. This parallel creek flows into Blair Creek which is also a tributary of the Moorabool River. It does not run through the site.

4. There is a potential for excess water from the drainage channel/Eclipse Creek to drain to the adjoining property during a flood event.

There are a number of farm dams located on the creeks including two (2) dams on the adjacent land to the south. The creeks connect the Site (and Lake Fiskville) with the Moorabool River more than 20 km downstream from the site. The Moorabool River contains water holes suitable for swimming and is used for drinking water (water intake present at Sheoaks).

A description of on-site surface water bodies which are related to fire-fighter training activities on-site resulting in impacts on Lake Fiskville and the creeks is provided in Appendix B. A detailed description of site features can be found in the report on site history titled "Site History Review" (Cardno Lane Piper 2014f).

Uses of land downstream of Lake Fiskville were identified initially in a desktop assessment of aerial photographs (large scale) and internet resources such as real estate listings¹⁷. This was followed by a low altitude aerial photography survey of the creeks. A summary of these works is provided here with a further description provided in Appendix B.

The indications from this assessment are that land downstream of the Site is primarily used for raising livestock and horses. Sources of water identified in real estate listings include water tanks, dams, natural springs and bores for stock water. Water from bores (groundwater) and springs on properties downstream is unlikely to have been impacted by PFC from the site due to the great depth to groundwater on-site (>60m in most areas of the site) and inferred distance to bores on neighbouring properties being in the order of several kilometres (see Appendix B for more information on land use in the vicinity). The perched groundwater found to be contaminated at the FTC is inferred to be limited to the area of the associated water bodies on site that are the source of this localised water.

A close inspection of the low altitude aerial photos confirmed that land in the survey area is predominantly cleared with tree lined boundaries (windbreaks) on some properties and widely spaced farm houses. Many farm dams were visible in the aerial survey, however not all are connected to the creeks. Although this survey provides evidence of grazing livestock, there also appear to be areas of land used for cropping or hay cutting. There is no evidence of irrigation equipment on the farms and given that the creek is small and ephemeral, dryland farming is the most likely enterprise practised, i.e. any crops would be reliant on rainwater. Irrigation with water from the creeks is considered highly unlikely or at best limited. A heavily treed area is present in one section of the survey area which suggests some type of woodlot or forestry operation.

There is no direct evidence from the aerial survey of water from the creeks being used for drinking water. It is understood from the desktop study, real estate listings and general knowledge of the area and farming communities in general, that drinking water would principally be sourced from rainwater tanks.

3.2 Chemicals of Potential Concern in the Creeks

3.2.1 Water and Sediment Investigations

A number of sampling events have been conducted and reported separately to identify the extent of contamination in sediments and water in waterways downstream of the Site. The main monitoring event was conducted in August 2012 (Cardno Lane Piper 2014b). The aim of this monitoring event was to further characterise the extent of contamination of water and sediment in surface water bodies at the Site. Subsequent monitoring was performed to further investigate

¹⁷ Access to private property for inspection, sampling or interviews was not part of the scope of work except in the case of the property immediately adjoining the southern boundary of the site.

concentrations of PFOS and PFOA (including extended PFC screen) in the Moorabool River and the creeks.

A summary of the analytical data is provided in Appendix C along with a data quality review. The following organic and inorganic chemicals were identified (above laboratory limits of reporting) in the water and/or sediment of the creeks and Moorabool River:

- Organic chemicals:
 - Perfluorinated Chemicals¹⁸ including (but not limited to);
 - Perfluorooctane sulphonic acid (PFOS);
 - Perfluorooctanoic acid (PFOA);
 - 6:2 fluorotelomer sulphonic acid (6:2 FTS);
- Inorganic chemicals:
 - Metals including arsenic, chromium (total), copper, lead, nickel and zinc;
 - Ammonia (as nitrogen);
 - Fluoride;
 - Nitrate;
 - Nitrite; and
 - Sulphate.

Note that the CoPC were selected in a screening process which considered data for a large number of chemicals and indicators included in the analytical schedule such as:

- Inorganic chemicals: major anions/cations, BOD, COD, Ionic Balance, F⁻, Na, NH₃, NO₃, Nitrogen (Total), pH, Reactive Phosphorus as P, SO₄²⁻, TKN, Total F and TDS);
- Biological: Faecal Coliforms, Coliforms, E-coli, Total Coliforms (Colilert), pseudimonas. aureginosa);
- Organics chemicals: perchlorate, TPHs, MAHs, PAHs/ Phenols, VOCs, SVOCs, BTEX, PFC (including PFOS, PFOA, 6:2 FtS), Amino Aliphatics, Amino Aromatics, Anilines, Chlorinated Hydrocarbons, Explosives, Halogenated Benzenes, Halogenated Hydrocarbons, Halogenated Phenols, Herbicides, Nitroaromatics, Organochlorine Pesticides, Organophosphorous Pesticides, Pesticides, Phthalates, PCB and Solvents.
- Metals: aluminium, antimony, arsenic, barium, beryllium, boron, cadmium, cobalt, chromium, copper, iron, lithium, magnesium, manganese, molybdenum, mercury, nickel, potassium, phosphorous, lead, selenium, silver, titanium, vanadium and zinc.

3.2.2 Chemicals Assessed in the HHRA

A screening assessment was performed to identify chemicals that are designated the term "Chemicals of Potential Concern (CoPC)" requiring further assessment (see Appendix C, Section 2). This was performed in order to discriminate these chemicals from a much larger number of chemicals that are typically identified in water and sediment studies. Perfluorinated chemicals (PFCs) were identified as being of potential concern following screening and are assessed further in this HHRA:

• Perfluorinated chemicals:

¹⁸ The following compounds were tested in both monitoring events; PFAS: Perfluorobutanesulfonic acid (PFBS), erfluorohexanesulfonic acid (PFHxS), Perfluorodecanesulfonic acid (PFDS), PFAS: Perfluorohexanoic acid (PFHxA), Perfluoroheptanoic acid (PFHpA),), Perfluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDA), Perfluorodecanoic acid (PFDA), Perfluorotetradecanoic acid (PFUA), Perfluorotetradecanoic acid (PFTA), Per

- Perfluorinated alkyl sulfonic acids (PFAS) assessed using PFOS as a surrogate¹⁹;
- Perfluorinated alkyl carboxylic acids (PFAA) assessed using PFOA as a surrogate²⁰; and
- Other perfluorinated chemicals (OPC) assessed using 6:2 FTS as a surrogate²¹.

The reported concentrations of these chemicals (or CoPC) adopted for the HHRA are shown in Table 3-2. The concentrations reported are for PFC in the Beremboke Creek immediately downstream of the Site. It is important to note PFC concentrations reduce dramatically away from the Site.

Compound	Screening value	Concentration	
PFAS	0.2	20.2	
PFAA	0.4	10.6	
OPC	0.2	9.4	
Note: Source of screening value = Provisional Health Advisories for drinking Water (USEPA 2009)			

Table 3-2: Chemicals of Potential Concern Identified in Water (µg/L).

Escherica coli was not selected as a CoPC even though it was detected in 2 samples (only 2 samples measured) collected in the Beremboke Creek (110 and 250 organisms per 100mL). This is because *E. coli* is present as a result of regional activities and is typically identified in surface water bodies throughout Victoria. The mean *E. coli* levels reported in the literature for surface water bodies in regions with intense agriculture practice is 210 organisms per 100 mL, whereas in urbanised areas it is 450 organisms per 100 mL. During rain events the mean level of *E. coli* in surface water bodies, in intense agricultural areas, increases by orders of magnitude (up to 17,700 organisms per 100 mL) (CRC 2004). *E. coli* is not present in water as a result of fire-fighter training activities at the Site and it is beyond the scope of this HHRA to consider risks associated with this or other microbial pathogens.

A summary of data collected for PFCs in water, sediment and fish from the waterways is provided here. This information is sourced from the following reports prepared by Cardno Lane Piper:

- Cardno Lane Piper (2014b). Surface Water and Sediment Contamination Assessment. Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. Prepared for Ashurst.
- Cardno Lane Piper (2014g). Supplementary Surface Water and Sediment Sampling Downstream. Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. Prepared for Ashurst.
- Cardno (2014). Aquatic Ecologicy Assessment, Fiskville Training College, Victoria, Country Fire Authority.
- Cardno Lane Piper (2014h).Environmental Sampling and PFC Analysis Program, Adjacent Land

²¹ Very little toxicological data is available for the remaining PFCs. The basis of selecting the fluorotelomer, 6:2FTS, as the surrogate for this class is because it was identified in water and sediment in both monitoring events and is believed to be the PFC formulated in the class B foam product currently used by CFA.

¹⁹ The toxicological database for this compound is large and complex (Appendix H). Other sulfonic acids are anticipated to have similar toxicity however toxicity is assumed to increase with length of the fluorinated alky chain present.

²⁰ This was based on toxicity of PFOA for the same reason given for PFOS (see previous dot point).

References should not be made to this HHRA report as the primary data source. Instead, readers should make themselves familiar with the content of the reports referenced above. Any references to surface water, sediment or fish concentrations for PFCs in the waterways should be made directly to the original reports.

3.2.3 Summary of Perfluorinated Chemicals in Various Media

A summary of PFC Concentrations in various media is provided below in Table 3-3. See Appendix C for an extended summary and refer to Cardno Lane Piper reports for a more detailed analysis.

Media	The Creeks	Moorabool River
Water	 PFC concentrations in the creeks show a rapid reduction with distance downstream of the FTC. Using PFOS as an example: Sample Point B: ~13 μg/L (Site boundary). Sample Point I: <1 μg/L (16 km away). Source: see Cardno Lane Piper 2014b 	PFCs are below LOR in water samples from the Moorabool River (0.02 μg/L). Source: see Cardno Lane Piper 2014b
Sediment	 There is a large reduction in the levels of PFCs in sediment with distance downstream of the Site. Using PFOS as an example: Sample Point B: ~150 μg/kg (Site boundary). Sample Point I: ~5 μg/kg (16 km away). Source: see Cardno Lane Piper 2014b 	PFOS was detected in one of three samples downstream of the confluence with the creeks (1.8 µg/kg). PFOS was also detected at location upstream of the confluence with the Moorabool River and parallel waterways (<2.4 µg/kg). Source: see Cardno Lane Piper 2014b
Soil ¹	PFOS (derived from spray-drift) was detected at very low levels in surface soil ² up to 1.5km away from training areas on the Site. PFOS (and other PFCs) are below LOR at greater distances. Source: see Appendix C, Appendix D and Cardno Lane Piper 2014h.	PFCs in soils are unlikely to be detected at levels in soil as a result of wind-blown materials (including wind-blown foams or spray drift from the Site) due to distance (> 1.5kms away). Source: see Appendix C, Appendix D and Cardno Lane Piper 2014h.
Grass	PFOS was detected in 2 of 9 grass samples from a paddock on an adjacent property (within 600m of the FL PAD) with a maximum concentration of 10 µg/kg (Cardno Lane Piper 2014h). Grass samples from areas assumed to be inundated with water during high rainfall events has higher levels (maximum of 36 µg/kg) with 5 detects in 6 samples. Note that PFOA and PFOS are likely to be transferred from soil in to the vegetative compartment of plants (e.g. leaves of plants) rather than the storage organs such as tubers (Stahl et al. 2009). Source: see Appendix C and Cardno Lane Piper 2014h.	PFC in grass is assumed to be below detectable levels near the Moorabool River as PFOS was not detected in water and there are no soil related impacts from the site. Source: see Appendix C and Cardno Lane Piper 2014h.
Garden Produce	Leafy vegetables assumed to have similar PFC levels than grass.	Leafy vegetables assumed to have similar PFC levels than grass.
Water in	Water samples from three taps (sourced from	No data. Not required for this

Table 3-3: PFCs in media along the creeks and Moorabool River

Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

Media	The Creeks	Moorabool River
Rainwater Tanks	two different tanks) were analysed. PFCs were below levels of reporting. Source: see Cardno Lane Piper 2014h.	assessment,
Livestock	No data collected as part of this assessment. This data has been collected as part of an assessment being conducted by ToxConsult in relation to nearby farms.	No data collected.
Fish	No fish or invertebrates were caught due to the ephemeral and narrow nature of the creeks. A visual investigation by ecologists of Location I in the Eclipse creek failed to observe fish or larger inverterbrates (Cardno 2014). PFOS detected at levels ranging from 5,000 ng/g to 23,500 ng/g in fish from Lake Fiskville. Source: See Appendix E.	PFOS was detected in four of the five samples collected on Moorabool River downstream of Eclipse Creek. (average of 40 ng/g in muscle tissue, maximum of 60 ng/g in short-finned eel). PFOS was also detected in fish upstream of the Moorabool River (7/16 fish, average of 2.6 ng/g in muscle tissue, maximum of 6 ng/g in short-finned eel). Source: See Appendix E.
Rabbit	Rabbits were not collected from downstream locations. Rabbits at the FTC site were collected (10 samples, average of 224 ng/g, maximum of 600 ng/g) in the vicinity of on-site dams. PFOS levels in rabbits downstream of the Site are assumed to be considerably lower than in rabbits caught on-site (one to three orders of magnitude). Source: See Appendix F	PFC are unlikely to be present in rabbits in the vicinity of the Moorabool River as PFCs are below levels of reporting in water and likely to be below LOR in soil (>1.5km away from the Site). Source: See Appendix F
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·

1. It is considered likely that spray drift is the cause of impacts in soil away from training areas (see explanation below).

2. PFC in soil are well below the adopted screening guidelines (6 mg/kg PFOS) indicating that exposure from direct contact pathways (oral ingestion and dermal exposures and inhalation of dusts) is negligible.

Impacts have been identified in soil up to 1.5kms away from training areas. The most likely cause of the impacts identified is either spray drift and/or wind-blown foams. An account of the potential for foams and spray drift (from training activities and Dam 1) to be blown away by the wind was provided in personal communications between Cardno Lane Piper and a PAD operator from FTC. According to the PAD operator it is considered that there is potential for some aerated foam clumps to be blown onto training areas away from but nearby the FL PAD (and/or Dam 1). However, it was considered unlikely that it left the training area and highly unlikely they left the Site.

Wind-blown foams (aerated clumps) are considered highly visible and it would be clear if they were leaving the Site. However, it is possible that spray drift would be difficult to see and could have dispersed away from the FL PAD and may in fact be leaving the Site. It is Cardno Lane Piper's view that the most likely source of spray-drift would be the "Fog Spray" drill used on the FL PAD which was observed to send a fine spray of water several metres into the air. Therefore, spray drift is considered the most likely cause of impacts identified in soil away from training areas and on adjacent land as indicated in Table 3-4 below by the potential for fallout. The potential for wind-blown foam chemicals to also have an impact (on soil, drinking water etc.) is considered in a sensitivity analysis (Section 7).

At Boundary of Area	Wind-blown Aerated Foam	Spray Drift
FL PAD	Possible on windy days	Possible
Training Area	Unlikely. Falls to ground quickly and gets caught in grass	Possible on windy day.
CFA Site	Highly unlikely.	Possible on a windy day.

Table 3-4: Potential for Fall-out of Wind-blown Foams and Spray Drift from the FL PAD.

3.3 Exposure Pathways for Downstream Users

This assessment is focussed on people at properties downstream of the FTC that have direct access to water, potentially contaminated with PFCs. Oral ingestion is expected to be the pathway that dominates intake of PFCs from water and other environmental media (e.g. fish consumption). Dermal contact pathways are not considered for most scenarios as PFCs (e.g. PFOS, PFOA and 6:2FTS) are hydrophilic chemicals with poor dermal permeability (ATSDR 2009).

There are 2 types of pathways that have been evaluated in this document:

- *Primary Exposure pathways*: relate to people who are exposed to environmental media such as water and soil that contain contaminants released from a source, e.g. drinking water from a downstream water source that contains perfluorinated chemicals (PFCs) released from fire-fighter training activities via Lake Fiskville.
- Secondary Exposure Pathways: are based on people being exposed to contaminants which have accumulated in other media. As an example, where a contaminant has bioaccumulated and then been passed on to a person following consumption of that produce (e.g. fish, livestock, rabbits).

A number of exposure pathways were identified during a risk workshop conducted by Cardno Lane Piper. This also identified that many of the exposure pathways did not exist in the creeks due to their small and ephemeral nature. The relevant exposure pathways are:

- 1. A person who drinks tank water contaminated with PFCs due to spray drift.
- 2. A person who enters the creek or dams on an occasional basis, e.g. a farmer.
- 3. Incidental ingestion of water from the Moorabool River during recreational activities (e.g. swimming).
- 4. People who eat fish and yabbies from the Moorabool River.
- 5. People who eat products from livestock which drink water sourced from the creek downstream.
- 6. People who eat products from livestock which drink water sourced from the Moorabool River.
- 7. People who eat local produce, such as vegetables, grown on sites downstream of Fiskville.

The potential exposure pathways are shown in Figure 3-3 and summarised in Table 3-5 for primary and secondary exposure pathways.

Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria **Privileged and Confidential** Ashurst

Figure 3-3: Conceptual Exposure Model for Downstream users of the creeks and the Moorabool River

Privileged and Confidential Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

Pathway? Complete Yes Yes Yes ۶ ۶ å ۶ ۶ ٩ from contaminated soils) to settle on roof catchments Downstream users may have been exposed to spray soil in downwind areas around the PAD. PFC Levels in soil are very low and well below screening criteria PFCs are below LOR in the river hence the pathway It is highly unlikely that wind-blown foams leave the There is potential for spray drift (and possibly dust Wind-blown foam chemicals may be deposited on drift from training exercises on the FL PAD. Spray therefore this pathway is not considered complete. No waterholes that could be used for recreational drift is unlikely to contain PFOS and PFOA since waterholes along the Moorabool River. However, Site. This assumption is considered in sensitivity sed. PFCs are not considered volatile (ATSDR training in June 2012, Town mains water is now activities. Farmers may enter dams infrequently **Comment on viability of this pathway** CFA ceased using recirculated Dam 2 water in Creek water is unlikely to be used for human There is evidence of recreational activities in PFCs not detected in Moorabool River water used to collect rainwater for drinking quarterly) for maintenance tasks. analvsis (Section 7). As for 1A and 1B. is incomplete. consumption (<0.02µg/L) 2009). Likelihood Possible Possible Unlikely Unlikely Unlikely Likely Likely Likely Likely Incidental ingestion of and dermal Incidental ingestion of water used (near the site) spray drift or contaminated soils. exposure to wind-blown foams, Tank Water The creeks Moorabool River The creeks **Description of pathway** Moorabool for showering, laundry and gardening etc. Potential human exposure pathways River Potable water activities on: involved in People use Primary Exposure Pathways Contaminated Wind-blown Media Spray Drift Water foams Water Water Soils # ₹ θ <u>с</u> 3a 4a 4b 30 40 2

Table 3-5: Potential Human Exposure Pathways for Downstream Users of The Creeks and the Moorabool River

212163.17Report04.5

Page 18

Privileged and Confidential Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

	Potential hur	nan exposure pat	thways	Likelihood	Comment on viability of this pathway	Complete
Second	lary Exposure P.	athways				
5A	Aquatic life	People who eat fish or other aquatic biota	The creeks	Likely	The creeks are ephemeral. Systematic observations by ecologists of waterholes and 2 dams downstream did not find signs of fish or aquatic life. Fish and yabbies could be present but unlikely with abundance for regular harvesting.	oN
5B		from:	Moorabool River		PFCs were below LOR in Moorabool River however, as PFCs bioaccumulate, this pathway is considered active.	Yes
6A		People who eat	The creeks	Possible	The local area is predominantly grazing land used for livestock (sheen and cattle) and notentially wild	Yes
6B	Livestock	drink water from:	Moorabool River	Possible	rabbit. There is potential for livestock to access water for drinking from the creeks and Moorabool River.	Yes
7A	Local	People who eat produce grown	The creeks	Unlikely	Unlikely that local produce (fruit and vegetables) grown for human consumption is being grown using water from the creek or creek-fed dams.	No (Negligible)
7B	Produce	irrigated with water from:	Moorabool River	Possible	PFCs are below LOR in Moorabool River. Although PFCs bioaccumulate, exposure via this pathway is considered negligible.	No (negligible)

212163.17Report04.5

3.4 Exposure Scenarios

Scenarios in this HHRA are based on whether exposure pathways are complete or active between the source of the CoPC and the receptor/person (previously identified in Section 3.3) and whether the CoPC present in the exposure medium (e.g. water, food etc.) are at sufficient concentrations. The screening process, described in Appendix C, is applicable for screening CoPC as a result of exposure via primary exposure pathways. However, it is not detailed enough in this instance to identify whether a viable secondary exposure pathway is complete as the adopted screening criteria do not take into account the bioaccumulation potential of PFCs²². Therefore, the secondary exposure pathways considered viable (consumption of rabbit meat and fish) are also considered complete/active.

The following five scenarios outline the complete pathways and people (including adults and children) assessed in this HHRA:

- Scenario 1 (S1): People who are exposed to contaminated drinking water from their water tanks due to spray drift blown by the wind from the training area on the Site (Exposure Pathway 1).
- Scenario 2 (S2): People (predominantly farmers) who enter the creeks (including dams) infrequently for maintenance tasks. (Exposure Pathway 3A).
- Scenario 3 (S3): People who consume fish caught recreationally from the Moorabool River (Exposure Pathway 5B).
- Scenario 4 (S4): People who consume meat from livestock or wild rabbit which drinks water that contains PFCs (Exposure Pathway 6A and 6B). This scenario is split into 2 parts for wild rabbit meat consumption (Scenario S4a) and livestock meat consumption (Scenario S4b).

It is noted that a scenario has not been included for pathways where water collected from the Moorabool River is used for drinking or irrigation. This is consistent with the exposure pathway assessment shown above in Section 3.3 (see primary Exposure Pathway 1b and 7b respectively, Table 3-5). A scenario is not included because PFC levels in water from the Moorabool River were lower than laboratory levels of reporting. People who drink treated water (part of which may be collected from the Moorabool River) or eat local produce irrigated with water from the Moorabool River are not considered to be at any risk from PFCs. This means that exposure associated with these pathways is considered negligible and that these pathways do not warrant further evaluation.

²² PFCs have been shown to bioaccumulate and are considered highly persistent in the environment (ATSDR 2009, RIVM 2010). Bioaccumulation is a result of the uptake of a compound from water and/or food by a species which is greater than the ability of these species to remove that compound from the body (e.g. metabolism, elimination processes etc.).

4 EXPOSURE ASSESSMENT

The exposure assessment defines the extent of intake of the CoPC for each scenario considered (S1 to S4). Exposure is estimated by accounting for the expected behavioural patterns of people in each of the scenarios.

A quantitative assessment of risk has been performed for people who consume fish from Lake Fiskville (ToxConsult 2014, see Appendix G). This assessment was used to assess risk for people from the Fiskville Community (Cardno Lane Piper 2014a). The amount of the exposure assumed for each scenario in this HHRA is discussed in comparison with the fish consumption assessment performed by ToxConsult (2014). A summary of the exposure assessment from ToxConsult (2014) is provided below (Section 4.2).

4.1 Exposure for Scenarios Considered in this HHRA

The amount of exposure assumed for each scenario considered in this HHRA has been assigned a ranking based on a qualitative assessment of relative exposures. The likelihood that an exposure pathway is complete, based on current activities, is assessed as follows:

- *Likely*: There is evidence that this pathway is complete.
- *Probable*: There is anecdotal evidence that this pathway may be complete.
- *Possible*: There is no evidence of this pathway being present, however it is conceivable and could not be ruled out as a complete pathway.
- Unlikely: There is no evidence that this pathway is complete.

The qualitative exposure assessment is shown in Table 4-1. Note that the ranking does not correspond with a risk level (risk characterisation is discussed later in Section 6). Exposure ranges from high, e.g. those people who consume meat from livestock (S4b), to very low for farmers who infrequently enter dams on the creeks (S1). Generic exposure assumptions from enHealth (2012b) guidelines are considered, however it is noted that they are not applicable to scenarios being considered.

Scenario (Exposure Pathway ¹)	Summary of Scenario	Exposure Assessment
S1 (Exposure Pathway #1)	People exposed to spray drift ²	Spray drift is probably generated from the use of Fog Spray on the FL PAD which may be blown away from the PAD by the wind. Prior to June 2012, Dam 1 & 2 and town water was the source of water for training. Since June 2012, the only water used in training is town mains water. Therefore spray drift prior to June 2012, would have contained PFCs recirculated from the dams. Consequently, exposure to spray drift prior to 2012 is considered a potential pathway.
		Exposure to spray drift was considered in occupational exposures on the FL PAD where the personnel operating the hoses were estimated to be exposed to less than 0.1 mL per hour (Cardno Lane Piper 2014c, Attachment 1). People from the Fiskville Community would be exposed to considerably less due to their distance from the FL PAD, reduced exposure time and the variable wind direction. <i>Summary:</i> Exposure to PFC in spray drift is considered Iow .

Table 4-1: Qualitative Assessment of Exposures for Scenario 1 to Scenario 5 (S1 to S5)

Privileged and Confidential Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

Scenario (Exposure Pathway ¹)	Summary of Scenario	Exposure Assessment
S2 (Exposure Pathway #3A)	People who enter the creeks infrequently.	People (predominantly farmers) may enter the creeks (or dams on the creeks) on an infrequent basis (quarterly) as a result of carrying out maintenance duties in dams etc.
		This type of exposure is considered an acute/short term exposure as it occurs on an infrequent basis. It may include accidental ingestion of water if a high degree of body immersion occurs Accidental ingestion is assumed by Cardno Lane Piper to be less than 1 mL per hour. This assumption is considerably less than the amount of water accidentally swallowed during swimming (25 mL per hour, enHealth 2012b).
		PFCs are poorly absorbed dermally (ATSDR 2009) and accidental ingestion is assumed to be low.
		Summary: Exposure via this pathway is considered very low.
S3 Pe con cau rec Pathway #5B) Mo Riv	People who consume fish caught recreationally	PFOS has been detected in fish caught in the Moorabool River (maximum 60 ng/g). This is considerably lower than the PFOS levels in fish caught in Lake Fiskville (5,000 ng/g to 23,500 ng/g, Cardno 2014) considered in the assessment performed by ToxConsult (2014).
	from the Moorabool River	Consumption of fish flesh averages approximately 30g/kg/day for adults in Australia (enHealth 2012a). A recreational fisher is likely to consume less than the average amount of fish flesh from the Moorabool River as the fisher is likely
		 To obtain his recreational catch from various surface water bodies; and
		 Consume only a portion of the average daily intake from a recreational catch.
		It is assumed however that the amount of fish caught recreationally is not likely to be much different whether it was caught from Lake Fiskville or the Moorabool River.
		<u>Summary</u> : The exposure to PFCs in fish caught from the Moorabool River is considered low compared to exposure from fish caught from Lake Fiskville.
S4 (S4a and S4b)	People who consume meat from livestock	Exposure to PFCs via the consumption of meat is considered for people who hunt rabbit downstream and consume its meat and eat meat from livestock.
(Exposure Pathway #6A and 6B)	or wild rabbit which drinks water that contains PFCs	Rabbit meat : PFCs have been measured in rabbits hunted on the site near training areas (PFOS maximum 600 ng/g). It is considered likely that PFOS levels in rabbits downstream of the site are considerably lower due to much lower PFOS concentrations in:
		 Water from the creeks (<20µg/L) compared to dams in the training area (approximately 200 µg/L);
		 Soil on adjacent land (maximum of 0.229 mg/kg in an area that is inundated during high rainfall events) compared to soils in the training area (maximum of 53 mg/kg near the FL PAD, Cardno Lane Piper 2014h);
		It is noted that rabbit is assumed not to form a large part of people's diets in Australia.
		Summary (Rabbit): Exposure to PFCs in rabbit meat is assumed to be low.
		<i>Livestock meat</i> : Exposure to PFCs from the consumption of meat from livestock drinking water immediately downstream of Lake Fiskville is being assessed separately by ToxConsult. For the purposes of this

Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

Scenario (Exposure Pathway ¹)	Summary of Scenario	Exposure Assessment	
		assessment exposure to meat from livestock is assumed to be high For most other people, the exposure is assumed to be lower as:	
		PFCs levels in water reduce rapidly further downstream	
		 PFC are at below detectable levels in water in the Moorabool River; and 	
		 People who do not produce meat from livestock would eat meat from various sources. 	
		<u>Summary (Livestock Meat)</u> : Exposure is considered low for people along the Moorabool River who might consume meat from locally grown livestock. Exposure for local farmers immediately downstream of the Site (who are assumed to eat PFCs in meat from their livestock) is currently undergoing further assessment and will be reported separately by ToxConsult.	
1. Exposure	. Exposure pathways are described in Section 3.3.		
 It is noted however t 	It is noted that it is possible for wind-blown foams and spray drift to contribute to contamination in tanks, however this is considered highly unlikely (see Table 3-4) and discussed further in sensitivity analysis (Section 7).		

4.2 Exposure Assessment of Fish Consumption

The exposure assessment performed above in Table 4-1 is based on exposure of people to fish from Lake Fiskville (ToxConsult 2014). Therefore, a paraphrased summary of the exposure assessment performed by ToxConsult (2014) is provided here. Readers are advised to read the ToxConsult (2014) report to gain a comprehensive understanding on how the exposure assessment was conducted for the fish consumption pathway. Due to the high concentrations in fish from Lake Fiskville and reports of consumption by people at the Site there is potential for exposure via this pathway to be considerably higher, potentially by orders of magnitude, than primary exposure pathways and some secondary exposure pathways (e.g. consumption of rabbit, livestock and local produce irrigated with contaminated water).

Significant uncertainties in the data precluded assessing health risk from eating fish using a traditional tolerable daily intake (TDI) approach. Because the toxicological effects of PFOS are directly related to blood serum concentrations, persons who had eaten fish from the lake in the past, as well as the general Fiskville Community, were invited by CFA to participate in a health surveillance program as an extension of the health surveillance program already in place for CFA personnel. Participants also agreed to make their de-identified results available, via the CFA medical officer, to the consulting toxicologist and hence to Cardno Lane Piper in the form of a statistical analysis for this report. Participants included people who may have had *"historical exposure to fire-fighting foams that contained PFOS"* (ToxConsult 2014). It is understood by Cardno Lane Piper that participants included people who worked in the training area and have a high potential for past exposures to PFCs. This would be PAD operators and PAD instructors who were identified in the IFI report (Joy 2012) as having 'medium' and 'high' relative risks from exposure to chemicals at the Site.

Serum PFC measurements were undertaken by a commercial laboratory that included appropriate quality controls and the data are considered reliable for assessment of potential health risk ToxConsult (2014).

Twelve of the 22 participants in the 'fish consumption' study indicated that they had eaten fish or eel from the Lake in the past. None of the persons tested had changes in blood clinical chemistry parameters that could be attributed to PFOS. While recognising the limitations of the study, statistical analysis of the data shows no association between blood parameters and serum PFOS levels. Nevertheless there were a number of individuals (fish eaters and non-fish eaters) that had clinical blood parameter measurements outside the population reference range. These occurrences were attributed to life style factors (e.g. alcohol consumption), body mass index, existing disease, and/or medication (including non-compliance). Of the 10 PFC chemicals tested for in human serum only two were present at measurable concentrations - PFOS and PFOA. All PFOA measurements were approximately an order of magnitude less than the expected background concentrations for this compound. This indicates fish consumption has not contributed to human PFOA serum concentrations and does not need to be considered further.

Overall, it was concluded by ToxConsult (2014) that "existing serum PFOS concentrations or past theoretical concentrations are unlikely to give rise to adverse health effects".

5 DOSE RESPONSE ASSESSMENT

A short summary of hazards associated with exposure to the CoPC are presented. For further information refer to the toxicological summaries in Appendix H. The acute and chronic summaries for PFCs, unless otherwise stated, are based on information from the following review:

• Stahl, T., Mattern, D. and Brunn, H. (2011). Toxicology of perfluorinated compounds. Environmental Sciences Europe, Volume 23, Page 38.

5.1 Acute Risks for Perfluorinated Chemicals

PFCs are not considered acutely toxic (HPA 2009, ATSDR 2009, Stahl 2011). There were no guidelines identified for acute exposure to PFCs.

There is no data available for humans, and limited data for animals, following acute exposure to PFCs via the oral, inhalation or dermal pathway. The available data is based on two of the surrogates used here to represent the PFCs classes: PFOS and PFOA. According to the ATSDR (2009) "Acute- and intermediate-duration oral studies in animals have described primarily effects on the liver, body weight, developmental effects, and effects on the immuno/lymphoreticular system". The acute toxicity in animals of these two surrogates is considered modest (Stahl 2011) as indicated by the acute toxicity ratings²³ shown in Table 5-1. These PFCs ranged from being practically non-toxic for PFOS following dermal exposure to moderate toxicity for PFOS following oral exposure.

Devite	PFOS PFOA			
Route	Toxicity rating ¹	Toxicity rating ¹		
Oral	Moderate	Slight to moderate		
Dermal	Practically non toxic	Slight		
PFOS = perfluorinated octyl sulphonate, PFOA = perfluorinated octyl carboxylic acid				
1. Toxicity rating based on description of acute effects from Stahl (2011).				

Table 5-1: Toxicity rating for PFOS and PFOA.

Toxicity testing showed no irritation in rabbits after dermal exposure to PFOS (0.5 g), however it is considered mildly irritating to the eyes of rabbits following exposure of 0.1g (HPA 2009). Light skin irritation was observed following dermal application of PFOA to skin of rabbits (HPA 2009), however it is less in pronounced in rats (Stahl 2011). Gastrointestinal irritation has been observed in rats exposed to PFOA (higher than 680 mg/kg, HPA 2009). The lowest observed adverse effect level (LOAEL) following a single dose of PFOS was observed at 0.75 mg/kg for alterations in motor activity (ATSDR 2009).

5.2 Chronic Risks of Chemicals of Potential Concern

A summary of chronic risks from CoPC is provided in Appendix H. Readers are directed there for more information. It is noted that for PFOS and PFOA, the critical effect in animal studies was identified as being changes in liver weight or changes in biochemical parameters. A consistent correlation could not be shown between exposure to PFOS in the workplace and

²³ Classified according to the Hodge and Sterner scale

haematological or clinical chemistry parameters following inhalation exposures (HPA 2009). Epidemiological data for PFCs is limited.

As no quantitative assessment is performed in this report, the selection of suitable toxicity guideline values is not required and the summary provided is for information only. Readers are referred to ToxConsult (2014), see Appendix G, for the detailed quantitative assessment associated with consumption of fish. As discussed in Section 6, the risk characterisation is performed as a qualitative assessment with reference to risks associated with fish consumption as appropriate.

6 RISK CHARACTERISATION

Risk characterisation describes the risk estimated for the selected exposure to CoPC by incorporating the exposure assessment (Section 4) and dose response (Section 5) sections. Risks were characterised separately for each of the scenarios. The exposure for a number of scenarios (Scenarios S3 and S4) are discussed qualitatively based on risk findings reported for the consumption of fish from Lake Fiskville by the Fiskville Community (ToxConsult 2014²⁴). Risks characterised by ToxConsult (2014) are summarised in Section 6.3 when characterising risks for people who consume fish caught recreationally from the Moorabool River (no fish would be taken from the creek due to its small ephemeral nature).

Note that risks related to occupationally exposed workers (Cardno Lane Piper 2014c) at the Site and people from the Fiskville Community (Cardno Lane Piper 2014a) are addressed in separate HHRAs.

6.1 Risks from Drinking Contaminated Drinking Water (Scenario S1).

The risks associated with exposure to drinking water contaminated with PFCs is characterised as a chronic exposure, i.e. exposure via contaminated drinking water is considered a long term exposure.

PFCs can be transported in air-borne aerosols in spray drift derived in the past from the use of water from Dam 1 and 2 during training exercises on the FL PAD which involve spraying of water into the air²⁵. Prior to June 2012²⁶, the water used in training was sourced from Dam 1 and 2 supplemented by potable town water.. The use of Dam water meant that PFCs, predominantly PFOS, would have been present in some of the spray drift leaving the PAD. Soil data (discussed in Appendix C) suggests that spray drift has contaminated the surface soil and therefore there is potential for impact upon people located nearby and off-site. In particular, the people on neighbouring properties within approximately 1,500m of the centre of the training area are potentially exposed (refer to Appendix C). Note that there are three farm properties with houses within this range to the south-east (650m to 750m) of the training area and one to the south (1,500m).

Potable water is harvested from rainwater collected off the roof catchment at properties to the south and southeast of training areas on the Site. It is possible that spray drift from the training area could settle on surfaces such as house roofs used to collect rainwater. However, it is considered very unlikely that enough spray drift would be collected in a rainwater collection system to cause any harm, due to:

- The emission of spray drift from the FL PAD and Dam 1 is intermittent as neither training nor the aerator in Dam 1 are carried out continuously;
- The spray drift would move with the direction of wind at the time. In order for the neighbouring houses to be impacted, the wind would need to be from the north or north-west and coincide with a training event;

²⁶ In June 2012 CFA discontinues the use of water pumped from Dam 1 and 2 in training and switched to town water from Central Highlands Water potable water sources.

²⁴ See Appendix G for the ToxConsult (2014) report.

²⁵ It is noted that another potential source of PFCs in drinking water is wind-blown aerated foam clumps, mainly derived from the aerator on Dam 1, however it is considered unlikely that foam leave the site in this manner (discussed further in Section 7).

- The long distance between the training area and the neighbouring properties along with the potential for spray drift to disperse, evaporate or fall-out before reaching the house roof; and
- Dilution levels in a water tanks would be large due to the depth of rainfall on a roof catchment.

Nonetheless, tank water samples were collected from adjacent land as part of project reported in a document titled "*Environmental Sampling and PFC Analysis Program*, *Adjacent Land*" (Cardno Lane Piper 2014h). This property is located to the south of the Site, and the house is approximately 1,500m from the centre of the PAD. Water samples were collected from the kitchen tap and each of two drinking water tanks. The concentrations of PFCs, including PFOS, were below the laboratory levels of reporting (PFOS < 0.02µg/L). Therefore, risks for people consuming this water would be considered negligible.

There are water tanks on other neighbouring properties to the south-east ranging from 650m to 750m away from the PAD. These tanks are closer than those tested on the adjacent land (1,500m). The potential impact of spray drift on these closer tanks cannot be assessed as water from these tanks has not been tested. However, soil data has been used to provide an indication of impacts from spray drift at locations away from training areas (see Appendix C). Soil impacts discussed in Appendix C were correlated with distance using data collected at on-site locations away from training areas and off-site locations on an adjacent property. This correlation has been used to estimate PFOS levels in soil as follows:

- 6 µg/kg at 650m from the training area;
- 4.5 µg/kg at 750m from the training area; and
- <1 μ g/kg at a distance of 1 500m from the training area.

This indicates that concentrations in water from water tanks at 650m may be up to an order of magnitude higher than recorded in water tanks at 1,500 m from the PAD (<0.02 μ g/L). Water in the tank from 650m could therefore be estimated to be less than 0.2 μ g/L which is the drinking water guideline for PFOS.

Another potential source of PFC in tank water is wind-blown dust from contaminated soil. Impacts in soil at the distances these water tanks are from the water indicate very low PFC concentrations (6 µg/kg,²⁷ see correlation of in Appendix C). Approximately 1,000 µg of PFOS is required to cause a small 5,000 L tank to reach the drinking water guideline of 0.2µg/L (USEPA 2009), proportionally more for larger tanks. Approximately 167 kg of this soil would need to be washed in to the tank to deliver this amount of PFOS for soils with 6 µg/L. The amount of soil required would be reduced to 4 kg if it contained an amount similar to the maximum concentration for PFOS in soils away from the training area (approximately 250 µg/kg of PFOS). It is unrealistic to expect this amount of soil to enter the rain water tank in the time it takes a household to use 5,000L (approximately 17 days for a 2 person household using 150 L of water per person per day. It is also noted that this concentration in soil is well below the screening level criterion for direct contact exposures (see Appendix C) including soil ingestion. Assuming exposure from direct soil ingestion could occur, this would need to be considerably greater than from the amount of soil that would enter a tank from dust, not withstanding dilution effects. Therefore no further consideration of soil impacts on water tanks is required.

It is concluded that water in a rainwater tank on neighbouring properties are unlikely to have concentrations of PFCs in tank water above drinking water criteria. Even at this level the

²⁷ This is based on the correlation provided in Appendix C for soil impacts versus distance. The nearest water tank off-site is approximately 650m away which roughly correlates with μ g/kg PFOS in soil..

exposure would be considerably less than from secondary exposure pathways such as from the consumption of fish for which risks are also considered very low (see Section 6.3).

Risks are considered negligible for people potentially exposed to PFCs in drinking water collected from rainwater tanks on neighbouring properties.

6.2 Risks for People Who Enter the Creeks (Scenario S2)

A person may enter the creeks (or associated dams) on a single occasion or an infrequent basis. For the purposes of this assessment it is assumed that this person is a farmer who performs maintenance duties in dams connected to the creeks. This type of exposure is considered acute due to the short duration and infrequent basis on which the exposure occurs. The farmer is potentially exposed to PFOS concentrations in water which range from ~13 μ g/L for dams close to the site boundary, down to <1 μ g/L in the lower reaches of Eclipse Creek.

Acute guideline values have not been set for PFOS and PFOA as acute toxicity is considered low via the oral and dermal routes of exposure. PFOS is considered practically non-toxic via the dermal route. Adverse health effects associated with acute exposure to PFCs (which potentially includes irritation) occur at concentrations that are much higher than levels seen in water from the creeks.

On this basis, acute risk associated with both incidental ingestion and dermal exposure to water is considered negligible for a farmer who enters the creeks on an infrequent basis.

6.3 Risks from Consumption of Fish (Scenario S3)

Risks associated with people within the FTC community who consumed fish caught from Lake Fiskville have previously been characterised (ToxConsult 2014). The conclusions indicated "*very low risk for adverse health effects*". A summary²⁸ of the risks characterised by ToxConsult (2014) for various assessment approaches is provided in Table 6-1 below. Italicised text is quoted from the Executive Summary of ToxConsult (2014). The report prepared by ToxConsult (2014) is a standalone document, however it is provided as an appendix to this report (Appendix G) for the readers' convenience.

Assessment Approach	Risk Conclusion Reached by ToxConsult (2014)
Comparison with 'background' serum concentrations	Four persons had serum PFOS concentrations above that identified as the higher end of the normal range expected from background (i.e. resulting from day to day living).
Comparison with a human serum level considered to be without effects in humans	All were below the serum NOEL, indicating low risk for adverse health effects. Available information on fishing frequency by some participants in the program suggests serum PFOS concentrations in persons who may not have been included in the cohort were unlikely to be materially different from those measured in the surveillance program.
Calculation of margin of exposure (MOE)	The Margin of Exposure (MOE) estimations calculated using current measured serum PFOS concentrations and serum NOELs identified in animal toxicity experiments also indicated very low risk for adverse

Table 6-1: Risk Conclusions reached by ToxConsult (2014) for Fish Consumption.

²⁸ Only a summary of the risks conclusions provided by ToxConsult (2014) is presented here. This is because the risk characterisation approach adopted by ToxConsult (2014) is complex. To provide a summary prepared by Cardno Lane Piper may not convey the actual meaning intended by ToxConsult (2014).

Assessment Approach	Risk Conclusion Reached by ToxConsult (2014)
	health effects.
	When current serum concentrations were extrapolated back to theoretical levels that may have existed 5 or 10 years previously, and assuming no further fish consumption, both comparison with the human serum NOEL and the calculated MOEs indicate adverse health were unlikely to have arisen due to the hypothetical serum PFOS concentrations.
	Cardno note that ToxConsult (2014) considered susceptible populations when calculating the MOE. It is stated that <i>"in order that potential reproductive risk (low birth weight) is addressed to the extent possible, females of reproductive age (\leq 45 years old) have been assessed as a separate group".</i>
Italicised text is as stated in ToxCo effect level, PFOS = Perfluoroocty	onsult (2014), , MOE = margin of exposure, NOEL = No observed I Sulphonic Acid.

Risks are considered negligible for people who consume fish caught from the Moorabool River for the following reasons:

- The measured PFOS concentration in fish caught from the Moorabool River (maximum 60 ng/g) is two to three orders of magnitude lower than that in fish caught from Lake Fiskville (5,000 ng/g to 23,500 ng/g).
- There is "*very low risk for adverse health*" effects for people who consumed fish from Lake Fiskville.

6.4 Risks from Consumption of Meat (Scenario S4)

Risks related to people's potential exposure to PFCs via the consumption of meat are characterised separately for people who consume meat from:

- Rabbits caught while hunting (Section 6.4.1); and
- Livestock drinking water from the creeks (Section 6.4.2).

6.4.1 Risk Findings for Consumption of Meat from Wild Rabbit (Scenario S4a)

Rabbits have been collected from near the dams on-site but not from areas downstream of the Site. The only indication of potential risks from consumption of meat from rabbits caught offsite is to estimate PFCs concentration relative to PFOS levels measured in rabbits caught on the Site. It was estimated that PFOS levels in rabbits immediately downstream of the Site would be <60ng/g²⁹ and would reduce by another order of magnitude with increasing distance along the creeks.

Risks are considered negligible for people who consume meat from rabbits caught at locations off-site for the following reasons:

- Estimated PFOS concentrations in meat from rabbit (<60ng/g) is two to three orders of magnitude lower than in fish caught from Lake Fiskville (5,000 ng/g to 23,500 ng/g);
- There is "*very low risk for adverse health*" for people who consumed fish from Lake Fiskville.

²⁹ This is based on a maximum PFOS concentration in meat of rabbit (600ng/g) caught on the site near training areas with water concentration of approximately ~200 μ g/L compared to PFOS concentrations in water immediately downstream of <20 μ g/L (or more than 10 times less).

• Rabbit meat does not form a large part of a person's diet in Australia compared to fish.

6.4.2 Risks from Consumption of Meat from Livestock (Scenario S4b)

It is assumed that the exposure pathway for people eating potentially contaminated meat from livestock that had consumed contaminated water (particularly on adjoining properties) is relevant. Livestock are known to drink water from the creek and dams below the Site and PFCs have been identified in soil and grass on an adjoining farm (Cardno Lane Piper 2014h).

Cardno Lane Piper does not have a report on the assessment of PFCs in livestock, however this work is being completed by ToxConsult and will be reported separately. Conclusions on the potential for risk associated with this scenario will be reported separately by ToxConsult.

6.5 Summary of Risk Findings

Risks have been characterised for a number of scenarios in this section. A summary of these risks is provided below. Risks are considered:

- Negligible for Scenarios S1 (people who drink contaminated water from their water tank), S2 (a farmer who enters the creek on an infrequent basis) and S3 (fish consumers along the Moorabool River) and S4a (consumers of rabbit meat); and
- Further work is currently underway to characterise risks for Scenario S4b (people who consume meat from livestock), and this will be reported separately.

7 ASSUMPTIONS, UNCERTAINTIES AND DATA GAPS

7.1 Uncertainty Analysis

Uncertainty in the findings of any risk assessment is introduced due to limitations in data available and the range of assumptions made where site-specific data is not available. One method to account for uncertainty is to estimate risks using conservative assumptions. Although this HHRA is performed in a qualitative fashion, there are assumptions made regarding the amount of exposure for people in each scenario. A summary of the uncertainties associated with these assumptions is provided in Table 7-1. Even though this assessment was conducted in a qualitative fashion, it is unlikely that exposure uncertainties would change risk conclusions made in this HHRA.

Change in Assumption	Scenario	Resultant risk	Comment
PFC levels in water from tanks are higher than estimated.	S1	No change	It is unlikely that sufficient PFCs could be carried to the water tanks at sufficient quantities so that drinking water guidelines would be exceeded. Nonetheless, there are several orders of magnitude of conservatism built into the drinking water guidelines, hence concentrations would have to increase by many orders of magnitude.
People enter the creeks on more than just an infrequent basis.	S2	No change	Other primary exposure pathways, such as swimming, have been assessed as having negligible risk (Cardno Lane Piper 2014a). The risk would continue to be considered negligible.
Wind-blown foams do not leave the Site or have impacts off the Site.	Scenario 1 (Exposure Pathway 1)	No change	 In the event that this assumption is not correct, i.e. wind-blown foams do leave the Site (particularly from the Dam 1 aerator which operates more often than the occurrences of foams use in training), then, based on the typical PFOS range in Dam 1 water (190 µg/L to 240 µg/L): It is estimated that the amount of PFOS required to exceed the drinking water guideline (0.2 µg/L, USEPA 2009) in a nominal 5,000L tank is 1,000 µg; 'Clumps' of aerated foam measuring a total of 400 L in volume would need to reach the tank to deliver 1,000 µg of PFOS; and This would seem, on the basis of limited site observations and personal accounts from a PAD operator, to be a very unlikely occurrence. It is noted that the range of PFC concentrations in Dams 1 to 4 for PFOS (190 µg/L to 240 µg/L), PFOA (5 µg/L to 8 µg/L) and 6:2FTS (65 µg/L to 95 µg/L) are relatively consistent between sampling events. It is concluded that water in a rainwater tank is unlikely to have concentrations of PFCs above drinking water

Table 7-1: Uncertainty related to Exposure Assumptions

Privileged and Confidential Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

Change in Assumption	Scenario	Resultant risk	Comment
			criteria. Indeed it is expected that PFCs would not be detectable in water tanks 650m to 750m from the FL PAD.
	No Scenario (Exposure Pathway 4)	Potentially Unacceptable	If this assumption is changed then there is potential for people off-site to be directly exposed to wind-blown foams generated from training on the FL PAD. This would be considered an unacceptable exposure for downstream users as they would most likely not have taken OHS precautions necessary to prevent dermal contact and incidental swallowing of wind-blown foam. Also, the range of constituents in foam products used in training is large and would be present at relatively high concentrations. It is considered extremely unlikely that sufficient clumps of foam would leave the Site to result in adverse effects in people off-site. Nonetheless, recommendations made in a separate assessment for people from the Fiskville Community (Cardno Lane Piper 2014a) would eliminate any potential risks related to this unlikely
PFC levels in fish from the Moorabool River are higher than assumed.	S3	No change	scenario. Concentrations in fish would continue to be considered negligible if concentrations were increased by at least 1, if not 2 or 3, orders of magnitude.
PFC levels in rabbit meat are higher than assumed.	S4a	No change	Exposure to rabbit meat is low compared to fish. Risks would continue to be considered negligible if concentrations were as high as measured in rabbits caught in training areas.
Fish can be found and caught recreationally in the creeks	No Scenario (Exposure Pathway 5a)	<i>"very low risk for adverse health"</i> effects	The risks in this HHRA are assessed qualitatively based on information on taking and consumption of fish from Lake Fiskville. Due to the ephemeral nature of the creeks and nature of the farm dams, fish may be expected to be less abundant there than in Lake Fiskville. It is therefore unlikely that downstream users would consume more fish than would the people from the Fiskville Community taking fish from the lake due to limitations on the catch available in the creeks. An assessment of " <i>very low risk for adverse health</i> " effects impacts would be concluded.
Exposure is not negligible for consumption of local produce irrigated with water from the Moorabool	No Scenario (Exposure Pathway 6b)	No change	To exceed the TDI of 0.3 μ g/kg/day (Appendix H) a 70 kg person would need to consume 21 μ g of PFOS. Assuming that an average person eats approximately 280 g of vegetable products per day which is all irrigated with water from the Moorabool then the vegetables would need PFOS levels at approximately 75 μ g/kg. Grass on a property adjacent to FTC has PFOS levels of 10 μ g/kg in grass from the paddock and 36 μ g/kg in grass from areas inundated with creek water near the lake overflow (PFOS levels approaching

Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

Change in Assumption	Scenario	Resultant risk	Comment
River			20 μ g/L). Water in the Moorabool is considerably lower (<0.02 μ g/L). The exposure to PFOS from consumption of local produce irrigated with water from the Moorabool river continues to be negligible assuming that it is present in water.
People are exposure to PFC from multiple pathways.	No Scenario (Multiple Exposure Pathways)	No change	Assessment of multiple exposure pathways would not change the outcome of risks in this assessment as exposure from the consumption of fish is considered much higher than all other routes of exposure considered in this HHRA. Note that this assumption may not apply to a local farmer who eats meat from his livestock. Risks for the livestock meat exposure pathway were assessed separately by ToxConsult.

7.2 Data Gap Analysis

Overall, although data gaps have been identified (see Table 7-2 below) the quality of the data from all media (e.g. surface water and sediments) is considered suitable for use in a qualitative risk assessment.

Environmental Media	Data Gaps	Comment on Data Gaps
Surface Water and Sediment	Some temporal information available (2 points in time in some and 3 at other locations) however PFC levels in sediment have lowered significantly between events.	This is unlikely to affect the risk assessment as sediment and surface water data were used only to identify CoPC. They are not used in quantitation of risk and exposure is low compared to other pathways. No additional data is required for the CoPC assessed in this HHRA.
Soil and dust	This data is from one sampling event at any location. There is no temporal information for soil as short term changes in soil contamination are unlikely (compared with water quality changes) No information has been collected for PFCs other than PFOA, PFOS and 6:2FTS. No information has been collected for dust and it is assumed that PFC levels in dust would be similar to or less than levels in soils outside.	A correlation between soil impacts and distance from the FL PAD has been prepared (see Appendix C). Also, direct exposure to soil is considered a negligible pathway. No additional data is required for this HHRA.
Water in water tanks	Only 2 water samples have been collected from tanks at a house 1.5km from the FL PAD. There are water tanks at house located closer to the PAD (650 to 750m)	Unlikely to change the outcome of this risk assessment as exposure via water is considered low and PFC were not detects.
Grass	There is a lack of temporal information and the data is limited	The levels of PFC reported are considered indicative only of potential PFC levels in leafy parts of vegetation.

Table 7-2: Summary of Data Gaps and Comment

Privileged and Confidential Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

Environmental Media	Data Gaps	Comment on Data Gaps
Garden Produce	No data has been collected for garden produce. It is not known whether any is available on site for sampling.	PFC partition to leafy part of plants hence indicative levels of PFC in grass (see above) is considered a suitable data substitute. No additional data is required as leafy vegetables are unlikely to represent a crop grown in the area and/or exposure (and risk) via this pathway is considered low or negligible compared to fish consumption.
Rabbit	There is a lack of temporal information (snapshot only) and there were no rabbits collected away from training areas or at off-site locations	It is highly unlikely that additional data for rabbits off-site would affect outcomes of the risks assumed in this HHRA as risks are not considered unacceptable. No further data is required.
Fish	No data is available for aquatic life in the creeks. There is potential for eels, large crustaceans and redfin to be present in dams along the creeks, particularly after sustained high rainfall events.	While no data is available and it is possible for fish to be available for recreational fishers, it seems they would be less abundant than in a large water body such as Lake Fiskville. Further, risks associated with consumption of fish from Lake Fiskville were considered not unacceptable. It is considered unnecessary to collect further information on fish in the creek and dams for this risk assessment.

8 CONCLUSIONS

The potential for human health risks for people downstream of the Site, i.e. downstream users, has been assessed in this HHRA for a variety of scenarios. Perfluorinated chemicals (PFCs) were identified as the groups of chemicals that are of potential concern at the Site.

Four human health risk assessment scenarios were considered relevant in this case. These were for people exposed to:

- Contaminated drinking water due to spray drift (Scenario S1);
- Water accidentally swallowed during activities on the creeks (Scenario S2);
- The consumption of recreationally caught fish (Scenario S3); and
- The consumption of meat from wild rabbits caught on-site or livestock (Scenario S4a and Scenario S4b respectively).

Risks have been characterised for these exposure pathways (and scenarios) as follows:

- <u>Risks are considered negligible</u> for people who:
 - Potentially drink tank water contaminated with PFC (Scenario S1);
 - Engage in infrequent activities on the creeks, such as farmers (Scenario S2)
 - Consume fish caught recreationally from the Moorabool River (Scenario S3); and
 - Consume meat from rabbits caught along the creeks (Scenario S4a).
- *Further assessment is required*: for people who consume meat from livestock from nearby properties (Scenario S4b).

There are no recommended actions given the conclusions of this HHRA.

9 REFERENCES

ATSDR (2009). Draft Toxicological Profile for Perfluoroalkyls. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. May 2009.

Cardno (2014). Aquatic Ecology Assessment, Fiskville Training College. Cardno Ecology Lab, March 2014

Cardno Lane Piper (2014a). Human Health Risk Assessment – Fiskville Community. Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. March 2014.

Cardno Lane Piper (2014b). Surface Water and Sediment Contamination Assessment. Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. March 2014.

Cardno Lane Piper (2014c). Summary report – Human Health Risk Assessment – CFA Training Personnel. Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. March 2014.

Cardno Lane Piper (2014d). Fire Training Water Quality Criteria – CFA Training Grounds, Victoria. Country Fire Authority, Victoria, March 2014.

Cardno Lane Piper (2014e). Investigation of Risks at Former Landfills, Fiskville Training College, 4549 Geelong-Ballan Road, Fiskville, Victoria. March 2014.

Cardno Lane Piper (2014f). Site History Review, Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. March 2014.

Cardno Lane Piper (2014g). Supplementary Surface Water and Sediment Sampling Downstream. Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. March 2014.

Cardno Lane Piper (2014h). Environmental Sampling and PFC Analysis Program, Adjacent Land, Victoria. Prepared for Ashurst.

CRC (2004). Pathogen Movement and Survival in Catchments, Groundwaters and Raw Water Storages. The Cooperative Research Centre for Water Quality and Treatment, 2004.

enHealth (2012a). Environmental Health Risk Assessment. Guidelines for assessing human health risks from environmental hazards. Environmental Health Committee, a sub-committee of the Australian Health Protection Committee. September 2012.

enHealth (2012b). Australian Exposure Factor Guide. Environmental Health Committee, a subcommittee of the Australian Health Protection Committee. September 2012.

Joy (2012). Fiskville. Understanding the Past to Inform the Future. Report to the Independent Fiskville Investigation. June 2012. Independent Fiskville Investigation, Robert Joy, Investigation Chair.

Stahl, T., Heyn, J., Thiele, H., Huther, J., Failing, K., Georgii, S. and Brunn, H. (2009). Carryover of Perflruootanoic Acid (PFOA) and Perfluooctane Sulfonate (PFOS) from Soil to Plants. Archives of Environment al Contamination and Toxicology, Volume 57, Issue 2, pages 289 to 298.

ToxConsult (2014). Health impact assessment from consumption of fish from Lake Fiskville. Prepared by Roger drew and Tarah Hagen. ToxConsult Document; ToxCR061113-RF2. 1 April 2014.

USEPA (2009). Provisional health advisories for perfluorooctanoic acid (PFOA) and perfluooctane sulfonate (PFOS). Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency. January 8, 2009.

Appendix A

7 Pages

Figures

Figure A1: Site location Figure A2: Creek Surface Water Results - A Figure A3: Creek Surface Water Results - B Figure A4: Creek Sediment Results - A Figure A5: Creek Sediment Results - B Figure A6: On-site Results (away from training areas) Figure A7: Off-site Results

mBSI 0.2 mBSI 0.2 mBSI 0.2 mBSI 0.2 pFOA 0.02 pFOA 0.02 mBSI 0.2 pFOA 0.02 mBSI 0.2 pFOA 0.02 mBSI 0.2 mot total) 2 mot total	TITLE: Creek Surface Water Analytical Results	REV: 1 FIG:A2
mBSI 0.1 Be PAHS mBSI 0.1 PFOS 10.6 PAHS mBSI 0.1 Pros mof total 2 c6 C30 C002 c10 c003 0 TKN 2.1 T	DATE: Feb 2014 DRAWN: MBB	CHECKED: ACB
Benzol Benzol Benzol Benzol PFOA 0.85 6.2 Fr5 5.9 Frond 0.85 6.2 Fr5 5.9 Prond 1.45 Paths (Sum Prond 1.45 Path	SCALE (A3): As Shown JOB No: 212163.17	REF: 212163.17 A2.cdr
Sediement Sample Location Point	lealth Risk Assessment Downstream Users ville Training College	Ballan Kd, Fiskville, VIC
Prove and a set of the set of th	PROJECT: Human H CFA Fisk	Geelong-
Analyte Units EQL mBSL m 0.01 PFOA µg/L 0.02 PFOA µg/L 0.02 PFOA µg/L 0.02 PFOA µg/L 20 C6-C10 mg/L 20 C10-C14 µg/L 20 C10-C14 µg/L 20 C10-C14 µg/L 20 C10-C14 µg/L 0001 TKN mg/L 0001 Amnonia as N µg/L 0001 Amonia as N µg/L 0001 Creek mg/L 0001 Steel ng/L 0001	Cardno LanePiper	Shaping the Future Cardno Lane Piper Ptv Ltd

PFOS 2.0 PFOS 142 PFOS 142 PFOS 142 PFOS 142 PFOS 142 PFOS 142 PFOS 0.5 FS 5:2 FIS PFOA 0.5 PFIA 5:0 PAHS 5:0 C6 -0.5 PAHS 5:0 C10 -0.5 C6 -0.5 C10 -0.5 <th>Scale 1000 m</th> <th>TITLE: Creek Sediment Analytical Results REV: 1 FIG: A4</th>	Scale 1000 m	TITLE: Creek Sediment Analytical Results REV: 1 FIG: A4
	PFOS 229 PFOA 2.7 6:2 FtS 10.0 Benzo(a) pyreme -0.5 AHK (Sum of total) -0.5 C6- C10 -10 C15- C28 -100 C15- C29 -210 C15- C28 -100 C16- C14 -30 C15- C28 -100 C15- C28 -100 C16- C14 -20 TKN 2100 TKN 2400	DATE: Feb 2014 DRAWN: MBB CHECKED: ACB
	PFOS 47.3 PAR 50 PAHS 50 PAHS 50 PAHS 50 C10-C14 50 Ammonia as N 20 TKN 1330	SCALE (A3): As Shown JOB No: 212163.17 REF:212163.17 A4.cdr
	 Propint Propint	PROJECT: Human Health Risk Assessment Downstream Users CFA Fiskville Training Vollege Geelong-Ballan Rd, Fiskville, VIC
	Analyte Units EQL PFOS µg/kg 0.5 PFOA µg/kg 0.5 PFOA µg/kg 0.5 Benzo(a) pyrene mg/kg 0.5 PAHs (Sum of total) mg/kg 10 C6-C9 mg/kg 10 C10-C14 mg/kg 10 C15-C28 mg/kg 10 C15-C36 mg/kg 10 C15-C36 mg/kg 20 TKN mg/kg 20 TKN mg/kg 20 Copper mg/kg 20 TKN mg/kg 20	Carebiper LanePiper Shaping the Future Cardno Lane Piper Pty Ltd

200

FIGURE A7

Aerial imagery supplied by DPI (September 2013

Appendix B

Description of On-site Creeks and Downstream Land Use Assessment

HUMAN HEALTH RISK ASSESSMENT - DOWNSTREAM USERS

4549 GEELONG-BALLAN RD, FISKVILLE VICTORIA

APPENDIX B - DESCRIPTION OF RELEVANT ON-SITE AND OFF-SITE FEATURES.

This appendix is provided in 2 parts:

- A description of relevant on-site water bodies; and
- A description of downstream land uses.

1 DESCRIPTION OF ON-SITE SURFACE WATER BODIES

The Site is relatively flat in the central and eastern portions, with the exception of western area (in which the land slopes down towards Beremboke Creek and Lake Fiskville). The topography of the site is shown in Figure 1-1. Beremboke Creek runs in a north to south direction across the western part of the site. The creek enters the site to the west of the airfield runway and then continues its course through the artificial Lake Fiskville before exiting the site following a southerly flow direction in to a tributary of the Beremboke Creek.

The CFA has installed a catchment and treatment system that includes a Surge Basin (or settling pond), triple interceptor trap (TIT) and various surface water bodies (Dams 1 to 4) to capture and treat water for re-use in training exercises. Water used on the flammable liquids PAD (FL PAD), the largest and most regularly used PAD at Fiskville, is directed to a Surge Basin and TIT to remove solid materials and excess liquid hydrocarbon fuel before release to Dam 1. Dam 1 is connected to Dam 2 via a damaged 300 mm pipe¹. Dams 1 and 2 also collect an amount of surface water from the surrounding area². Water then flows to Dam 3, Dam 4, and Lake Fiskville via open drain channels before release.

Water from this treatment system enters Lake Fiskville. The layout of the treatment facilities including surface water bodies at CFA Fiskville Training College is shown below in Figure 1-1: . Images of Lake Fiskville and other on-site surface water bodies are shown below in Figure 1-2: . A brief description of the surface water bodies at CFA Fiskville Training College is provided in Table 1-1: .

² Dam 1 and Dam 2 are connected hydraulically and have a limited catchment area. The land slopes away from these dams to the West, East and South.

¹ It is believed the pipe connecting Dam 1 to Dam 2 was crushed during construction of a road. Water continues to flow as the crushed pipe is buried within a porous gravel layer.

Privileged and Confidential Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst Dam 2 Surge Basin and TIT Drainage Channel Flammable Dam 1 Dam 3 Administration Building Dam 4 Creek (Upstream) Creek (Downstream) Lake Fiskville

Figure 1-1: Main features of Fiskville Training College

Page 2

Privileged and Confidential Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

Figure 1-2: Images of Lake Fiskville and other on-site surface water bodies

Appendix B.docx

Table 1-1: Description of Relevant Surface Water bodies including Lake Fiskville and the Beremboke Creek.

Area	Description
Dam 1	Dam 1 is located immediately south of the PAD. The approximate surface area is $1,500 \text{ m}^2$ and the average depth is 1.0 m (approximate volume is $1,500 \text{ m}^3$).
Dam 2	Dam 2 is located south of Dam 1. The approximate surface area is $5,800 \text{ m}^2$ and the average depth is 1.0 m (approximate volume is $5,800 \text{ m}^3$).
Drainage Channel	The Drainage Channel is located on the north and eastern side of the drill operations area down to Dam 3. The Drainage Channel is approximately 530 m in length. For the purpose of this Assessment, the extent of the Drainage Channel was considered only up to the inflow into Dam 3.
Dam 3	The approximate surface area of Dam 3 of 2,900 m ² and the average depth is 1.1 m (approximate volume is 3,190 m ³). Dam 3 receives surface excess spray and runoff from PAD area and is connected to Dam 2.
Dam 4	Dam 4 is located in the western portion of the site outside of the drill operations area near Lake Fiskville. The approximate surface area is $2,200 \text{ m}^2$, the average depth is 1.4 m (approximate volume is 3,080 m ³).
Lake Fiskville	Lake Fiskville is located on the south western portion of the site. The approximate surface area is 18,000 m ² , with a depth ranging from 0.8 m on its northern portion to 4.7 m on its southern portion. It has an approximate volume of 45,000 m ³ . During dry periods, Lake Fiskville divides into two separate water bodies.
Beremboke Creek	The Creek runs in a north - south direction along the western portion of the site. Lake Fiskville receiving the inflow of the Creek on its northern end, which then continues to the southern end of the site (from the southern end of Lake Fiskville).

2 DESCRIPTION OF DOWNSTREAM LAND SUES

This section of the appendix is provided to give an overview of the following:

- Desktop Assessment of real estate (Section 2.1);
- Groundwater Resource utilisation (Section 2.2) and
- Aerial Survey (Section 2.3).

2.1 Desktop Assessment of Real Estate

Fiskville is located in a rural community. A desktop assessment of land lots adjoining the creek indicates the properties downstream of Fiskville is farmland that is primarily used for raising livestock or horses, see Figure 2-1. Information about the infrastructure on six (6) downstream properties (some with direct creek access) was publicly available³ and is tabulated below in Table 2-1. Potable water from a regional water body, i.e. Central Highlands Water, was not mentioned as a source of water. Sources of water were varied and included; water tanks (4 out of 6), dams (all properties), natural spring (1 out of 6) and unmetered bore for stock use (1 out of 6). Infrastructure on these properties includes cattle yards and grazing facilities for cattle and horses. One property was marketing as being suitable for cropping.

The people who are considered to be exposed to water downstream of Fiskville includes:

- People such as farmers who wade into dams (off-site), creeks and other waterways.
- People who eat produce (livestock, vegetables, fish) that have contact with water downstream.
- People who draw water from downstream sources for drinking or other uses (laundering clothes, etc).
- People who swim in downstream waterways.

Table 2-1: Water sources and infrastructure on properties downstream of Lake Fiskville

#	House	Acres	Town Water	Tanks	Dams	Creek Access	Other	Cattle Yard	Grazing	Cropping
1	Yes	39	Unknown	100KL	Yes	Unlikely	Unknown	Yes	Yes	Unknown
2	Yes	54	Unknown	Unknown	Yes	Possibly	Unmetered bore for stock use	Yes	Yes	Unknown
3	Yes	54	Unknown	102KL	Yes	No	Unknown	Unknown	Horses	Unknown
4	No	51	Unknown	Yes	Yes	Possibly	Unknown	Unknown	Possibly	Unknown
5	Yes	163	Unknown	45KL	Yes	Unknown	Unknown	Unknown	Yes	Yes
6	Yes	178	Unknown	Unknown	Yes	Possibly	Natural Spring	Unknown	Yes	Unknown

³ Information sourced from <u>www.realestate.com.au</u> for properties sold in the past four (4) years.

Privileged and Confidential Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

Figure 2-1: Identifying the land uses downstream of Lake Fiskville

2.2 Groundwater Resource Utilisation

It is noted that groundwater bores and natural springs were identified on two properties considered in desktop assessment. The sites discussed are located south of the site and range from ~3kms (Property #3) to almost 9kms (Property #6). Property #6 contains the natural spring and property #2 is 5 kms from the site. It is considered unlikely that these bores are impacted based on depth to groundwater at Fiskville and distance of the bores to the site.

A search of the State Groundwater Management System database was performed as part of Groundwater Contamination Assessment performed by Cardno Lane Piper (2014). A total of 22 registered groundwater bores were identified within a 5 km radius of the site. In summary

- There is no registered use of groundwater within approximately 1 km of the site;
- The most common use is as 'stock' bores which are used to supply stock water;
- There are 'domestic' bores which are used for non-potable domestic purposes such as garden watering and toilet flushing⁴.

It was concluded in the Groundwater Contamination Assessment that the regional water table aquifer has low vulnerability to contamination due to:

- The depth of regional groundwater
- The thickness of clay soil layers between the base of the basalt and groundwater.

2.3 Aerial Survey of the Waterway

2.3.1 Purpose of Survey

A survey of the waterway was undertaken on 1 August 2013 by utilising high resolution digital aerial photography (performed by Skyworks Photography). This imagery was gathered to identify conditions where people might be exposed to water bodies potentially in connection with discharges from Lake Fiskville. This included further information on:

- The use of the land;
- The presence of water bodies on the waterway;
- Where and who has access to the waterway; and
- The potential for drinking water supplies to be taken from the water bodies.

2.3.2 Summary of observations

The survey started at Lake Fiskville, travelled along Beremboke Creek downstream of the Site, along a drainage channel and finished at the Eclipse Creek. The survey area was split into seven segments as shown by the frames superimposed on Figure 2-2. The downstream waterway and connected dams are shown with blue outline. The FTC site is also shown with a red outline. Not outlined are unconnected surface water bodies including dams and an aqueduct (evident in imagery from Segment 6 and 7 discussed below). It is noted that the photography has focussed on an aqueduct in Segment 7 which is not connected to the waterway.

The surface water bodies along the waterway captured in the imagery have been listed in Table 2-2 along with the deduced land uses. There is a focus on properties bordering the waterway. It is evident that there are various locations where small dams are in connection with Beremboke Creek and the drainage channel. Dams do not appear to be present on the Eclipse Creek where the banks of this creek appear to be more incised than further upstream.

⁴ Farm bores are rarely used for potable supply which is normally derived from rainwater tanks.

Land in the region is predominantly cleared, with tree lined boundaries (windbreaks) and waterways in some areas. As there are small dams connected to the waterway there is likely to be grazing occurring with livestock having access to the creek water. Other dams are also evident that are not connected to the waterway and most likely filled by surface runoff from surrounding areas or by pumps. There are various areas in different segments of the waterway survey that appear to be prepared for cropping or hay making. It is unlikely that water from the waterway is used for irrigation as the waterway is ephemeral and therefore would have insufficient water for irrigation. There is no evidence of irrigation equipment on the properties observed. Dryland farming is most likely practised, i.e. crops cultivated are reliant on rainwater, however irrigation cannot be ruled out. Finally, there is what appears to be a heavily treed area (predominantly in Segment 3) including a recently cleared portion which suggests some type of woodlot or forestry operation.

While there is no direct evidence from the survey of drinking water supplies, it is understood from the desktop study and general knowledge of farming communities that drinking water would principally be sourced from rainwater tanks.

Figure 2-2: Grids for Aerial Photography Survey

Segment	Location	Surface Water Bodies Evident	Surface Water Bodies	Assumed Land Use	Photo
£	South of Lennox Lane	Lake Fiskville and the initial upstream reaches of the Beremboke Creek	Small on-site dam upstream (1a right), dams 3 and 4 (1b), Lake Fiskville and farm dams on neighbouring property (top left, 1b). Dam (top right, 1b) not connected.	Fiskville Training College and grazing properties to South and West (2b, left).	Figure 2-3 Figure 2-4
2	North of Hamills Lane	The northern and central portion of the Beremboke Creek	Five farm dams connected to creek (2b, diagonal bottom left to top right).	Mainly cleared for grazing to the East (left, 1a) and West (1a, right). Evidence of forestry (2b, left).	Figure 2-5 Figure 2-6
e	North of Banks Road	The southern end of the Beremboke Creek	Multiple small dams connected to the start of the drainage channel (4b, top centre). Other unconnected dams.	Cleared for grazing to the West (3a, right). Evidence of forestry (3a, bottom left) and potentially cleared for cropping (central, 4b). No evidence of irrigation.	Figure 2-7 Figure 2-8
4	South of Banks Road	The northern and central parts of the Drainage Channel in the drained marsh area	Multiple small dams connected to the start of the drainage channel (4b, top centre). Other unconnected dams.	Mainly cleared for grazing and potentially an area cleared for cropping (4a, right). No evidence of irrigation.	Figure 2-9 Figure 2-10
Q	West of Geelong Ballan Road	The central parts of the Drainage Channel in the drained marsh area	Multiple small dams in the drainage channel (5a and 5b, centre) and one unconnected larger dam (5a, bottom left).	Mainly cleared for grazing and potentially an area cleared for cropping (5b, top right). No evidence of irrigation.	Figure 2-11 Figure 2-12
9	Either Side of Mount Wallace- Ballark Road	The southern end of the Drainage Channel in the drained marsh area and the northern end of the Eclipse Creek.	Other potentially connected drainage channels (6a, centre) and crossover with Aquaduct (6b) which is not hydraulically connected to waterway. Other unconnected dams.	Tree lined along creeks and boundaries. Used for grazing and cropping land. No evidence of irrigation.	Figure 2-13 Figure 2-14
7	South of Mount Wallace-Ballark Road	The central portion of the Eclipse Creek.	No dams identified connected to the creek. An aquaduct (also not connected) as well as other unconnected dams also evident. Deep incision in the creek evident.	Cleared for grazing and potentially areas cleared for cropping. No evidence of irrigation.	Figure 2-15 Figure 2-16

Table 2-2: Description of Surface water Bodies and Assumed Land Uses for properties downstream of Lake Fiskville

Appendix B.docx

Figure 2-3: Photo of Segment 1a

Figure 2-4: Photo of Segment 1b

Figure 2-5: Photo of Segment 2a

Figure 2-6: Photo of Segment 2b

Figure 2-7: Photo of Segment 3a

Figure 2-8: Photo of Segment 3b

Figure 2-9: Photo of Segment 4a

Figure 2-10: Photo of Segment 4b

Figure 2-11: Photo of Segment 5a

Figure 2-12: Photo of Segment 5b

Figure 2-13: Photo of Segment 6a

Figure 2-14: Photo of Segment 6b

Figure 2-15: Photo of Segment 7a

Figure 2-16: Photo of Segment 7b

3 REFERENCES

Cardno Lane Piper (2014). Groundwater Contamination Assessment. Fiskville Training College, 4549 Geelong-Ballan Rd, Fiskville, Victoria. Cardno Lane Piper, March 2014.

Appendix C 38 Pages

Monitoring Results, Chemicals of Potential Concern, Data Quality and Data Gaps

HUMAN HEALTH RISK ASSESSMENT - DOWNSTREAM USERS

4549 GEELONG-BALLAN RD, FISKVILLE VICTORIA

APPENDIX C

Monitoring Results, Chemicals of Potential Concern, Data Quality and Data Gaps

1 SURFACE WATER AND SEDIMENT MONITORING EVENTS

Two (2) monitoring events (ME) have been conducted at Fiskville to collect water and sediment samples, they are described briefly below. Golder (2012) completed a surface water monitoring event in 2012 for surface water bodies at Fiskville (including from Lake Fiskville). The Golder ME did not sample locations downstream of the site. The second monitoring event was conducted by Cardno Lane Piper starting August 2012 (Cardno 2014a) which included multiple field events that were used to further characterise the extent of contamination of water and sediment in surface water bodies at CFA Fiskville Training College.

1.1 Cardno Lane Piper Monitoring Event, August 2012, October 2012 and April 2013

Cardno Lane Piper has performed a surface water monitoring event to characterise the extent of contamination of water and sediment in surface water bodies downstream of Fiskville training College, 'The Site". The monitoring has been conducted in three monitoring events (Field Events A to C).

Field Event A occurred between 1 to 21 August 2012 in multiple surface water bodies at CFA Fiskville Training College including from Lake Fiskville (12 samples from 5 locations) and five different downstream locations (1 sample each) within 2km of the College's southern boundary. The number of sampling points downstream were increased in subsequent field events to include sample points along:

- Waterways including the drainage channel and eclipse creek
- Downstream of the Moorabool River
- Upstream of the Moorabool River including the east and west arms
- Adjacent but unconnected waterways.

The analytical data collected from all field samples collected by Cardno Lane Piper from offsite sampling points are provided in Cardno Lane Piper (2014a) and Cardno Lane Piper 2014b).

1.2 Summary of Chemicals Identified in Surface Water and Sediments

The following organic and inorganic chemicals were identified (above levels of detection) in water and/or sediment in either the creeks or the Moorabool River:

- Perfluorinated chemicals
 - Perfluorooctane sulphonic acid (PFOS)
 - Perfluorooctanoic acid (PFOA)
 - 6:2 fluorotelomer sulphonic acid (6:2 FTS).
- Inorganic chemicals:
 - Metals including arsenic, chromium (total), copper, lead, magnesium, nickel, potassium, sodium and zinc
 - Ammonia (as nitrogen)
 - Chloride
 - Fluoride
 - Nitrate
 - Nitrite
 - Sulphate.

1.3 The Approach Required to Assess Perfluorinated Chemicals (PFC)

There are potentially PFCs present in water and sediment other than PFOS, PFOA and 6:2 FTS. Therefore, to simplify the assessment of PFC identified in sediment and water, the following approach is adopted:

- Discuss sources of PFCs and identify other PFCs that may be present
- Segregate PFCs identified into classes and identify a suitable surrogate¹ for use in the assessment
- Calculate the total concentration of PFCs in each class based on the surrogate.

Each PFC class is assessed in this HHRA rather than individual PFC chemicals. The assumption in this approach is that PFCs in the same class exhibit similar toxicity. This is considered a conservative approach which is necessary due to the large number of PFC chemicals potentially available and the limited data available for all these different PFC chemicals. Note, this is not performed for soil samples as data for other PFCs was not collected.

1.3.1 Source of PFCs in Water and Sediment

PFCs are a key ingredient in Class B AFFF foam products² used by the CFA in fighting fires that involve combustion of flammable liquids. Hence the source of the PFC in water and sediment at Fiskville is attributed to the use of foam products in CFA hot fire training drills. Organisations other than the CFA also conduct hot fire training exercises at Fiskville. These exercises may include the use of Class B foams that may be different from those used by CFA, may or may not be PFC free and may contain PFCs other than PFOS, PFOA or 6:2FTS. Hence, multiple PFCs are potentially present as contaminants in water and/or sediments at Fiskville.

² AFFF = Aqueous Film Forming Foam. PFCs identified in the 2 Monitoring Events include PFOS, PFOA and 6:2 FTS which are commonly found alcohol resistant AFFFs (AR-AFFF).

¹ A surrogate PFC is used to represent toxicity of other PFCs in its class

Class B foam products containing PFOS and PFOA were used by CFA at Fiskville from the 1990's until approximately 2007. PFOS and PFOA³ have since been replaced in the foam products currently used by CFA. The PFCs present in the current foam products used by CFA include chemically similar chemicals; fluorotelomers (6:2 FTS) or analogues⁴ of PFOS and PFOA⁵. Some analogues of PFOS and PFOA identified include perfluorinatedhexyl sulphonate (PFHxS), perfluorinatedhexyl octanoate (PFHxA) and perfluorinatedheptyl sulphonate (PFHpS).

1.3.2 Segregation of PFCs into Classes

The presence of other PFCs was taken into account by separating PFCs into different classes. Additional analysis was performed to identify and determine the concentration of other PFCs that may be present in water downstream from CFA Fiskville Training College. Additional analysis for 16 PFC was performed from a water and a sediment sample taken from Lake Fiskville.

Due to the large number of chemicals potentially present, PFCs are divided into 3 distinct classes and assigned a representative surrogate. The surrogate PFC is chosen for each class based on available chemistry and toxicity information. Currently, information on toxicity is limited for most PFC except for only a handful of chemicals, most notably PFOS and PFOA⁶. Only 3 classes are chosen in this HHRA due to this database limitation. Therefore the PFC classes and representative surrogates selected in this HHRA are:

- **PFAS**: Perfluorinated alkyl sulfonic acids assessed using PFOS as a surrogate⁷;
- **PFAA**: Perfluorinated alkyl carboxylic acids assessed using PFOA as a surrogate⁸; and
- **OPC**: Other perfluorinated chemicals assessed using 6:2 FTS as a surrogate⁹.

1.3.3 Calculating Concentration of each PFC Class in Water and Sediment

The concentrations of each PFC class are calculated using the following steps for sediment and water:

- 1. A representative media sample is selected from Dam 2.
- 2. Additional analysis is conducted on this sample for of a range of PFCs¹⁰ as well as PFOS, PFOA and 6:2 FTS.

¹⁰ The following chemicals were tested in both monitoring events; PFAS: Perfluorobutanesulfonic acid (PFBS), erfluorohexanesulfonic acid (PFHxS), Perfluorodecanesulfonic acid (PFDS), PFAS: Perfluorohexanoic acid (PFHxA), Perfluoroheptanoic acid (PFHpA),), Perfluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDA), Perfluoroundecanoic acid (PFUA), Perfluorodecanoic acid (PFDA), Perfluorotetradecanoic acid (PFTA), Perfluorotetradecanoic acid (PFTA), OPC: Perfluoroctanesulfonamide (PFOSA) and 1H,1H,2H,2H-

³ The use of PFOS and PFOA in various products has been the subject of voluntary replacement by the international worldwide manufacturer since 2000 (NICNAS 2007). NICNAS (2009) recommends "that these substances be restricted to only essential uses for which no suitable and less hazardous alternatives were available".

⁴ Analogous are structurally similar chemicals with a change in the alkyl chain length of the chemical, e.g. perfluorinated hexyl sulphonate (C6 fluorinated aliphatic chain) and perfluorinated octyl sulphonate (C8 fluorinated aliphatic chain).
⁵ Unfortunately the precise makeup of PFC used in foam products is not divulged by manufacturers, suppliers or

⁵ Unfortunately the precise makeup of PFC used in foam products is not divulged by manufacturers, suppliers or product MSDS sheets.

⁶ Further information on PFCs is provided in Appendix D (Toxicity Summary) which includes a summary of the broad range of chemicals that belong to this class of chemical as well physical properties of select PFCs.

⁷ The toxicological database for this chemical is relatively complete. Other sulfonic acids are anticipated to have similar toxicity however toxicity is assumed to increase with length of the fluorinated alky chain present.
⁸ This was based on toxicity of PFOA for the same reason given for PFOS (see previous dot point). PFAS and

PFAA are not assessed as one class as PFOS has a lower tolerable daily intake than PFOA (Appendix D) ⁹ Very little toxicological data is available for the remaining PFCs. The basis of selecting the fluorotelomer, 6:2FTS,

as the surrogate for this class is because it was identified in water and sediment in both monitoring events and is believed to be the PFC formulated in the class B foam product currently used by CFA.

- 3. The concentration of the surrogates, PFOS, PFOA and 6:FTS, is assigned to the parameter Conc_{SurrRep}.
- 4. All PFCs measured in a media sampled are sorted into their respective classes and their concentrations are summed (ΣConc_{Class})
- 5. The percentage of the surrogate chemical (%Surr) is calculated using Equation 2.1.
- 6. The concentration of the PFC (Conc_{PFC}) is then calculated for each media type using Equation 2-2 with data from each monitoring event.

$$\% Surr = \frac{Conc_{Surr \operatorname{Re} p}}{\sum Conc_{Class}} \times 100$$
 Equation 2.1

$$Conc_{PFC} = Conc_{Surr} \times \frac{100\%}{\% Surr}$$
 Equation 2.2

Where

%Surr	=	Percentage surrogate contributes to the PFC class (PFAS, PFAA or OPC).
Conc _{SurrRep}	=	Concentration of the representative surrogate PFC
Conc _{CLASS}	=	The sum of all PFC in a particular class
Conc _{PFC}	=	Maximum concentration of the PFC class, i.e. PFAS, PFAA or OPC
Conc _{Surr}	=	Maximum concentration of the surrogate PFC, i.e. PFOS, PFOA or 6:2 FTS
		measured in Lake Fiskville.

A summary of the maximum concentration calculated of each PFC class is shown in Table 1-1 along with the maximum measured concentration of the surrogate (PFOS, PFOA or 6:2FTS) measured in water or sediment and the percentage of the surrogate calculated. The calculations for percentage surrogate are tabulated for both water and sediments attached.

Table 1-1: Maximum Concentration of PFC Classes calculated for Surface Water and Sediment using data from Lake Fiskville

Chamiaal		Surface W	ater (µg/L)	Sedimer	it (µg/kg)
Cnemical	Acronym	The Waterway	Moorabool River	The Waterway	Moorabool River
PFAS ¹	Conc _{PFC}	20.2	<0.03	305	2.4
%PFOS ²	%Surr (average)	65	5%	75	5%
PFOS ³	Conc _{Surr}	13.1	<0.02	229	1.8
PFAA ¹	Conc _{PFC}	10.6	<0.25	27	<5
%PFOA ²	%Surr (average)	8	%	10	1%
PFOA ³	Conc _{Surr}	0.85	<0.02	2.7	<0.5
OPC ¹	Conc _{PFC}	9.4	<0.14	24	<8.5
%6:2 FTS ²	%Surr (minimum)	71	%	59	%
6:2 FTS ³	Conc _{Surr}	6.7	<0.1	14	<5
Notes: <lor =<br="">1. PFAS concer 2. Percentage s 3. Maximum me</lor>	less than limit of reportin ntration calculated using Eq surrogate (%Surr), calculate easured concentration in gro	g, n/a = not applic uation 2.2 (ConcPF(d using Equation 2.2 pundwater results (C	able C) I. concSurr)		

perfluorodecanesulfonic acid (8:2 FTS). Golder (2012) also analysed for N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA) N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA) in ME1 whereas Cardno Lane Piper (2014a) analysed for N-ethyl-perfluorooctanesulfonamide (NEtFOSA), N-methyl-perfluorooctanesulfonamide (NMeFOSA), N-methyl-perfluorooctanesulfonamidothanol (NEtFOSE), N-methyl-perfluorooctanesulfonamidoethanol (NMeFOSE), 1H,1H,2H,2H-perfluorohexanesulfonic acid (4:2 FTS)

2 SELECTION OF CHEMICALS OF POTENTIAL CONCERN (COPC), QAQC AND DATA GAPS

The HHRA process includes a step to identify Chemicals of Potential Concern (CoPC). This step is undertaken to identify those chemicals that are most likely to contribute to overall risk. These chemicals are then carried forward in the risk assessment process for further assessment. The selection of CoPC in this HHRA is performed as follows:

- identify chemicals detected in water and sediment
- select suitable health based screening criteria for the chemicals identified
- collate the maximum concentrations for these chemicals
- compare maximum concentrations identified with the selected health based screening criteria
- CoPC are those chemicals with maximum concentrations that exceed the selected health based screening criteria.

Maximum concentrations detected in surface waters and sediment data are chosen from the monitoring event described earlier.

The Screening is performed in two parts:

- Screening for Primary Exposure Pathways in water and sediment
- Secondary Exposure Pathways from consumption of meat products, etc.

QAQC and data gaps for data presented is also summarised below.

2.1 Screening for Primary Exposure Pathways

The screening process for primary exposure pathways is suitable for direct contact exposure such as ingestion of and dermal contact with water, sediment and soils. The exposure pathway is considered complete where PFCs are detected in water, sediment or soil are above relevant screening values.

2.1.1 Chemicals of Potential Concern in Water

The maximum reported surface water concentrations of chemicals detected in the water samples from the waterway and Moorabool River are provided in Table 2-1. Drinking water guidelines (DWG) from NHMRC (2011) are used as screening values, where available, to identify those chemicals that require further assessment. DWG from NHMRC (2011) were not available for PFC. Screening values for PFC classes are selected from DWG derived by the USEPA (2011). The chemicals with concentrations that exceed the screening values are bolded and those chemicals selected as CoPC.

Chomical	Screening	Source	The Wa	aterway	Moorabo	ool River
Chemical	Value	Source	Мах	CoPC	Мах	CoPC
Nutrients and others	(Inorganics)					
Ammonia as N	60,000 ¹	See table note 1	50	No	-	-
Chloride	250,000 ²	NHMRC (2011)	31,000	No	-	-
Fluoride	1,500	NHMRC (2011)	200	No	-	-
Nitrate (as N)	50,000	NHMRC (2011)	830	No	-	-
Nitrite (as N)	50,000	NHMRC (2011)	10	No	-	-
Sodium	180,000 ²	NHMRC (2011)	28,000	No	-	-
Sulphate	500,000	NHMRC (2011)	23,000	No	-	-
Metals (Filtered)						
Arsenic	7	NHMRC (2011)	6	No	<1	No
Chromium(III+VI)	50	NHMRC (2011)	26	No	<1	No
Copper	2,000	NHMRC (2011)	7	No	3	No
Lead	10	NHMRC (2011)	5	No	<1	No
Nickel	20	NHMRC (2011)	14	No	2	No
Zinc	3,000 ²	NHMRC (2011)	36	No	<5	No
Hydrocarbons (Orga	nics)					
PFAS ³	0.2	USEPA (2011b)	20.2	Yes	<0.03	No
PFAA ³	0.4	USEPA (2011b)	10.6	Yes	<0.25	No
OPC ³	0.2	USEPA (2011b)	9.4	Yes	<0.14	No

Table 2-1: Screening of CoPC (using max concentration) in off-site Surface Water (µg/L).

Notes: Bolded values have exceeded adopted screening criteria, - = no results

 Based on the WHO (2006) assessment that "toxicological effects are observed at exposures above 200mg/kg of body weight". Therefore the screening value for ammonia is 6mg/L (i.e. screening value = 0.01 x 200mg/kg/day x 0.1 x 60Kg ÷ 2L/day where 0.01 is an uncertainty factor, 60kg is an average body weight, 2L is the assumed daily drinking water consumption and 0.1 assumes that only 10% intake is permissible from drinking water.

2. Selected screening values based on aesthetic guidelines are in red text.

3. The approach used to calculate the maximum concentrations for PFAS, PFAA, and OPC is presented in Section 1.4.

A suitable health based screening value for Ammonia was not available. The NHMRC (2011) and WHO (2008) drinking water guidelines only provide an aesthetic guideline value of 0.5mg/L. No health based guideline was derived as the presence of ammonia in water is not considered of immediate health relevance. Therefore a screening value was derived by Cardno Lane Piper for this chemical (60 mg/L) in water for use as a screening value¹¹.

The PFC classes have multiple detects in water from the waterway that exceed the selected screening criteria and are therefore selected as CoPC in water. There were no detects for the

¹¹. The health-based screening value used for ammonia is based on a statement in WHO (2006) "*toxicological effects are observed at exposures above 200mg/kg of body weight*"; thus this dose is considered a NOAEL. Using 200mg/kg as a point of departure and applying an uncertainty factor of 0.1 (intraspecies variability) a provisional drinking water guideline of 60mg/L was. This assumes 10% background from drinking water, 2L water consumed per day and a body weight of 60kg, consistent with NHMRC (2011) processes, i.e. screening value =0.1 x 200mg/kg/day x 0.1 x 60Kg ÷ 2L/day.

PFC classes in the Moorabool River therefore it is not considered a CoPC (for direct exposure pathways) in this river.

Extent of Perfluorinated Chemicals in water

Concentrations of PFOS in the waterway show a rapid reduction with distance downstream of the FTC. Sample point 'B' located on Beremboke Creek, immediately south of Lake Fiskville, can be used as a reference point for the concentrations of PFC at 'source'.

The concentrations of PFC for water samples collected in upstream and downstream locations are as follows:

- The upstream and parallel water samples (sample locations 'A', 'A1', 'M', 'N', 'O', 'P', 'Q' and 'R'); had no PFC reported above the laboratory limit of reporting (LOR);
- The downstream water samples for the Beremboke Creek showed concentrations similar to levels in Lake Fiskville extending to 1.2 km south of the site;
- The furthest sample point in which PFC was detected in water was at sample location 'l' which is along the Eclipse Creek and 17 km south of the site; and
- A summary graph for PFOS concentrations at each sample location is shown in Figure 2-1 below.

Figure 2-1: PFOS Levels in Water Upstream and Downstream of the Site.

An extended PFC analysis suite was included in the supplementary surface water report (Cardno Lane Piper 2014b). Surface water concentrations of PFC from the extended suite were detected above the LOR at locations immediately downstream of the site as summarised

in Table 2-2. Additional sampling locations (S, T, U and V) were included in the additional investigation and shown below in Figure 2-2.

Sample	Unite			Analytes		
Locations	Units	PFBS	PFHpA	PFHxA	PFHxS	PFNA
CKB2		1.35	2.78	10.1	9.86	0.29
CKC2		1.02	1.82	4.62	6.2	0.16
CKD2		0.49	1.14	2.76	3.52	0.13
CKS	ug/l	0.06	0.36	0.7	0.63	0.09
СКТ	µy/L	0.32	0.73	3.34	3.44	0.11
CKU		0.23	0.6	1.9	1.09	0.03
CKV		0.16	0.45	1.08	1.23	0.06
CKE2		0.25	0.48	2.28	2.46	0.11
					<i>a</i>	

Table 2-2: Summary of Extended PFC Water Results

PFBS = Perfluorobutane sulfonic Acid, PFHxA = Perfluorohexanoic Acid, PFHxS = Perfluohexane Sulfonic Acid, PFNA = Perfluorononanoic Acid.

Figure 2-2: Sample Locations Downstream on Beremboke Creek

2.1.2 Chemicals of Potential Concern in Sediment

The maximum reported concentrations of chemicals in sediment of the waterway and the Moorabool River are provided in Table 2-3. Human health screening values for sediment are not widely available and it is common practice for soil screening values to be adopted. The screening values selected to identify those chemicals that require further investigation are:

- Soil investigation levels (HIL-A) from NEPM (1999) where available;
- Regional screening levels (RSL, USEPA 2012) for "nutrients"; and
- Soil screening values from USEPA (2009) for PFCs.

There are no chemicals in sediment that have exceeded the adopted screening levels therefore no CoPC are identified in sediment. Analysis for PFC conducted in sediment samples are below selected screening value with a maximum PFAS concentration reported of 0.0024 mg/kg.

Chamical	Screening	Course	The W	aterway	Moorab	ool River
Chemical	Value	Source	Мах	CoPC	Мах	CoPC
Nutrients and others (Ind	organics)					
Fluoride	3100	USEPA (2012)	120	No	-	-
Nitrate (as N)	130000	USEPA (2012)	21.1	No	-	-
Nitrite (as N)	7800	USEPA (2012)	4.8	No	-	-
Metals (Inorganics)						
Arsenic	100	NEPC (1999)	36	No	8	No
Chromium (III+VI)	100	NEPC (1999)	95	No	12	No
Copper	6000	NEPC (1999)	17	No	7	No
Lead	300	NEPC (1999)	36	No	10	No
Nickel	600	NEPC (1999)	23	No	10	No
Zinc	7000	NEPC (1999)	55	No	22	No
Hydrocarbons (Organics	s)					
PFAS ^{1, 2}	6	USEPA (2009)	0.305	No	0.0024	No
PFAA ^{1, 2}	16	USEPA (2009)	0.027	No	0.005	No
OPC 1, ^{2, 3}	6	See PFAS ³	0.024	No	0.0085	No

Table 2-3: Screening of CoPC (using max concentration) in Sediment (mg/kg).

Notes: - = no results

1. The approach used to calculate the maximum concentrations for PFAS, PFAA, and OPC is presented in Section 1.4.

2. The approach used to calculate the minimum and maximum concentrations for PFAS, PFAA, and OPC is presented in

Section 1.4.

3. Screening value for PFAS used for OPC.

Extent of Perfluorinated Chemicals in Sediment

There is a large reduction in the levels of PFOS in sediment downstream of the site when compared to sample point 'B' located on Beremboke Creek, immediately south of Lake Fiskville. The concentrations of PFC for the off-site sediment samples are as follows:

- The upstream samples had low concentrations of PFOS only, reported above the laboratory LOR:
 - Beremboke Creek at locations A, A1 and M had PFOS concentrations of 2, 1.8 and 2.4 μg/kg respectively;
 - For the parallel creek (i.e. Pipeclay Gully, at sample location 'N') the reported PFOS concentration was 3.5 μg/kg;

- PFOA and 6:2 FtS was not reported above LOR for the upstream locations;
- PFOS was detected in downstream samples from Beremboke and Eclipse Creeks, including at locations 'F' and 'I'. A summary graph for PFOS concentrations at the corresponding sample locations is shown in Figure 2-3;
- Downstream of the Moorabool River there was one sample (Sample location 'L') of three where PFOS was detected above the LOR;
- PFC was not reported above LOR in samples from upstream of the Moorabool River (i.e. sample locations 'O', 'P', 'Q' and 'R'; and
- Concentrations of PFC from the extended suite were also detected in sediment above the LOR at locations immediately downstream of the Site, summarised below in Table 2-4, however they are well below the concentration reported for PFOS.

Samplo					Analy	rtes			
Locations	Units	PFBS	PFHpA	PFHxA	PFHxS	PFNA	PFDcS	PFUnA	8:2 FtS
CKB2		0.4	1.1	3.1	4.3	< 0.2	< 0.2	< 0.2	< 1.0
CKC2	ua/ka	0.3	0.6	1.2	3.4	< 0.2	< 0.2	< 0.2	< 1.0
CKD2	µу/ку	1.3	2.7	4.7	10.6	0.7	0.3	0.4	1.0
CKS		< 0.2	0.3	1.3	1.1	0.4	0.2	0.3	2.0

Table 2-4: Summary of Extended PFC Results - Sediment

Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

Sample	Units				Analy	rtes			
СКТ		0.6	1.5	4.7	12.4	0.4	0.2	0.4	2.0
CKU		0.6	2.4	4.7	11.7	0.5	< 0.2	0.2	< 1.0
CKV		0.5	1.5	3.4	8.2	0.2	< 0.2	< 0.2	< 1.0
CKE2		< 0.2	0.4	1.2	3.3	< 0.2	< 0.2	< 0.2	< 1.0

PFBS = Perfluorobutane sulfonic Acid, PFHpA = Perfluoroheptanoinc Acid, PFHxA = Perfluorohexanoic Acid, PFHxS = Perfluorohexane Sulfonic Acid, PFNA = Perfluorononanoic Acid, PFDcS = Perfluorodecane Sulfonic Acid, Perfluoroundecanois Acid and 8:2FTS = 8:2 Perfluorotelomer Sulfonic Acid.

2.1.3 Chemicals of Potential Concern in Soil

PFC impacts were investigated in soil in areas away from training areas (refer Appendix D of main report and Figure 7 in Appendix A) and on adjacent land (Cardno Lane Piper 2014c). These impacts in soils were investigated to consider the potential for fall-out of wind-blown materials from the training area (Section 2.2.1). Maximum results for PFC from these investigations are shown below in Table 2-5. The results were not adjusted as done in previous sections as no information on other PFC in soil was gathered. The results are well below screening criteria considered by USEPA (2009) to be protective of direct contact exposures with PFOS and PFOA. The PFC were below laboratory limit of reporting for the majority of samples in the adjacent land, particularly out of areas that are not inundated with water during high rainfall events and become more prevalent with distance from the FL PAD. Direct contact with soil is considered a negligible pathway.

Table 2-5: Screening of CoPC (using max concentration) in Soil (mg/kg) away from training areas.

	Sereening		Maximum Co	ncentration	
Chemical	Value	Source	Away from Training Areas	Adjacent Land ¹	Exceed
PFOS	6	USEPA (2009)	0.229	0.218	No
PFOA	16	USEPA (2009)	0.0204	0.0028	No
6:2 FTS ²	6	See PFAS ³	0.144	0.014	No

Notes: - = no results

1. Location with the maximum concentration is in close proximity to a dam which is likely to be inundated with water during times of heavy rainfall. Highest PFOS concentration outside of the potentially inundated area is 0.0035 mg/kg.

2. .Screening value for PFAS used for OPC.

There is also potential for PFC to collect on surfaces used to collect rainwater for drinking (a direct exposure pathway). This is considered in the risk assessment.

2.1.4 QAQC and Data Gaps Discussion - Primary Exposure Pathways

Surface Water and Sediment

Sampling of surface water and sediment has occurred at various times of the year spanning from February 2012 (Golder 2012) to April 2013 (Cardno 2014b). The temporal variability of the data is limited (refer to Table 2-6 below) in that they provide a snapshot of conditions in various surface water bodies upstream, on and downstream, of the site. Water and sediment from Lake Fiskville and immediately downstream of the site have been sampled on two occasions.

0			S	ample	D. fam. a
Surface wat	er Body	Month	Number ¹	Location	Reference
Beremboke	Unotroom	August 2012	1	A.	Cardna 2014a
Creek	opstream	October 2012	2	A1, M.	Cardiio 2014a
Laka Fiakuilla		February 2012	2	Inlet, Outlet.	Golder 2012
Lake FISKVIIIe		August 2012	12 (5)	LFA to LFE.	Cardno 2014a
		August 2012	4	B ,C, D, E.	Cardno 2014a
Beremboke Creek	Downstream	June 2013	8	B ,C, D, E, S, T, U, V.	Cardno 2014b
Drainage Cha	nnel	No access obtained	nil	Not applicable	Not applicable
Eclipse Creek	2	October 2012	2 (3)	F, G, I.	Cardno 2014a
Moorabool	Downstream	October 2012	3	J, K, L.	Cardno 2014a
River	Upstream	March 2013	4	O, P, Q, R.	Cardno 2014a
1. The numbe	r of sediment sam	ples is different in some c	ases to the nu	imbers of surface w	ater samples taken.

 Table 2-6: Summary of Sampling Events for Sediment and Water.

1. The number of sediment samples is different in some cases to the numbers of surface water samples taken. When different, the number of sediment samples is indicated in brackets.

2. No water was present in sample location G at the time of sampling.

Data from both monitoring assessments (Golder 2012, Cardno 2014a) achieved completeness of greater than the target of 95%. An assessment of data quality, chain of custody and analytical reports for the monitoring assessment conducted by Cardno is provided in Cardno Lane Piper (2014a). In the PSA prepared by Golder (2012) it is stated that the quality of data collected during the water monitoring program is "*of acceptable quality upon which to base decisions for this assessment*". This was based on the laboratory QA/QC program achieving a completeness of 98.2% which is greater than the target of 95%. Non-conformances were discussed and appropriately justified.

The temporal nature of the data, i.e. it is considered a snapshot in time, is considered an uncertainty in this HHRA. Two field events have been conducted by Cardno along the Beremboke Creek downstream of Lake Fiskville. It is noted that water in the Beremboke Creek was flowing in August 2012 (1st field event) but was not flowing in October 2012 (2nd field event) and June 2013 (4th field event). The maximum PFOS concentration recorded in water when then was no flow (17.7 μ g/L, June 2013) is higher than when water was flowing (August 2012, 10.6 μ g/L). However the sediment concentration when water was not flowing (June 2013, 29.6 μ g/L) is an order of magnitude lower (August 2013, 229 μ g/kg). This indicates that there is potential for change in sediment data however results were considerably lower and may not be related to the ephemeral nature of the creeks. Lack of temporal information for sediment and water is considered a data gap.

Soil data

A total of 18 primary soil samples from the site were collected on-site and away from training areas. The data is considered acceptable based on the agreement achieved in the interlaboratory and intralaboratory samples. Refer to Appendix D of the main report for a more detailed discussion. A summary of QA/QC results is as follows:

 Intralaboratory Samples (2 samples): The intra-laboratory assessment showed acceptable reproducibility with %RPD less than 50%; and

• Interlaboratory Samples (1 sample): The %RPD for PFOS shows an acceptable correlation between the two laboratories.

A total of 97 primary soil samples from the paddock and floodplain of adjacent land were collected on the adjacent land. The intra- and interlaboratory assessment of QC showed %RPD of up to 50% and some exceedences. This is not considered ideal; however, it is considered suitable for a qualitative risk assessment. Refer to Cardno Lane Piper 2014b. A summary of QA/QC results is as follows:

- Intralaboratory Samples (4 samples): RPD ranged from 14% up to 64%; however, there
 were some higher exceedances due to the PFC being present below levels of reporting in
 some duplicate samples. The exceedances are most likely related to low analyte
 concentrations; and
- Interlaboratory Samples (5 samples): PFC were below levels of reporting in most of the secondary laboratory samples. PFC was only detected in one sample (QC14) with RPD ranging from 56.7% to 65.2%.

A single sampling event has occurred for soil data on-site and away from training areas. This data is considered a snapshot demonstrating the potential for soil impacts away from training areas and on adjacent land. This data is currently considered sufficient for this HHRA as a correlation can be shown with distance (see Figure 2-4 above) and the majority of samples taken downwind (southeast) of the FLPAD (the prevailing wind is considered to be from the northwest) also match the correlation. All data collected is below screening levels for soil data therefore direct contact exposures are considered negligible.

2.2 Screening For Secondary Exposure Pathways

The screening process described in Section 2.1 is applicable for screening CoPC as a result of exposure via primary or direct contact exposure pathways. However it is not sensitive enough to identify whether a viable secondary exposure pathway is complete for bioaccumulative chemicals such as PFCs¹². A screening process was also conducted for secondary exposure pathways (e.g. consumption of rabbit meat and fish) by identifying whether PFCs have been detected in various media (soils, fish muscle and rabbit muscle). The exposure pathway is considered complete where PFCs are detected in these media.

2.2.1 Perfluorinated Chemicals in soil (consumption of meats)

It was assumed that wind-blown foams and/or spray drift from the FL PAD and dam 1 could potentially impact on soils away from training areas. Discussions with CFA personnel (07/02/2014) from the FTC indicates that is highly unlikely that either leave the training area and highly unlikely that they leave the site. Cardno is of the view that it would be difficult to see if spray drift was leaving the site and is the most likely cause of impacts in soil detected away from the training area (on-site and off-site).

There is potential for PFC in soil to be taken up by plants and consumed by grazing animals (rabbit, livestock etc.). The presence of PFC in soil would represent 2 possible pathways for PFC to enter the human food chain:

• Through grazing animals which eat grass that have taken PFC up from soil; and

¹² PFC have been shown to bioaccumulate and are considered highly persistent in the environment (ATSDR 2009, RIVM 2010). Bioaccumulation is a result of the uptake of a chemical from water and/or food by a species which is greater than the ability of these species to remove that chemical from the body (e.g. metabolism, elimination processes etc.).

• Wind-blown soils could be blown on to a catchment area and washed ion to tanks used for drinking water.

The impact of spray drift is indicated by PFOS levels detected in surface soil on the site away from training areas (on-site and off-site, see section 2.1.3). PFOS is used to demonstrate the trend as other PFC identified in soil (PFOA and 6:2FTS) were present at lower concentrations and often below limits of detection, i.e. PFOS contributes the majority of total PFC concentration detected in soil. PFOS concentrations in soil on-site and away from training areas (shown in Figure A6) ranged from 3.2 to 258 μ g/kg (Cardno Lane Piper 2014a)¹³. Note that units previously discussed for soil were in mg/kg.

Soil data has also been collected on adjacent land (Cardno lane Piper 2014c) which shares a boundary with the site. These soil results are shown in a Figure A7. Multiple samples were collected in various rows with increasing distance from the training area. The maximum PFOS value from each row has been selected and matched to their relative distance to the FL PAD. The on-site data and off-site data for soil are plotted against distance from the centre of the training area (FL PAD) as shown in Figure 2-4 (note that the concentration scale on the 'y axis' is logarithmic). PFOS soil concentrations are decreasing in a logarithmic fashion with distance from the FL PAD as shown by the line of best fit. PFOS concentrations in soil reduce by more than an order of magnitude between 100 and 600 m of the FL PAD and by a further order magnitude by 1500m away. This decreasing trend is represented by the line of best fit which is not influenced by outliers except that the goodness of fit when outliers are included (Coefficient of R^2 =0.58) is lower than when the outliers are excluded (Coefficient of R^2 =0.73). 3 soil sample results (marked by a red plus sign) are considered potential outliers. The results demonstrate that there is potential for impacts in soil away from the site.

¹³ This concentration range is well below the soil PFOS screening criterion of 6,000 μg/kg for direct exposure pathways (accidental ingestion and dermal exposures with soil) from USEPA (2012).

Privileged and Confidential Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria

Figure 2-4: PFOS Concentration in Soil with Distance from the Flammable Liquid PAD.

Wind direction could not be visually correlated with PFOS concentration and distance (not shown). It is noted that there is a relatively uniform annual wind distribution pattern at the site as shown below in Figure 2-5 however the prevailing wind (on an annual basis) tends to come from the northwest albeit only 20% of the time. It is noted there are seasonal variations in prevailing wind direction. Properties with water tanks closest to the site (from 650m away) are southeast of the site, i.e. predominantly downwind. Soil on the adjacent site are south of the FL PAD in the direction of northerly winds which are only registered 10% of the time. Irrespective of wind direction, on-site data to the southeast of the site and south of the site both fit the correlations shown in Figure 2-4. Hence, the correlation shown is considered robust enough to be used as a predictor of soil impacts away from training areas irrespective of direction.

Ashurst

Figure 2-5: Wind Rose - Wind direction and speed¹⁴ – Ballan (Fiskville).

¹⁴ Wind rose taken Bureau of Meteorology (Australian Government) site and was last accessed on 05 March 2014 at http://www.bom.gov.au/clim_data/cdio/tables/pdf/windrose/IDCJCM0021.087005.3pm.pdf

It is noted that the level of PFOA and 6:2FtS was of a similar magnitude to FPOS in one of the three potential outliers identified (in the on-site data) which is different to other samples where total PFC concentration was contributed to mainly by PFOS. This outlier was approximately 480m away from the FL PAD with the maximum PFOS concentration detected in soil (away from the training area) of 258µg/kg. This indicates that the source of PFC for this outlier is potentially different to PFC impacts identified in soil (e.g. ad-hoc training activities conducted away from training area).

These results indicate that:

- The surface soil contamination by PFOS has occurred away from training areas;
- The surface soil concentrations of PFOS are very low compared with relevant assessment criteria for direct contact exposures (6,000µg/kg);
- The concentrations in surface soil diminish rapidly away from the training areas.

Exposure pathways are potentially complete where exposure to soil (and plants grown in this soil) is considered possible (e.g. consumption of meat from grazing animals).

2.2.2 Perfluorinated Chemicals in Fish

Sampling of aquatic biota along the waterway and the Moorabool River has been conducted (Cardno 2014, refer to Appendix E of main document for more details and QAQC)). Sampling on the waterway downstream from the Site did not yield any species however there is a previous report of eastern mosquitofish (*Gambusia holbrooki*) being observed in Eclipse Creek. Aquatic species were collected from the Moorabool River at Sample location J in December 2012 including; Redfin perch (*Perca fluviatalis*), freshwater shrimp, tench (*Tinca tinca*), brown trout (*Salmo trutta*), short-finned eel (*Anguilla australis*) and flatheaded gudgeon (*Philypnodon grandiceps*). Four additional sites were sampled along the Moorabool River (upstream of its confluence with Eclipse Creek) in March 2013. Additional species collected were mountain galaxias (*Galaxias olidus*), smelt (*Retropinna semoni*), carp (*Cyprinus carpio*), roach (*Rutilus rutilus*) and river blackfish (*Gadopsis marmoratus*).

The concentrations of PFC in fish collected in the Moorabool River upstream and downstream of the confluence with the Eclipse Creek are as follows:

- PFOS was detected in four of the five samples collected on Moorabool River downstream of Eclipse Creek. An average of 40 ng/g was reported in muscle of specimens collected with a range of <10 ng/g (brown trout) to 60 ng/g in short-finned eel
- PFOS was detected in seven of sixteen samples from sites on Moorabool River upstream of its confluence with Eclipse Creek. An average of 2.6 ng/g was reported in muscle of specimens collected with a range of <1 ng/g (rouch and brown trout) to 6 ng/g in shortfinned eel
- In the Moorabool River the PFOS concentrations in fish muscle are higher in species collected downstream (average = 40 ng/g) of the confluence with the Eclipse Creek compared to upstream (average = 2.6 ng/g)
- PFCs from the extended suite (PFHDA, PFOA, PFNA, PFDA and 6:2 FTS) were not detected in samples collected from Moorabool River.

PFOS concentrations in fish from downstream of the Waterway are comparatively high compared to PFOS levels in fish from overseas studies (Cardno 2014).

Fish exposure pathway is considered a complete pathway in the Moorabool River (but not the Eclipse creek).

2.2.3 Perfluorinated Chemicals in Rabbit (on-site)

Rabbits with access to the waterway from downstream locations have not been collected (see Appendix F of main document). Rabbits were collected from the FTC site and a number of PFC were detected in muscle with PFOS levels ranging from 44 ng/g to 600 ng/g (10 samples) with an average of 224 ng/g (Results provided as parts of this appendix). Perfluoropentanoic Acid (PFPeA) was also detected in muscle samples (average of 1.3 ng/g with a range of 0.25 ng/g to 3.7 ng/g). These rabbits were collected in the vicinity of on-site dams with high PFOS concentrations in water (approximately 200µg/L). This is approximately an order of magnitude higher than PFOS concentrations in water in dams immediately downstream of the river. Concentration of PFOS in water continues to drop by a couple of orders of magnitude in the waterway with increased distance from the site. This suggests that PFOS levels in rabbits downstream of the site will be considerably lower than in rabbits caught on-site.

2.2.4 QAQC and Data Gaps Analysis for Secondary Exposure Pathways

Rabbit data

The data quality is considered acceptable primarily based on the agreement achieved in the interlaboratory samples. Refer to Appendix F of the main report for a more detailed discussion. A summary of QA/QC results is as follows:

- Intralaboratory Samples (2 samples): The intra-laboratory assessment showed acceptable reproducibility with only one sample exceeding an acceptable %RPD of 50%; (57.4% for PFPeA in sample RA6-1D for);
- *Interlaboratory Samples (3 samples)*: The %RPD for PFOS shows an acceptable correlation between the two laboratories (i.e. within 15%); and
- *Spiked Samples (2 samples)*: The first batch could have overestimated the concentration for some analytes with the average spiked concentrations reported at 136%, while the second batch may have underestimated the concentration for some analytes with the average spiked concentrations reported at 84%.

The rabbits (10) were sampled from the site in May 2013 (Appendix D). These rabbits were collected from a part of the site where the concentration and PFC in water and air are greatest (within the training area). Rabbits have not been collected from areas of the site away from training areas and off-site. The assumption was made that PFC levels would be considerably lower than rabbits collected off-site than those collected near the training area. However, this data has not been collected and is considered a data gap.

Grass (adjacent land)

Grass was collected in October 2013. A total of 9 grass samples (with 2 detects) were collected in the paddock of the adjacent land and 6 samples (with 5 detects) from areas near surface water bodies and assumed to be inundated with water during high rainfall events.

The maximum detect in samples from the paddock was 10 μ g/kg whereas it was 36 μ g/kg in samples from potentially inundated areas. There are no RPD exceedances for grass samples. Refer to Cardno Lane Piper 2014b for more information. The data is considered suitable for use in a risk assessment.

The data is limited, based on a single event and is only considered indicative of potential PFC levels in leafy parts of vegetation.

Aquatic Ecology Data

A total of 60 samples were analysed for PFCs and metals (38 from Lake Fiskville). Refer to Appendix E of the main report for a more detailed discussion. Overall it was concluded that data such as the %RPD, spike recovery and the frequency of QC samples conducted is considered to be sufficient and provides a reliable set of results. It is noted that the:

- %RPD between two laboratories (interlaboratory, National Measurement Institute NMI Sydney and Assure Quality, Wellington, NZ) is within recommended guidelines (i.e. < 50%) for PFOS (8.5 to 27%) and PFDA (9.5 to 42%). The %RPD ranged from 6.1 to 100% for 6:2 FtS. Note that %RPD was not calculated for samples which reported less than the LOR.; and
- The surrogate recovery is low for PFOS in data reported by the primary laboratory (NMI) however this does not impact on the reproducibility of the results from the two laboratories.

A number of laboratory surrogate recovery exceeded 400% which are mainly related to the first batch of samples analysed and believed to be related to laboratory handling procedures. When only redfin perch muscle data is considered the average surrogate recovery % were predominantly between 50% and 80% and considered acceptable. The surrogate recovery for PFOS for the primary laboratory (NMI) was consistently lower than the secondary laboratory (Assure Quality).

In summary, the fish results reported are considered to be accurate and can be relied upon for use in risk assessments. A large amount of data has been collected in fish and other aquatic species from surface water bodies on the site and from the Moorabool River. No aquatic species were collected from the creeks as aquatic life was not evident and is unlikely to support fish species that could be eaten. This is expected to some extent as the creek is ephemeral. It is noted however that investigations of aquatic life along the creeks were restricted to areas that could be accessed and that there is a possibility that during high water flow events that aquatic life from Lake Fiskville could be washed downstream and in to the creeks.

3 **REFERENCES**

ATSDR (2004). Toxicological profile for Ammonia. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. September 2004.

Cardno (2014). Aquatic Ecology Assessment, Fiskville Training College. Cardno Ecology Lab, March 2014.

Cardno Lane Piper (2014a). Surface Water and Sediment Contamination Assessment. Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. March 2014.

Cardno Lane Piper (2014b). Supplementary Surface Water and Sediment Sampling Downstream. Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. March 2014.

Cardno Lane Piper (2014c). Environmental Sampling and PFC Analysis Program, Adjacent Land, Victoria.

Golder (2012). CFA Training College, Fiskville, Vic. Preliminary Site Assessment. 15 June 2012. Golder Associates. Appendix C of IFI (2012).

Joy (2012). Fiskville. Understanding the Past to Inform the Future. Report to the Independent Fiskville Investigation. June 2012. Independent Fiskville Investigation, Robert Joy, Investigation Chair.

NEPM (1999). Schedule B (1) Guideline on the investigation levels for soil and groundwater. National environment protection (assessment of site contamination) measure. National Environment Protection Council,

NHMRC (2011). National Water Quality Management Strategy. Australian drinking water guidelines 6, 2011. National Health and Medical Research Council.

USEPA (2009). Provisional health advisories for perfluorooctanoic acid (PFOA) and perfluooctane sulfonate (PFOS). Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency. January 8, 2009.

USEPA (2011). 2011 edition of the drinking water standards and health advisories. Office of Water, U.S. Environmental Protection Agency. January 2011.

WHO (2005). Petroleum products in drinking-water. Background document for the development of WHO guidelines for drinking-water quality. World Health Organisation, 2005.

WHO (2008). Guidelines for drinking-water quality, third edition incorporating the first and second agenda. Volume 1, recommendations. World Health Organisation, 2008.

				+ +					1-1			1 1	-			-		+ +									+				- F					+ +	-		++		-	1 1	-							+
CKS/M CKS/M 26/10/2012		- <0.005 <0.005	0.0024																																															2 2 2
CKS/L CKS/L 24/10/2012		- <0.005	0.0018												•					•																											•		-	
CKS/K CKS/K 24/10/2012		- <0.005 <0.005	<0.005																				•																										, ç	
KS/J KS/J 4/10/2012		- - 0.005 - 0.005	<0.0005																																												,		. 4	7.0
(S/I C C C C C C C C C C C C C C C C C C C		- <0.005 <0.005	0.0045																																		, ,					,								18.3
S/G CH S/G CH		- <0.005 <0.005	<0.005																																															28.7
/F CK /F CK 0/2012 24/		- <0.005 <0.005	0.011																																															10.8
E0.1/10082011 CKS CKS 3/2012 25/1		<1 <0.005 <0.0005	0.0301	<0.5	<0.5	<0.5	<1 <0.5	<0.5	-0.5 -0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.0>	<0.5	<0.5	<0.5	<0.5 6 E	<0.5	<0.5	<0.5	-0.5 -	<0.5	<0.5	<0.5	<2.5	<0.5	<0.5	<5 <0.5	-1- -1-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	~~ ↓ ↓	<0.5	£ ₹	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	590	19.4
0.1/10082012 CKSI CKSI 2012 10/02		<1 <0.005 0.0007	0.0473 <0.5	<0.5	<0.5	<0.5	<1<0.5	<0.5	6.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<2.5	<0.5	<0.5	<5<	<1->	<1<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4	<0.5	€ 4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	1330	, w
.1/10082012 CKSD CKSD -0.1 012 10/08/		<1 0.01 .0027	0.229 <0.5	<0.5	<0.5	<0.5	<1 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.0> 5.0>	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 r	<0.5	<0.5	<0.5	<2.5	<0.5	<0.5	<5<0.5	<1	<1<	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	55	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	- 120	2450	26.7
1/10082012 CKSC0 CKSC -0.1 12 10/08/2		<1 <1 014 0006 0	142 (0.5	0.5	:0.5 <1	<1 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5 /F	0.5	<5 0.5	0.5 0.5	0.5	2.5	0.5	0.5	<5	-1-	<1 0.5	0.5	0.5 0.5	0.5	0.5	0.5 0.5	41.0	0.5	5.5	0.5	0.5	0.5 0.5	0.5	0.5	0.5	- 100	240	75
10082012 CKSB0. CKSB -0.1 2 10/08/2(1 005 0 005 0	102		15	1	1.5	5	9.9	12	2 2		1.5	1.5	5.5	0.40			22	5	12.0	12	.5		5	1.5		2 22		2 2	5	2	1	1.5	5.	2.9	1.5	2. ¥	2 - 1	12	2	5.	.6	5.0	29			120 <1	00	
CKSA0.1 CKSA -0.1 2 10/08/201		105 <0.	005 0.0		~ ~	~ ·	vv	~ ~		~ ~	~ ~	~		~ ~	1	77	2.0		¥ ¥	4	7 7	~ ~	2,		vv	VV	5	vv	~ ~	~ ~	vv	, v	* ⊽	~ ~	2.0	7	¥ ¥	~ ~		~ ~		~	* *		7 7	V V	2	v .	2	
CKS/A1 CKS/A1 0Ge 25/10/2013	Ecological	- 0:0>	×0.0																																							•					•			25
Field_ID LocCode nple_Depth_Rai mpled_Date-Tir	² HgiH and NSW EPA 1994 MgiH and									20	13		27																																					
κ S	PAZECC 2000 1200.																																																	
	PFOS EA (2004) ³	0.067	0.067																																					T										
	Site Specific Criteria PFCs ¹	6 16	9																																															
	Eal	1 0.005 0.0005	0.0005	0.5	0.5	1	1 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	2.5	0.5	0.5	5	3-	1 0.5	0.5	0.5	0.5	0.5	0.5	?; - ;	0.5 0.5	ω ư	0.5	c 9.0	0.5	0.5	0.5	0.5	- 20	20	
	Units	mg/kg mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg ma/ka	mg/kg	mg/kg	mg/kg ma/ka	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg ma/ka	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	e.,
	Chemkame	N-Nitrosodipherryl & Dipherrylamine 6.2 Fluorotelomer Sulfonate (6.2 FtS) Perfluorooctanoate	PFOS N. nitros ottisth/damine	N-nitros odi-n-butylamine	N-nitrosodi-n-propylamine N-Nitrosomethylethylamine	1-naphthylamine 2-nitroaniline	3-nitroaniline 4-chloroaniline	4-nitroaniline 2-methvl-5-nitroaniline	Aniline	Benzene Ethylbenzene	Toluene Xvlene (m & p)	Xylene (o)	Ayrene rotat 1,1,1,2-tetrachloroethane	1,1,1,1-trichloroethane 1,1,2,2-tetrachloroethane	1.1.2-trichloroethane	1,1-0/Chioroethane 1,1-dichioroethane	1,1-dichloropropene 1.2.3_trichloropropane	1,2-dibromo-3-chloropropane	1,2-dichloroethane	1,3-dichloropropane	z.c-ucritolopopate Bromodichloromethane	Bromoform Carbon tetrachloride	Chlorodibromomethane	Chloroform	Chloromethane cis-1,2-dichloroethene	cis-1,3-dichloropropene Dihromomethane	Hexachlorobutadiene	Hexachlorocyclopentadiene Hexachloroethane	Trichloroethene Tetrachloroethene	trans-1,2-dichloroethene trans-1.3-dichloropropene	Vinyl chloride	2.4-Dinitrotoluene	2,6-dinitrotoluene Nitrobenzene	1,2,3-trichlorobenzene 1,2,4-trichlorobenzene	1.2-dichlorobenzene	1,4-dichlorobenzene	2-chlorotoluene 4-chlorotoluene	Bromobenzene	Hexachlorobenzene	Prentachiorobenzene 1,2-dibromoethane	Bromomethane Dichlorodifili joromethane	lodomethane	2,4,5-trichlorophenol	2.4.6-trichlorophenol	2,6-dichlorophenol	2-chlorophenol Pentachloronhenol	Pronamide	Ammonia as N Filipride	Kjeldahl Nitrogen Total	Mnisture
	2hem_Group	PF.Cs	tmino Aliohatice			Amino Aromatics Anilines			111.2	SIEA			Chlorinated Hydrocarbons																		ivolosivas	essionity		Halogenated Benzenes						Halogenated Hydrocarbons			Halogenated Phenols				Herbicides	norganics		

Page 1 of 9

4лчу севслувания 1 045.1 045.1 045.1 045.1 045.1 045.1 045.1 045. 1.2012 24/10.2012 24/10.2012 25/1 25/1			•			•	•	•	•			8 5	4 4 1 4 1 4 1 4 1 4	20 7 5 12 49	2 0 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	COL	11 6 3 10 18	10 24 24				•				- - - -	•				•	,			· · ·	•	•	•					•	•	•				•	•	· · ·	•	· · · ·	•	•	•	· ·			· ·	•	· ·			•	•	•		· · ·	•		· ·	· · · · ·	·			•	•	•			•	· ·				
KSF CKSIG CKS KSF CKSIG CKS KSF CKSG CKS KSF 24/10/2012 24/1							•	•	•			<5 8	41 1	44 58	11 27	<0.1 <0.1	23 16	2 9 9	, ,			,																																	•																													· · · ·			· · · · · ·
0.1/10082012 CKSE0.1/10082012 CF 0.1/10082012 CKSE0.1/10082012 CF 0.1 2012 0.1 2012 2012 25 2012 2012 25 2012 2012 25 2012 2012 25 2012 2012 25 2012 2012 25 2012 25 2			1.3	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5	S 55	<1	54 38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 <0 30 <0 40 	11	6	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	2012 2015	0.07	C/D> C/D>	<1 <1	<0.5 <0.5	<0.5 <0.5	0.P	C:0-	~1	2	<0.5 <0.5	<0.5 <0.5	20.0	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-010	C.0.	6.U> 6.U>	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	/0 E	0.0	<0.0 2 0.0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	6.05 7.05	50.5 10.5	0.07		<0.0 2 0.0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0	-0.0 -0.1	C.0.	6.U>	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.21 <1.21	<1 <1	-0.5	0.02	<0.5 <0.5	<0.5 <0.5	-2.83 <3.63	1017	0.0×	<0.5 <0.5		<0.5 < 0.5	<0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <li< td=""><td> <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 </td><td> <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 </td><td> 40.5 </td><td>-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5</td><td>-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5</td></li<>	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 	 40.5 	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
0082012 CKS C0. 1/1 0082012 CKS D1			3 3.7	5 <0.5	5 <0.5	5 <0.5	5 <0.5	5 <0.5	5 <0.5	5 ×0.5	5 <0.5	5	1	40	0 ¢	4 SO 1	12	43	<05	5 <0.5	-0.5 -0.5	<0.5	202	0.00	0 ×0.5	<1	<0.5	5 <05	200		v	6	<0.5	205	0.02	5 <0.5	5 <0.5	<0.5	5 <0.5	100	200	0.5	5 <0.5	5 <0.5	<0.5	5 <0.5	202	0.0	000 2000	5 <0.5	5 <0.5	5 <0.5	5 <0.5	5 <0.5	5 <0.5	5 <0.5	5 <0.5	0.02	0.07		000 2000	0.02	0.0	0.0	0.05	5 <0.5	5 <0.5	5 <0.5	21 <1.21		<0.5	20.0	5 <0.5	5 <0.5	13 63	1017	0.05	5 <0.5	4 <05		505 405	0.02 2005	0.5	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CKSA0.1/10082012 CKSB0.1/ CKSA0.1/10082012 CKSB0.1/ CKSA CKSB -0.1 10008/2012 10.08/2012			4.8 25 0 22	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<0.5	0.5 5 5	0.5 7	0.0	0.5	 40.5 40.5 	<0.5	16	1 1	96 97 9	D	± €	8	8	<0.5 <0.5	202 0.5	0.5	<0.5	202	7 9 000	P 0:02	1	<0.5	<0.5	200	7,	~ ~	8	<0.5	<0.5 <0.5	19 19	<0.5	<0.5	<0.5	<0.5	10	2.0	1> 0.0>	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	0.E	7 9 0.07	0.05	<0.5	<0.5	<0.5	<0.5 <0	<0.5 <0.5	<0.5 <0.5	<0.5	0.0 1 2	0.0	C:0		0.05	200		7 9	- CU5	<0.5	<0.5 <0.5	<0.5	<1.21 <1.		<05	1 4	<0.5	<0.5	<3.63		C.U.S	<0.5	0.5 0.5		<0.5	0.5 0.5	0.5	0.5 5 6 5 5 7 6 5 7 6 7 7 6 7 7 7 7 7 7 7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
CKS/A1 CKS/A1 CKS/A1 CKS/A1 CKS/A1 CKS/A1	teelaithand	PE PH MSN	•	•	•	•	•		•			\$	4	29		300 501	, eo	⊳ €	2,			•			•		•			•	•	•	•	•	•	•	•	•					•	•	•				•	•		•	•	•	•	•	•	•	•	•	•				•	•	•	-		•			•				•	•					20	20	20 -	20	20 20
Field_IC LocCod Sample_Depth Sampled_Dat	HIBH 3	ANZEC		ľ								70	10	370	0/7	1	52	410	2			0.027	170.0							0 010	0.046		0.008					0.008	0.001																							L	0.0	+0.0		1.1	1.6	1.6				00	2.8	0.26			0.1	0.54			21	2.1	2.1 45	2.1 45 1.5	2.1 45 1.5	2.1 45 1.5	2.1 45 1.5 2.6
	Low ² ANZECC 2000 ISQG.	Low ²										20	1.5	80	00	0.15	21	200	007			0.0022	7700.0							0 00 10	0.0016		0.00002					0.00002	0.00032																							0.040	0.0.0	*+0.0		0.085	0.261	0.43				100 0	0.384	0.063		90	0.0	0.019			0.16	0.16	0.16	0.16 4 0.24	0.16 4 0.24	0.16 4 0.24	0.16 4 0.24 0.665
	PFOS EA (2004) ³	a soaq																	Ī																Ī																																					I															
	Site Specific Criteria PFCs ¹	site dinD																																																																																					
	Ear		0.1	0.5	0.5	0.5	970	Q.0	0.5	0.5	0.5	9	-	~	n 4	n 5	5 ~	4 u:	99	0.5	0.5	0.5	2	3	0'D		0.5	050			-		0.5	96	200	0.5	0.5	0.5	0.5		3	G.U	0.5	0.5	0.5	0.5	200		0.0 1	6.0	0.5	0.5	0.5	0.5	0.5	0.5	6.0 2	0.0		0.0	0.0 1	n 1			0.0	0.5	0.5	0.5			9.6	3	0.5	0.5		4	0.0	9'D	0.5		20	0.5	0.5	0.5	0.5	0.5	0.5 0.5 0.5 0.5
	Units		mg/kg	mg/kg	mg/kg	mg/kg	mgrkg	mgrkg	mgrkg	malka	ma/ka	mg/kg	mg/kg	mg/kg	- Gyloni	mo/kg	ma/ka	molko	marka	maka	enzene maika	marka	Bufilli	Buffill	mg/kg	mg/kg	ma/ka	molka	- CADOW	5v/fill	mg/kg) mg/kg	ma/ka	maika	Ruffin	трия	phate mg/kg	ma/ka	a) molko	6. 6 (2	Rufill .	xide mg/kg	s mg/kg	mg/kg	thvi ma/ka	malka	6. 6	By/BIII	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	a)anthracene mg/kg	mg/kg	mg/kg	mg/kg	Direction of the second	By/SIII	mg/kg	mg/kg	101	By/BIII	By/BIII	mg/kg	mg/kg	mg/kg	mg/kg	as B(a)P TPE mg/kg	thene mg/kg	marka	Rufin	mg/kg	ene mg/kg	/ae B/a/D TPF PFFx3) molko		mg/kg	Imgrkg	pyrene mg/kg		maika	mg/kg	otal) mg/kg	total) mg/kg mg/kg mg/kg	mg/kg mg/kg mg/kg mg/kg	of total) mg/kg mg	(total) 加タパタ (のがら (のがら (のがら (のがら (のがら (のがら))
	ChemName		Nitrite (as N)	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	Isopropylbenzene	n-butylbenzene	n-propylbenzene	p-isopropyltoluene	Sturene	tert-but/lbenzene	Arsenic	Cadmium	Chromium (III+VI)	Upper	Marcunv	Nickel	Zinc	2-Picoline	4-aminobiphenvl	Pentachloronitrob	4 4-DDF	-BHC	d-DLTO	AIGU	Aldrin + Dieldrin	h-BHC	d-BHC		000	100	DDT+DDE+DDC	Dieldrin	Endosultan	Linusulai	Endosulfan I	Endosulfan sul	Endrin	o-BHC (Lindan	Lootophas		Heptachior epc	Chlorferwinpho	Chlorpyrifos	Chlorovrifos-me	Diazinon	Dichlorune		Dimethoate	Ethion	Fenthion	Malathion	Prothiofos	7.12-dimethylbenz(a	2,4-dimethylphenol	2-chloronaphthalene	2-methylnaphthalene	2-memorphenol	2 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3-64-memyphenol	3-metnyicnolanthrem	4-01010-3-111611yihile	Acelephicelle	Acelepticityelle	Acetophenone	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Carcinogenic PAHs	Benzo(b)&(k)fluoran	Benzo(a, h i \nervlane	nonzuly, ini Judi Velle	Chrysene	Dibenz(a,h)anthrac	Carcinonanic DAHe		Fluoramnene	Fluorene	Indeno(1,2,3-c,d)	Allow high of one of		Napmnaiene	PAHs (Sum of the	PAHs (Sum of Phenanthrene	Phenalene Phenanthrene Phenanthrene	PAHs (Sum - Phenanthrer Phenol	PAHs (Sum (Phenanthren Phenol Phenol

Page 2 of 9

Privileged and Confidential Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskvile Victoria Ashurst

Table 1 : Sediment Data

						Field		CKS/A1	CKSAU. 1/ TUU02		2014 CKSCU. 1/100	SZUTACKSUU.TVTC	082012 CKSE0.1/	10082012 CKS/F	CKS/G	CR	200	CXS/1	CKS/K	CKS/L	CKS/M
						Sample De	oth Range	I NICUL	-0.1	0.1	0.1	-0.1	0.1	CNO/L	CVAG	ŝ	0	rev.	View	TICAN	N/SVN
						Sampled	Date-Time	25/10/2012	10/08/2012	10/08/2012	10/08/2012	10/08/2012	10/08/2012	25/10/2	012 24/10/2	012 24/1	0/2012 24	4/10/2012	24/10/2012	24/10/2012	25/10/2012
0 68	L nutration Control Contro	Inits EQ	ب Site Specific Criteria PFCs ¹	9FOS EA (2004) ³	יסא _ג אעבבכב 2000 וצלופי	ligh ² NAZECC 2000 ISQG.	NSW EPP 1994 Health and Ecological														
	ethviohthalate	1a/ka 0.5		•	d d	ď	Í		<0.5	<0.5	<0.5	<0.5	~0>	5	-	-	ŀ		ŀ	.	ŀ
Ĩ	imethyl phthalate	1a/kg 0.5							<0.5	<0.5	<0.5	<0.5	0	2							'
	H-n-butyl phthalate	6.0 0.5	10						<0.5	0.5	<0.5	<0.5	<0.	5							'
ď	i-n-octv/ phthalate	19/kg 0.5	~						<0.5	<0.5	<0.5	<0.5	0	5		_	-				-
<u>v</u>	lethyl Ethyl Ketone m.	5 5/kg							\$	22	\$5	€5	¥				•				•
ci l	-hexanone (MBK)	19/kg 5							\$	\$	\$	\$	√ '		,	,		,		,	'
4	-Metnyi-Z-pentanone	- 0 Julie - 2						•	€ S	Ŷ	<i>•</i>	Ŷ	₹			,	•				'
<u>ار</u>	arbon disuride	19/Kg 0.1							6.0°	0.P	6.D	5.0°									'
15	sopnorone n	- allea	0						\$0.0 2	9.P	90°	5.0°5	V	0	,	,					'
<u>_</u>	/scatilate	2 DAVD					ļ		200	7	80	7 4	/ ¢								
1 07	3-Dichlorohenzidine	10/kg 0.5							<0.5	4 (P	<0.5	<0.5	0					,			
4	(dimethylamino) azobenzene	1g/kg 0.5							<0.5	€.6	<0.5	<0.5	0	2							'
4	bromophenyl phenyl ether	3/kg 0.5	10						<0.5	0.5	<0.5	<0.5	<0.	2							
4	-chlorophenyl phenyl ether	0.5 0.5	5						<0.5	0.5	<0.5	<0.5	0	5							
-4-	-Nitroquinoline-N-oxide n.	1g/kg 0.5	2					•	<0.5	0.5	<0.5	<0.5	0	5							
4	zobenzene	19/kg 1						•	v i	v	V	V	v			-	•				
	is(z-critoroemoxy) metrane	10/60 0.5	0 14						2.02	0. 4 7 7	200	10.0		0 4							
<u> </u>	antazole minauprupyr) euror	10/kg 0.5	2 10						<0.5	505	<0.5	<0.5 <0.5	Ŷ								
Ĩ	benzofuran	1a/kg 0.5							<0.5	0.5	<0.5	<0.5	0	2							'
Í	exachloropropene	19/kg 0.5	10						<0.5	0.5	<0.5	<0.5	,0×	5							'
W	lethapyrilene	19/kg 0.5	2						<0.5	<0.5	<0.5	<0.5	<0.	2							
Ż	-nitrosomorpholine m.	3.0 0.5	2						<0.5	0.5	<0.5	<0.5	.0 0	2							
2	- nitrosopiperidine	19/kg 0.t	9						<0.5	0.2	<0.5	<0.5	9 9	2	,	,					'
2 0	-mitosopyrrolidine	ng/kg 7							202	207	202	202	vç	v							
. ċ	10-C16	10/k0 50					Ī	.	6F0	<50	50	~ <u>F0</u>	250					,			ľ
0	16-C34	10C 10C						.	<100	<100	~100	<100	-10	, , ,							'
0	10 - C14	1g/kg 50	-						<50	<50	€0	<50	<5i	6							•
Ø	6 - C9	19/kg 10					65		<10	<10	40	<10	1								
0	15 - C28 m	19/kg 10L	0						<100	<100	<100	<100	<11	0							'
0	29-C36 III	19/kg 10(<100	<100	<100	<100	<10	0							•
1	C10 - C36 (Sum of total)	19/kg 50					1000	•	99 99	<50	20	<50	\$			-	•				
ار ا	34 - C40	10L 3/6						•	00L>	001>	001>	101)[>			,	•				'
<u>ت ر</u>	10-C40	ngrkg 50							220	000	200	00	0								'
	0-010 2-14-Dickloss-2-hutana	0 0400					ļ		20.5	307	10	10/		-		, ,					•
3 <u> </u>	entachloroethane	ia/ka 0.5						. .	40.5	6.0°	40.5	0.5	0								
		0																			

							Field LocC Sample_De Sampled_I	1_ID code pth_Range Date-Time	CKS/N CKS/N 25/10/2012	CKS/0 CKS/0 27/03/2013	CKS/P CKS/P 27/03/2013	CKS/Q CKS/Q 28/03/2013	CKS/R CKS/Q 28/03/2013
tem_Group	Chenhaine	Units	EG	Site Specific Criteria PFCs ¹	PFOS EA (2004) ³	Low ² ANZECC 2000 ISQG.	ANZECC 2000 ISQG.	ASW EPA 1994 Health and Ecological					
FCs	N-Nitrosodiphenyl & Diphenylamine 6:2 Fluorotelomer Sulfonate (6:2 FtS) Perfilinmontamonte	mg/kg mo/kg	0.005	9 4	0.067				<0.005 <0.005	<0.005	-0.005 <0.005	<0.005	<0.005
	PFOS	mg/kg	.0005	9	0.067				0.0035	<0.0005	<0.0005	<0.0005	<0.0005
mino Aliphatics	N-nitrosodiethylamine N-nitrosodi-n-butylamine	mg/kg mg/kg	0.5								• •		
	N-nitrosodi-n-propylamine N-Nitrosomethylethylamine	mg/kg mg/kg	0.5										
mino Aromatics	1-naphthylamine	mg/kg	0.5		Ħ	Π	Π						
niines	2-mtroan line 3-mtroan line	mg/kg mg/kg											
	4-chloroaniline 4-nitroaniline	mg/kg mg/kg	0.5										
	2-methyl-5-nitroaniline	mg/kg	0.5							• • •			
TEX	Benzene	mg/kg	0.2		T			-					
	Ethylbenzene Toluene	mg/kg mg/kg	0.5					130		• •			
	Xylene (m & p) Xvlene (o)	mg/kg mg/kg	0.5										
blorinated Budroombooe	Xylene Total 1.1.2 totrochomothomothomot	mg/kg	30					25					
	1,1,1,2-terractionoemane 1,1,1,1-trichloroethane	mg/kg	0.5										
	1,1,2,2-tetrachloroethane 1,1,2-trichloroethane	mg/kg mg/kg	0.5										
	1,1-dichloroethane	mg/kg	0.5										
	1,1-dichloroemene 1,1-dichloropropene	mg/kg mg/kg	0.5										
	1,2,3-trichloropropane 1.2-dihrmo-3-chloropropane	mg/kg	0.5										
	1,2-dichlorethane	mg/kg	0.5										
	1,2-dichloropropane 1.3-dichloropropane	mg/kg ma/ka	0.5										
	2.2-dichloropropane	mg/kg	0.5										
	Bromoform	mg/kg	0.5										
	Carbon tetrachloride Chlorodihromomethane	mg/kg mg/kg	0.5										
	Chloroethane	mg/kg	n n							•			
	Chloromethane	mg/kg	5 6										
	cis-1,2-dichloroethene cis-1,3-dichloropropene	mg/kg ma/ka	0.5										
	Dibromomethane	mg/kg	0.5										
	rexactioroputaciene Hexachlorocyclopentaciene	mg/kg mg/kg	2.5										
	Hexachloroethane	mg/kg	0.5								• •		• •
	Tetrachloroethene	by/fu	0.5										
	trans-1,2-dichloroethene trans-1,3-dichloropropene	mg/kg mg/kg	0.5										
valo ei voe	Virnyl chloride	mg/kg	5										
Xpiusives	2,4-Dinitrotoluene	mg/kg	1										
	2,6-dinitrotoluene Nitrohenzene	mg/kg	1 2										
alogenated Benzenes	1,2,3-trichlorobenzene	mg/kg	0.5										
	1,2,4-trichlorobenzene 1,2-dichlorobenzene	mg/kg	0.5										
	1.3-dichlorobenzene 1.1.4.dichlorobenzene	mg/kg	0.5										
	2-chlorotoluene	mg/kg	0.5										
	4-chiorotoluene Bromobenzene	mg/kg mg/kg	0.5										
	Chloroberzene	mg/kg	0.5										
	Pentachlorobenzene	mg/kg mg/kg	0.5								• •		
alogenated Hydrocarbons	1,2-dibromoethane Bromomethane	mg/kg ma/ka	0.5										
	Dichlorodifluoromethane	mg/kg	9										
	Iodomethane Trichlorofluoromethane	mg/kg mg/kg	5 0.5										
lalogenated Phenols	2,4,5-trichlorophenol	mg/kg	0.5										
	2,4,6-trichlorophenol 2.4-dichlorophenol	mg/kg ma/ka	0.5										
	2,6-dichlorophenol	mg/kg	0.5										
	2-chiorophenol Pentachiorophenol	mg/kg mg/kg	1.5										
erbicides	Pronamide	mg/kg	0.5								,		
iuigailites	Fluoride	mg/kg	1										
	Kjeldahi Nitrogen Total Moistrure	mg/kg	- 20						- 47	216	- 24.9	18.1	36.6
	Nitrate (as N)	mg/kg	0.1										2.

							Field LocC	-D ebe	CKS/N CKS/N	CKS/0 CKS/0	CKS/P CKS/P	CKS/Q CKS/Q	CKS/R CKS/Q
							Sample_De	oth_Range Date-Time	25/10/2012	27/03/2013	27/03/2013	28/03/2013	28/03/2013
Chem_Group	ChemNarre	Units	EQL	Site Specific Criteria PFCs ¹	PFOS EA (2004) ³	row ² ANZECC 2000 ISQG.	ANZECC 2000 ISQG.	AGW EPA 1994 Health and Ecological					
	Nitrite (as N) Nitrocom (T dol Octificad)	mg/kg	0.1										
MAH	1,2,4-trimethylbenzene	by/bu	0.5										
	1,3,5-trimethylbenzene Isopropribenzene	mg/kg mg/kg	0.5										
	n-butylbenzene	mg/kg	0.5										
	p-isopropyltoluene	By/Bu	0.5										
	sec-butylbenzene	mg/kg	0.5										
	Styrene tert-butvibenzene	mg/kg mg/kg	0.5								• •		
Metals	Arsenic	mg/kg	5			20	70		Ş	11	<5	10	9
	Cadmium Chromium (III+VI)	mg/kg				9.15 80	370		⊽ %	20 20	<u>5</u>		£ 5
	Copper	mg/kg	ŝ			65	270		8	15	<5	32	-22
	Lead	mg/kg	-9 C			50 0.1E	220	300	10	12	\$	965	£0
	Nickel	mg/kg	5			21 21	52		12	49	-0-	30	-j- 8
A.00	Zinc	ma/ka	ۍ ا			200	410		25	65	25	239	25
Nitroaromatics	2-Picoline 4-aminchinhenvi	mg/kg	0.5										
	Pentachloronitrobenzene	mg/kg	0.5										
Organochlorine Pesticides	4,4-DDE	mg/kg	0.5			0.0022	0.027			,			
	a-BHC Aldrin	mg/kg	0.5										
	Aldrin + Dieldrin	mg/kg											
	b-BHC	mg/kg	0.5										
	d-BHC	mg/kg	0.5										
	DDT	mg/kg mg/ka	c.) -			0.0016	0.046						
	DDT+DDE+DDD	mg/kg											
	Dieldrin	mg/kg	0.5			0.00002	0.008						
	Endosultan	mg/kg	0.5										
	Endosultan sulphate	ma/ka	0.5										
	Endrin	mg/kg	0.5			0.00002	0.008		•	•	•		•
	g-BHC (Lindane)	mg/kg	0.5			0.00032	0.001						
	Heptachlor Hentachlor enoxide	mg/kg	0.5								•		
Organophosphorous Pesticides	Chlorfenvinphos	mq/kq	0.5	ſ								,	
	Chlorpyrifos	mg/kg	0.5										
	Chlorpyrifos-methyl	mg/kg	0.5										
	Dichloros	ma/ka	0.5										
	Dimethoate	ma/ka	0.5										
	Ethion	mg/kg	0.5							,	,	,	
	Fenthion	mg/kg	0.5										
	Brothiofon	mg/kg	6.0										
PAH	7 12-dimethylbenz(a)anthracene	by/bu	0.5	Ī	Ī	T		I	. .				
PAH/Phenols	2,4-dimethylphenol	mg/kg	0.5										
	2-chloronaphthalene	mg/kg	0.5								,		,
	2-methylnaphtnalene	mg/kg	0.5										
	2-nitrophenol	mg/kg	0.5										
	3-&4-methylphenol	mg/kg	0.5										
	3-methylcholanthrene 4-chicco-3-methylohanol	mg/kg	0.5										
	Acenaphthene	Bu/Bu	0.5			0.016	0.5						
	Acenaphthylene	mg/kg	0.5			0.044	0.64						
	Acetophenone	mg/kg	0.5			0.005	-						
	Anunacene Benzía lanthracene	mg/kg	0.5			0.261	- 19						
	Benzola) pyrene	mg/kg	0.5			0.43	1.6	-			,	,	,
	Carcinogenic PAHs as B(a)P TPE	mg/kg											
	Benzo(b)&(k)fluoranthene	mg/kg											
	Ghrvsene Chrvsene	mg/kg	0.5			0.384	2.8						
	Dibenz(a,h)anthracene	mg/kg	0.5			0.063	0.26						
	Carcinogenic PAHs (as B(a)P TPE, PEFx3)	mg/kg											
	Fluoranthene	mg/kg	0.5			0.6	5.1						
	Fluorene	mg/kg	0.5			0.019	0.54						
	Interno(1,2,3-c,0,pyrene Naphthalene	mg/kg	0.5			0.16	2.1						
	PAHs (Sum of total)	mg/kg	0.5			4	45	20				,	
	Phenanthrene	mg/kg	0.5			0.24	1.5						
	Phenol	mg/kg	0.5									,	,
Pecticidae	Chlorohenzilate	mg/kg	0.5	Ī	Ī	C00'N	0.2	I	. .				
	Pirimphos-ethy/	mg/kg	0.5										
Phthalates	Bis(2-ethylhexyl) phthalate	mg/kg	5										
	Butyl benzyl phthalate	mg/kg	0.5										

Privileged and Confidential Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

CKS/R CKS/Q

Dimensional Dimensional <thdimensional< th=""> <thdimensional< th=""></thdimensional<></thdimensional<>								Field LocC Sample_Der Sampled_D	_ID ode oth_Range bate-Time	XKS/N XKS/N 5/10/2012	CKS/0 CKS/0 27/03/2013	CKS/P CKS/P 27/03/2013	CKS/Q CKS/Q 28/03/2013	CKS/R CKS/Q 28/03/2013	
Marking Instruction Markindinstruction Marking Instruction	Zhem "Group	Chem Name	Units	EQL	Site Specific Criteria PFCs ¹	PFOS EA (2004) ³	ANZECC 2000 ISQG.	ANZECC 2000 ISQG.	NSW EPA 1994 Health and Ecological						1
Dimension Dimension <thdimension< th=""> <thdimension< th=""> <thd< th=""><th></th><th>Diethylphthalate</th><th>mg/kg</th><th>0.5</th><th></th><th>ŀ</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thd<></thdimension<></thdimension<>		Diethylphthalate	mg/kg	0.5		ŀ									
Distrikution model 0		Dimethvl phthalate	ma/ka	0.5											-
Monthly benche Monthly familie Monthly fam		Di-n-butyl phthalate	mg/kg	0.5						•	•	•	•		-
Opendia Immunicipation model Immunicipation model Immunicipation model Immunicipation Immunicip		Di-n-octyl phthalate	mg/kg	0.5											
Process (all bit), all bit), bit (all bit), bit), bit (all bit), bit), bit), bit (all bit), bit), bit), bit), bit (all bit), bit), bit), bi	solvents	Methyl Ethyl Ketone	mg/kg	5											-
Works Eventione mgd 6 m		2-hexanone (MBK)	mg/kg	2											-
Moto- international international i		4-Methyl-2-pentanone	mg/kg	2											-
Works Enclorence mmga 65 9		Carbon disulfide	mg/kg	0.5											
MOG Viscantial Implication 0703 5 0 <td></td> <td>Isophorone</td> <td>mg/kg</td> <td>0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>-</td>		Isophorone	mg/kg	0.5							,				-
MOGs 3:3:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0		Vinvi acetate	mg/kg	5											
Handbare Marking 0.5 Marking Marking Marking	svocs	2-(acetylamino) fluorene	mg/kg	0.5											-
PH Control Con		3,3-Dichlorobenzidine	mg/kg	0.5											-
Mission 05 <t< td=""><td></td><td>4-(dimethylamino) azobenzene</td><td>mg/kg</td><td>0.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>-</td></t<>		4-(dimethylamino) azobenzene	mg/kg	0.5								•			-
PHI Control Co		4-bromophenyl phenyl ether	mg/kg	0.5							•	•	•		-
Hutenumen-words mg/g 1		4-chlorophenyl phenyl ether	mg/kg	0.5							,				-
Productore mg/g 1 mg/g 1 <td></td> <td>4-Nitroquinoline-N-oxide</td> <td>mg/kg</td> <td>0.5</td> <td></td> <td>-</td>		4-Nitroquinoline-N-oxide	mg/kg	0.5											-
PH Discription mmga 0.5 Discription mmga 0.5 Discription mma Discription Discrip Discripion Discription		Azobenzene	mg/kg	-											
PH Cartonic control (control) (first) mm/ga 0.5 m/ga 0.5 m/ga 0.5 m/ga 0.5		Bis(2-chloroethoxy) methane	mg/kg	0.5											-
PH Description mm/g 0.5 m/g 0.5 m/g 0.5 m/g 0.5		Bis(2-chloroisopropyl) ether	mg/kg	0.5											
PH Endentitient mmga 0.5 <t< td=""><td></td><td>Carbazole</td><td>mg/kg</td><td>0.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>		Carbazole	mg/kg	0.5											-
PH Interditionation mm/sin 0.5 m/sin 0.5		Dibenzofuran	mg/kg	0.5											
Hetapylie mg/a 05		Hexachloropropene	mg/kg	0.5						•	•	•	•	•	
PH Interstance mm/ga 0.5 <t< td=""><td></td><td>Methapyrilene</td><td>mg/kg</td><td>0.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-1</td></t<>		Methapyrilene	mg/kg	0.5											-1
PH Introspendicing manual 1 - 3		N-nitrosomorpholine	mg/kg	0.5											
PH Intrasection Optimized Op		N1 nitroscontrollidico	Fy/Fui												1
PH Concession manual concession SSC Model		Dhanacatin	6y/full	90											1
Cirie Ceal mining 100 <	Hd.	C10-C16	Nu/ku	6.0	t	ľ	T	Ī	İ						T.
Officient manual (0, 0, 0, 0, 0) 000 (0, 0, 0, 0) 000 (0, 0) 000 000 000 000		78.7.34	E Sulta	19					Ī						1
C62 C93 C94 T E C94 T C94		C10 - C14	Bu/fu	202											1
CER: C23 month 100 100 100 100 100 100 100 100 <td></td> <td>C6- C9</td> <td>ma/ka</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td>65</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>		C6- C9	ma/ka	10					65						1
Constraint Total Total <thtotal< th=""> Total Total</thtotal<>		C16.C28	ma/ka	100											1
Control Example Example <t< td=""><td></td><td>C.29-C.36</td><td>ma/ka</td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>		C.29-C.36	ma/ka	100											1
OCGS Call Implies 100 Call <		+C10 - C36 (Sum of total)	ma/ka	50					1000						1
C03 C61-C40 mg/g 50 Mode 50 Mode 50 Mode 50 Mode Mode 10 Mode M		C34 - C40	ma/ka	100											-
OC63 OE5-14.0C1M MM240 10 M124 10 1 <th1< th=""> <th1< th=""> <th1< th=""> 1</th1<></th1<></th1<>		C10 - C40	ma/ka	50											-
OC3 Dest-14-Diction 2-3utime mg/lig 0.5<		C6-C10	mg/kg	10						•	•	•	•		-
Parts-14-Objectionen mysg 05 Items-14-Objectionen mysg 05	/0Cs	cis-1,4-Dichloro-2-butene	mg/kg	0.5											Ē
Itans-1,4-Dichoro-2-butene mg/kg 0.5		Pentachloroethane	mg/kg	0.5											-
		trans-1,4-Dichloro-2-butene	mg/kg	0.5											-

C Cardno LanePiper

Table 1 : Sediment Data

Table 1 : Sediment Data

Table 1 : Sediment Data

						c	Field_ID LocCode											
						Samp	ed_Date-Time	Statistical Summarv										
C ham_Group	ChernName	Units	EQL	Site Specific Criteria PFCs ¹	7/NZECC 5000 1200.	Hidh 5 7/NZECC 5000 I2CC -ow 5	NSW EPA 1994 Health and Ecological	Number of Results	Number of Detects	Minimum Concentration	Minimum Detect	Maximum Concentration	Detect	Average Concentration	Concentration	Standard Deviation	Number of Guideline Exceedances	Number of Guidelline Exceedances (Detects Only)
	Diethvlphthalate	mg/kg	0.5	┝				ß	0	<0.5	Q	<0.5	QN	0.25	0.25	0	0	
	Dimethyl phthalate	mg/kg	0.5					2	0	<0.5	Q	<0.5	QN	0.25	0.25	0	0	0
	Di-n-butyl phthalate	mg/kg	0.5					5	0	<0.5	QN	<0.5	QN	0.25	0.25	0	0	0
	Di-n-octyl phthalate	mg/kg	0.5					5	0	<0.5	QN	<0.5	QN	0.25	0.25	0	0	0
Solvents	Methyl Ethyl Ketone	mg/kg	2					5	0	<5	QN	<5	QN	2.5	2.5	0	0	0
	2-hexanone (MBK)	mg/kg	2					5	0	<5	DN	<5	DN	2.5	2.5	0	0	0
	4-Methyl-2-pentanone	mg/kg						2	0 0	<5	QN	<5	Q	2.5	2.5	0	0	
	Carbon Usumo	Bullow	0.4					2 4		3.02		202		30.0	20.05			
	Vinvi aretate	Rypm	3 4					0 W		-0.0 25		-0.0 65		0.4.0	0.5.0			
SVDCe	2.4 avatives filorana	Nu ku	24	ł		ł				20.5		20.5		0.25	0.25			
2000	3.3-Dichlorobenzidine	ma/ka	0.5					<u>а</u> на	0	<0.5		<0.5		0.25	0.25			
	4-(dimethylamino) azobenzene	ma/ka	0.5						0	<0.5	Q	<0.5	Q	0.25	0.25	0	0	
	4-bromophenyl phenyl ether	mg/kg	0.5					5	0	<0.5	QN	<0.5	Q	0.25	0.25	0	0	0
	4-chlorophenyl phenyl ether	mg/kg	0.5					5	0	<0.5	DN	<0.5	DN	0.25	0.25	0	0	0
	4-Nitroquinoline-N-oxide	mg/kg	0.5					5	0	<0.5	QN	<0.5	QN	0.25	0.25	0	0	0
	Azobenzene	mg/kg						5	0	ţ,	Q	¢,	Q	0.5	0.5	0	0	0
	Bis(2-chloroethoxy) methane	mg/kg	0.5					5	0	<0.5	Q	<0.5	Q	0.25	0.25	0	0	0
	Bis(2-chloroisopropyl) ether	mg/kg	0.5					5	0	<0.5	Q	<0.5	Q	0.25	0.25	0	0	
	Carbazole	mg/kg	0.5					5	0	<0.5	Q	<0.5	Q	0.25	0.25	0		
	Dibenzofuran	mg/kg	0.5					5	0 0	<0.5		<0.5		0.25	0.25	0		
	Methapvillene	ma/ka	0.5					0 10	0	<0.5		<0.5		0.25	0.25			
	N-nitrosomorpholine	mg/kg	0.5					2	0	<0.5	Q	<0.5	QN	0.25	0.25	0	0	0
	N-nitrosopiperidine	mg/kg	0.5					5	0	<0.5	QN	<0.5	QN	0.25	0.25	0	0	0
	N-nitrosopyrrolidine	mg/kg	-					5	0	<1	DD	<1	ND	0.5	0.5	0	0	0
	Phenacetin	mg/kg	0.5		_	-	_	5	0	<0.5	QN	<0.5	QN	0.25	0.25	0	0	0
ТРН	C10-C16	mg/kg	20					5	0	<50	Q	<50	Q	25	25	0	0	0
	C16-C34	mg/kg	90					5	0	<100	Q	<100	Q	20	50	0		
	CIU - CI4	mg/kg	8				L	0 1		220	NN.	200		Q .	47	0		
	0- 01 212 200	mg/kg	0.00				CO	0 1		<10 1100		<10 -100			0			
	C15 - C28	mg/kg						0 4		100		<100		00	00			
		Ry All	3				1000	5 1		100		100		8 5	20			
	7010 - 030 (Sutti 0) (0(di)	mollog	R Q					0 4		100		100		2 2	20			
	C10 - C40	mo/kg	3					0 40		<50		<50 <50		25	25			
	C6-C10	ma/ka	9 0					5 40	0	<10	QN	<10	Q	6	22	0		
VOCs	cis-1,4-Dichloro-2-butene	mg/kg	0.5		-			5	0	<0.5	QN	<0.5	QN	0.25	0.25	0	0	0
	Pentachloroethane	mg/kg	0.5					5	0	<0.5	QN	<0.5	QN	0.25	0.25	0	0	0
	trans-1,4-Dichloro-2-butene	mg/kg	0.5					5	0	<0.5	DD	<0.5	DN	0.25	0.25	0	0	0

Appendix C

Privileged and Confritential sm ent - Downstream Users Ballan Rd, Fiskville Victoria Ashurst	CKWL CKWL 24/10/2012 24/12/12																																		
Human Health Risk Asses 4549 Geelong	CKW/K CKW/K 24/10/2012 EM1212747																																		
	CKW/J CKW/J 24/102012 EM1212747			7005																						••••									
	CKW/I CKW/I 24/10/2012 EM12/2747		- 					• • • •									•••																		
	CKW/F CKW/F 25/10/2012 EM1212747		- 0.2 0.12	<u>.</u>	••••			• • • •		•••					• •																				
	82012 CKWFA 82012 CKWFA 22 25/102012 82 EM1212747							• • • •					• • • •		• •		•••									••••									
	D CKWE 0082012 CKWE0.3/100 112 1008201 169 EM12091		42 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20000	022000	250	0000000000000000000000000000000000000	4 & & 4	, A A A	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222	\$ \$ \$	\$ \$	9 ♥ ♥	288	2 V S	2 <0.002	4 5	822.	200	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	738	\$- 25	20 V 20	9.9.8	2 2 2	4 2	0 <1000 49	20	221 221	03 00 02	7.4	0.03
	NVC CKW 1/10082012 CKWD0.15/ 3/2012 1008/2 09169 EM1201		44 <44 <46	30000 20000	022000	110	00 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 40 40 4 4 40 40 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2	2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	2 42 42 52 2 42 42 42 2 42 42 42 2 42 42 2 42 42 2 42 42 2 42 4 43 4 43	50 50 50 50 50 50 50 50 50 50 50 50 50 5	0.0 0 0	2 2 2 2 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2	20 002 < 00 44 < 4	2 2	2 2 5 2 2 5	205 205	888 888 888 888 888 888 888 888 888 88	0 2 0 0 4 0	45 50 650	55 55 55 55 55 55	000	222	2 4	c1 <100 000 <100 44 44	05 2.17	22 33	34 92	2.65 2.66 2.1 2.8 3.0 0.87	0.00
face Water Data	CKWB C 02510082012 CKWC0 0082012 100 0082012 100 01209169 EM1		45 6.7 0.82 2.82	20000	022000		400	2 % % %	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ \$ \$	2 2 2	\$\$ \$ \$	5 & & &	\$2 \$2	10 10 1	2 & 6	5 8 8	2	40.002	2 5	<22 <2	8 8 8	\$ \$ \$	938	<50	\$ \$ \$	999	2 2 2	42	<1 <1000 <	<10 2.14	226 226	86 02 02	2.1 2.1 0.54	0.06
Table 2 : Su	CKWA CKWA MA0.210082012 10.082012 EM1209192 E		<4 <0.1 <0.02 <0.02 <0.02	2000 2000 2000 2000	2 4 4 5 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5	~2~	20,000 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	45 55 75 75 75	5 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	 45 5 /ul>	55 55	5 5 4	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	<5 <50	< 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<2 <10	45 45 45 45 45 45 45 45 45 45 45 45 45 4	45 45 45	<002 <0.002 <4	44 2 >	 45 42 42 42 43 44 4	2 2 5	29 K9 K9	67 44 22	<50	450	2.2.5	2 2 2	<4 <	<1 <1000 43	50	212	117 0.2	- 3.2 0.02	0.01 0.16
	CKW/A1 CKW/A1 CKW/A1 25/10/2012 EM1212747		- 	N								, , ,									• • •						• •								
	Code d_ID Date-Time rt Number	Mater (95%) Water (95%)	5.1 ³ 1700 ⁴ 6.43	5		250	950 350		6500								360		65	550	10 170 160	8					50	490	10					10	4
	Loc Fiel Sampled Lab Repo	StockWatering StockWatering	200,000			1000	0		03	\$	2		e				30										10		10				2	5	90
		ANZECC 1992 Primary Contact Recreation				150	0		0.3	\$	2		e				30										1 1		10		100	000	000+	, V	10
		Aureline/Inigation																														20.700	-		
		ADWG 2011 Aesthetic	4 0.1 0.2 0.4 0.4 0.4	2 2 2 2 2 2	044000	40	2 25 25	20 20 20		10 10 10 10	2 2 2	w w w	0.000	8 9 8	5 50 V	9 2 9	2 2 2	5 G G	4	2	22	2 0.3	2 2 2 4	0 4 0	8 8	8 4 8	2 2	2 0.3	2	1 00 1	01	2 .01 3E7	5	10	01
		E	000			V100ml 100ml 100ml													10						•						0 1	0 %		000	0000
		. Nermikamo Unhi	4-Ntrosodiphenk & Diphenkamine ug/L (2 Fluorotelomer Sulfonate (6.2 FtS) ug/L effluorooctanoate ug/L	4-hit oso diefrivitamine 1991. 4-hit oso die frivitamine 1991. 1-hit oso di-n-but Namine 1991. 1-hit oso di-n-but Namine 1991.	naphthvamine uoli Antroanline uoli Iugu Antroanline ugu Antroanline ugu Antroanline ugu	Million Mi	Berzen Lowerty Langing Berzen Laging Laging Ehrzene Laging Laging Ehrzene Laging Laging Obleme Laging Laging Arene (c) Laging Laging Arene (c) Laging Laging	Mene Total Unit 2.1 2-tetrachtoroefhane Us/L 	1-45ch/croethane 100/cr	1-dichlor oproplene La/L 2.3-frichlor oproplane La/L 2.4fbrom - 3-chl orop roplane La/L	. 2-dichlor opropane Lagr. .2-dichlor opropane Lagr. .3-dichlor opropane Lagr.	2.2-dichlor opropane Jug/L Vrom odichloro methane Jug/L	Samonomine 2015 Sarbon tetrachloride 1001 Nor odhromo methane 1001	2 hor of of the hor of	is-1,2-dichloroptopene Ug/L is-1,3-dichloroptopene Ug/L	lexachlorobutadiene bay. lexachlorocyclopentadiene bg/L	Hexachloroethane ug/L inchloroethene ug/L etrachloroethene uo/L	rans-1,2-dichloro eftre ne 1001. ans-1,3-dichloro prope ne 1001.	/inv. chorade .3.5-Trinitrob enzene mg/L .4-Dinitrotalu ene ua/L	2,6-dinitrotoluene µg/L litrobenzene µg/L	2.3-frichlorobenzene µg/L 2.4-frichlorobenzene µg/L 2-dichlorobenzene µg/L	L-dicrinor oberzene Ug/L -dicrinor oberzene Ug/L -chl orotoluene	Vom obenzene La/L Vom obenzene La/L	lexachioroben zene ug/L ventachioroben zene ug/L ventachioroben zene ug/L	2-dibromoethane Ug/L tomomethane Ug/L	Dichlorod fluoromethane uo/L xdomethane uo/L richlorof uoromethane uo/L	4.6-frichlorophenol uo/L	2.4-discrition opheniol 1921. 3.6-dischlor opheniol 1921. -chl orophienol 1921.	Pentachlorophe.nol Ug/L Yon amide Ug/L	Vikalnity (Carbonate as CaCO3) mg/L Vikalnity (Hydroxide) as CaCO3 Jug/L Ikalnity (Ibtai) as CaCO3 mg/L	vmmonia as N 19/L	30D mg/L ations Total med/	20D mg/L 1uoride mg/L	Dnic Balance %	Withe (as N) mg/L lifecgen (Total Oxidised) mg/L Leactive Phosphorus as P mg/L
		chem_Group	S S S S S S S S S S S S S S S S S S S	Amino Aliphatics	Amino Aromatics 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Biological Biological		Chlorinated Hydro carbons	<u> </u> = = =		<u>_</u>	<u>, 101 a</u>		19[0]	<u></u>	4411	<u></u>	<u> # # </u> 2	Explosives 2	1 TV Z	Haloge nated Benzenes	<u> </u>	* 	<u>-1710</u>	Haloge nated Hydrocarbons 1	<u>u</u> ¥E	Haloge nate d Phenols	4010	Herbicides F	Ihorganics	<u>-</u>	<u></u>	1016	- <u>-</u> <u>7</u> <u>5</u>	<u>- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>

Appendix C

C Cardno LanePiper

Privileged and Confidential ssessment - Downstream Users ong-Ballan Rd, Fiskville Victoria Ashurst	CKWAL CKWAL CKMAL 24/10/2012 EM12/12747							<0.001		- 0.001	- <0.001	-<0.001		-		<0.005																																			
Human Health Risk / 4549 Gee	CKW/K CKW/K CKW/K 24/10/2012 EM1212747							- <0.001	<0.0001 -	- ~ ~ ~	0.003	- <0.001			5	<0.005																																			
	CKW/J CKW/J 24/10/2012 EM1212747							<0.001	-0.0001	-0.001	- ~0.001	- <0.001	• • •	- 000		<0.005												• •																							
	CKW/I CKW/I 2410/2012 EM1212747							<0.001	- <0.0001	0.001	- <0.001	- <0.001		- 0000	5	<0.005																																			
	CKW/F CKW/F 2K/10/2012 EM1212747							- 0.06	<0.0001	-0.01	- 0.006	- 0.002		- 0013		<0.005																																•••			
	CKWFA CKWFA CKWFA 25/10/2012 EM1212747							<0.001	-0.0001	0.003	0.002	- <0.001	• • •	- 0000		<0.005												• •											• •												
	CKWE CKWE0.3/10082012 10/08/2012 EM1209192		28	5 5	\$ \$	\$ \$	\$ \$	<0.001	<0.001	8 0.004	0.004	0.003	<0.001 6	 <0.0001 <0.0001 0.006 	0.005	0.022	80	00	88	28	88	22	80	. 4 0	88	88	88	<0.002	884	200	2 8 6	881	400	404	88	88	88	88	44.84	88	<14.52	88	881	383	28	88	983	2.5	\$2 \$2	99 95 95	5
	12 CKWD0.15/100820 10/08/2012 10/08/2012 EM1209169		28	< 22 < 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<22	40 V	5555	<0.001	<0.001	9 0.002	<0.001	0.005	0.002	<0.0001 <0.0001 0.007	0.00	0.017	2 2	2 2	2 2	44 42	<22	44	2 2	100	2 2	2 2	2 2	<0.002 <2	889	200	2 5 5	201	105	25 24 44	<22	22	5 5 7	<2 <2	<4.84	<2 <2	<2 <14.52	2 2	2 2	200	5 ²	2 2 2	200	3.21	550 <50	< 50	<5
iter Data	012 CKWC 012 CKWC0.1100820 1008/2012 EM1209169		50 28	20	\$\$	\$ \$	\$	0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.	9 0.003	<0.001 0.006	0.005	0.001	<0.0001	0.005	0.017	80	00	88	20	22	22	80	100	88	88	88	<0.002 <2	884	999	2 8 6	881	900	484	22	88	88	88	<4.84	88	<14.52	88	881	999	88	88	9 9 9 9 9 9	122	50 50	< 60	5
able 2 : Surface Wa	012 CKWB025/10082 012 CKWB025/10082 10082012 EM1209169		28	\$ ₹	\$ \$	\$ \$	\$ \$	0.002	<0.001 <0.0001 <0.0001	9 0.003	<0.001 0.007	0.005	0.002	40.0001	0.00	0.022	90	00	88	2 0	88	22	80	. 4 0	88	88	88	<0.002 <2	884	200	2 8 5	881	100	404	88	88	88	88	4.84	88	<2<<14.52	88	881	3 8 3	22	88	983	10.0	5 [,] 5 [,]	SS SS	\$
Τα	CKWA CKWA0.210082 CKWA0.210082012 CKWA0.210082012 CM1209192		13	 4.5 4.5 4.5 	42 45 45	5 V	40404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404040404	0.001	<0.001	0.003	0.002	0.004	0.001	 0.0001 0.0001 0.0001 	0.007	0.014	2º 22	2 ²	5 7 7	<44	<2 <2	4> 4	2 5	100	5 7 7	2 2	2 2	<0.002	8 8 9	200	2 2 5	200	201	2 2 7 7 7 7 7 7 7 7 7 7 7	<22	2 2	\$ \$	42 42 42 42 42 42 42 42 42 42 42 42 42 4	<4.84	<2 <2	<14.52	2.2	5 5 S	200	5 7 V	2 2 2	20 (2 2	50 <50	99 99 99	50
	CKW/A1 CKW/A1 CKW/A1 CKW/A1 EM121274;							0.003	- <0.0001	. 0.006	4 0.004	4	+	9		9000													• •									• •									•••				
	Loc Code Field_ID ampled_Date-Tim ib_Report_Numb	StockWatering StockWatering ANZECC 2000 Fresh Water (95%)	1000					0.5	0.01 0.000	1000	1 0.5 0.001	0.5 0.001	0.1 0.003 600	0.002 0.000	1 0.011	20 0.005		9	-			3 0.01	-		1 0.02	3 0.09	10 0.01	10 0.01	20 100 0.15	0 100	60.0 001							0.01					16		320	-		3700			
	<u>د</u> «	Auzecc 1992 Primary Contact Recreation	3000 4000					0.5	0.05	0.5	0.5	10 0.5	0.5	0.01		88		9	-			e	-		10	e	10	10	-10 100	а (₽							0.01								-					
		DWG 2011 Reatheric	180 250				4	0.1	0.0	-	1 0.2	1 0.2 0.2	0.2	0.002	0.2	л <mark>л</mark>																																			
		EQL		ωu	ۍ م	ωw	ю ю	5 0.001	0.001 0.0001 0.0001	10.001	0.001	0.001	0.001	0.0001	0.001	0.005	2 0	~ ~	~ ~	4 0	2 2	4 4	• •• ••	1 01 0	~ ~	~ ~	~ ~	0.002	~ ~ ~	~ ~ ~	N (N (4 04 0	4 64 6	4 67 4	2 2	0 0	~ ~	7 7	4	2 2	~	0 0	0 0 0	~ ~ ~	7 77	~ ~ ;	2 00 0	2 2 2	5 2	29 29	9
		Units	mg/L mo/L	ua/L	UQ/L	UQ/L	1/6/L	uo/L mg/L	mg/L mo/L	mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L mg/L	mg/L	mg/L	100/L	uo/L	1/0/L	1/0/L	µg/L µg/L	ug/L	100/L	LO/L	1/0/L	1/6/1	hg/L	mg/L	р9/Г 109/Г	10/L	100/L	100/L	no/L	ng/L Lo/L	ug/L ug/L	1/6/L	1/0/L	1/6/1	1/6/1	1/6/L	1/6/L	uo/L uo/L	1/0/L	hg/L	10/L	101 101	100/L	1/0/L	uo/L	Jig/L Licit,	10/L
		Скелимание	Sodium (Filtered) Sulphate	1,2,4-trime thylbenzene 1,3,5-trime thylbenzene	ls opro pylb enzene n-b utylbenzen e	n-propybenzene p-isopropytolue ne	se c-butytben ze ne Styrene	le rt-b ut/liben ze ne Arsenic	Arsenic (Filtered) Cadmium Cadmium (Filtered)	Calcium (Filtered) Chromium (III+VI)	Chromium (III+VI) (Filtered) Copper	Copper (Filtered) Lead	Lead (Filtered) Magnesium (Filtered)	Mercury (Fitered)	Nickel (Filtered) Definition (Effected)	Zhoc (Filter ed)	2-Picoline 4-a min chiche nul	Pentachio ronitrobenzen e 4.4-DDF	a-BHC Aldrin	Aldrin + Dieldrin b-BHC	d-BHC DDD	DDT DDT+DDE+DDD	Dieldrin Fodosultan I	Endosultan I Endosultan suin hate	Endrin g-BHC (Lindane)	Heptachlor Heptachlor epoxide	a Chlor fe minphos Chlor pyrifos	Chlor pyrifos-methyl Diazinon	Dimethoate	Ernon Fenthion	Matiatmon Prothino dividence / A bed headence	2.4-dimethyphenol	2-methylnaphtalene 2-methylnaphtalene 2-methylnaphtalene	2-ntropheneron 2-ntropheneron 3-&4 methylohemol	3-me thylchola nthrene 4-chloro-3-methylphenol	Acenap htthere Acenap htthytene	Acetophenone Anthracene	Benzo(a) pyrene	Carcinogenic PAHs as B(a)P TPE Benzo(b)&(k)fluoranthene	Benzo(g,h,j)perylene Chrysene	Diberz(a,h)anthracene Carcinogenic PAHs (as B(a)P TPE, PEFx3)	Fluoranthene Fluorene	Indeno(1,2,3-c,d)pyrene Naphthalene	Phenanthrene	Prenol Pryrene	Chlorobenzillate Primphose thyl	Desizentine extri provenene Buty bench provenene Distruction for the late	Dimethyl phthalate DI-n-buty phthalate	Di-n-octvi phthalate Methvi Ethvi Ketone	Z-h exanon e (MBK) 4-Methe-2-sentanone	Carbon disuffide
		Chem_Group		MAH				Metals									Nitroaromatics	Organochlorin e Pesticides	,								Organ opho spho rous Pesticides					PAH/Phenois														Pesticides	L'IIII AIRIES		Solvents		

C Cardno LanePiper

Appendix C

Page 2 of 9

							LocCode	CKW/A1	CKWA	CKWB	CKWC	CKWD	CKWE	CKWFA	CKW/F	CKW/I	CKWVJ	CKW/K	CKWL
							Field_D	CKW/A1	CKWA0.2/10082012	CKWB0.25/10082012	CKWC0.1/10082012	CKWD0.15/10082012	CKWE0.3/10082012	CKW/FA	CKW/F	CKW/	CKWU	CKW/K	CKWL
						Samp	-led_Date-Time	25/10/2012	10/08/2012	10/08/2012	10/08/2012	10/08/2012	10/08/2012	25/10/2012	25/10/2012	24/10/2012	24/10/2012	24/10/2012	24/10/2012
						Lab R	teport Number	EM1212747	EM1209192	EM1209169	EM1209169	EM1209169	EM1209192	EM1212747	EM1212747	EM1212747	EM1212747	EM1212747	EM1212747
				oi	د. س		·												
				let	em	5	ısəı												
				150	Prig	069	(%) 9 E												
Chem Group	Chombano	Inte	C S	Ar	266	ect of te	56) 56)												
CIBIL GLOUD	CIRTINATIO	SILO		102		жм сес	C 2												
				: 9)			eWa												
				wan		100	ZNA												
				'	7														
	Isophorone	hg/L	6						42	8	8	42	8		,		,		,
	Vinvi acetate	no/L	20						<50	<50	<50	<50	<50						
SVOCs	2-(acetvlamino) fluorene	uo/L	2						22 22	8	8	<2	8			,		,	
	3.3-Dichlorobenzidine	no/L	2					,	<2	8	8	22	8		,		,	,	
	4-(dimeth viamino) a zo benzene	1/OII	2					,	<2	0	0	\$2	0		,		,	,	
	4-bromonhenvi ohenvi ether	Ino/	~						<2	0	0	\$	0						
	A chlorochand chand ather	- Mil							\$	\$	0	\$	\$						
		1001	4 0						4 9	9 9	99	4 q	99						
	4-NIT oquinoi ine-N-0xide	DQ/L	7						75	~~	75	75	~						
	Azobenzene	DQ/L	2						<2	8	8	<2	8						
	Bis(2-chloroethoxy) methane	LIQ/L	2						<2	8	8	<2	2						
	Bis(2-chloroisopropy) ether	no/L	2						42	8	8	22	4						
	Carbazole	no/L	2						<2>	8	8	<2	8						
	Dibenzofuran	LIQ/L	2						<2	8	8	<2	8		,				
	Hexachloropropene	no/L	2						42	8	8	22	4						
	Me tha pvrilen e	uo/L	2						<2	8	8	<2	8						
	N-nitrosom orpholine	uo/L	2						<2	8	8	<2	8						
	N-nitrosopiperidine	no/L	2						42	8	8	22	4						
	N-nitrosopyrrolidine	no/L	4						44	4	4	45	4						
	Phenacetin	ng/L	2						42	8	8	<2	8						
TPH	C10-C16	mg/L	0.1	°0.095					<0.1	<0.1	40.1	<0.1	<0.1	,	,				
	C16-C34	mg/L	0.1	560 [°] 0					<0.1	<0.1	<0.1	<0.1	<0.1						
	C10 - C14	ng/L	20	90 ₂					<50	<50	<50	<50	<50						
	C6-C9	hg/L	20	150005					<20	²⁰	<20	<20	50						
	C15 - C28	1/0/L	100						<100	<100	<100	<100	<100						
	C29-C36	ng/L	20						<50	<50	<50	<50	<50						
	+C10 - C36 (Sum of total)	no/L	20						<50	\$50	<50	<50	\$50						
	C34 - C40	mal	0.1						<0.1	≤0.1	<0.1	<0.1	<0.1						
	C10 - C40	mail	01					,	<0.1	\$01	\$0.1	<0.1	\$0.1				,		,
	C6-C10	mal	0.02	155					<0.02	<0.02	<0.02	<0.02	<0.02		,				
VOCs	cis-1.4-Dichloro-2-butene	no/L	5					,	5	Ŷ	4	\$2	۶.		,				,
	Pentachloroethane	uo/L	2						~22	Ş	ŝ	\$2	Ş						
	trans-1.4-Dichloro-2-butene	INU.	4					,	55	ş	\$	<5	2				,		,

Appendix C

ode ID ate-Time Number	I J	CKWM CKWM 25/10/2012 EM1212747	CKW/N CKW/N 25/10/2012 EM1212747	CKW/O CKW/O 27/03/2013 EM1303265	CKW/P CKW/P 27/03/2013 EM1303285	CKW/R CKW/Q 28/03/2013 EM1303265	CKW/R CKW/R 28/03/2013 EM1303/265
ANZECC 2000 Fresh Water (95%)							
	1						.
5.13	ſ	0 .1	\$0.1	<0.1	<0.1	\$0.1	<0.1
1700	1	-0 U2	<002	20.02	\$0.02	<0.02	<0.05
5.1		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	1						
250							
	1						
0.80	1						
008	1						
	1						
250	T						
200							
	T		,				
650	0						

chem_Group	ChemName	Units	EQL	otienteeA htos OWDA	Autecc 1992 Agriculture/Infigation	ANZECC 1992 Primary Contact Recreation	ANZECC 1992 StockWatering	ANZECC 2000 Fresh Water (95%)					
oFCs	N-Nitrosodiphenvi & Diphenvlamine 6.2 Fluorotelomer Suffonate (6:2 FtS)	761 761	4 0.1	0.2'				5.13	- <0.1		<0.1	<0.1	- 0.1
	Perfluoro octan oate PEOS	hg/L	0.02	0.41	0.023		0.00262	1700 ⁴ 5 1 ³	<0.02 <0.02	<0.02	<0.02	<0.02<	<0.02
Amino Aliphatics	N-n trosodiethyla mine	-V6ri	~ ~										
	N-nitrosodi-n-propylamine N-Nitrosomethylathylamine	- 10/l	1010										• •
Amino Aromatics	1-naph thylamine										,		
Animes	z-nitroaniine 3-nitroaniine	hg/L	4 4										
	4-chloro aniline 4-nitro aniline	hg/L	~ ~										
	2-methvi-5-nitroaniline Aniline	-Vou	~ ~					250					• •
Biological	Faecal Coliforms	MPN/100ml				150	1000						
	Pseudomonas aeruginosa Total Coliforms (Coliliert)	cfu/100ml mon/100ml											
BTEX	Benzene	-70r	- 0	c		10	10	950					
	Toluene	hg/L	× 77	25									
	Xylene (III & D) Xylene (0)	hg/L	2					350					
Chlorinated Hydrocarbons	Xwene I otal 1,1,1,2-le trachloroethane	10V	μ	50									
	1,1,1.trichloroethane 1,1,2,2-tetrachloroethane	hg/L	ω ω										
	1.1.2-trich loroe thane 1.1.d icht loroethane	ng/L	ωu					6500					
	1,1-dichloroethene	1/B/L	- C 4			0.3	0.3						
	1.2.3-trich lorop ropane	na/L	n un i										
	 2- dibromo- 3-chlor oprop ane 2- dichl oroethan e 	hg/L	ю и			10	10						
	 2- dichi orop ropan e 3- dichi orop ropan e 	ua/L	ъ ъ										• •
	2.2-dichl oropropan e Bromodichl oromethan e	1/0/L	ω u										
	Bromoform Carbon tatesorbiorida	-V6ri	ωu			e							
	Chlorodi browne than e	- The				,	>						
	Chloroform	hgit	5 G										
	Chlorome thane cis-1,2-dichioro ethe ne	hg/L	5										• •
	cis-1,3-dichloro propene Dibromomethane	707	۰۵ e										
	Hexa ch lorob uta diene Hexach loro cvcl opentadien e	hg/L Ug/L	10										
	Hexachloroethane	- Tou	2 4			30	50	360					• •
	Terran Occurrence Terran Control Control	hor.				10	10						
	trans-1,3-dichloropropene	na/L	n m 8										
Explosives	V nVI chloride 1.3.5-T rinitroben ze ne	mg/L	0.002										
	2.6-d in itrotoluene	na/L Ua/L	4 4					65					
Internated Destroyers	Nitroben Zen e	10/1	2 4					550					
	1,2,4-trich lorob enzene	hg/L	0 01					170					
	 2-dichl orobe nzene 3-dichl orobe nzene 	10AL	7 7	20				160 260					
	1.4-d ichl orobe nz ene 2-chloro tol uene	hg/L	2 2	0.3				60					
	4-chlorotol uene	ng/L	ω										•
	Di formobenzene Chi orobenzene	101	о ю ,	10									
	Penta chilorobienziene Penta chilorobienziene	חמע	1 01										
Halogenated Hydrocarbons	1,2-dibromoethane Bromomethane	10AL	2 22										
	Dichlor odifluoro methane lodome thane	ua/L	29 S										
Halo cenated Phenois	Trichl orofluor omethane 2.4.5-trich lorco henol	-10/L	50			-	-						
	2.4,6-trichlorophenol	γöή	~ ~	2		10	10	20 16.0					
	2.6-dichlorophenol	100V NBN	N (1	°.)				00					
	2-chlorophenol Pentachlorophenol	1/6/L	0 4	0.1		10	10	490					•
Herbicides	Pronamide	ng/L	~ ~										
10000	Alkalinity (Hydroxide) as CaCO3	100	1000										
	Alkalinity (total) as CaCO3 Ammonia as N	hg/L hg/L	10			100							
	Anions Total BOD	meq/L	0.01										
	Cations Total	med/L	0.01	250	30.700	4000							
		mg/L	. њ.	2		222	e			,	,	,	
	Filu onde Ionic Balance	morL %	0.01		-		7						
	Kjeldahi Nitrogen I otal Nitrałe (as N)	mg/L	0.01			100	30	72					
	Nitrê (as N) Nitrogen (Total Oxidised)	mg/L	0.01			10	10						
	Reactive Phosphorus as P	mg/L	0.01										

Privileg ed and Confridential man Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskvul e Vichoria

Appendix C

Table 2 : Surface Water Data

							LocCo		CKWM	CKW/N	CKW/O	CKW/P	CKW/R	CKW/R
							Sampled_Da Lab_Report	te-Time	25/10/2012 EM1212747	25/10/2012 EM1212747	Z7/03/2013 EM1303265	27/03/2013 EM1303265	2803/2013 2803/2013 EM1303265	28/03/2013 EM1303265
Chem_Group	C henn kima	Units	EQL	othertiseA 1102 DWGA	Adiculture/Inigation	ANZECC 1992 Primary Contact Recreation	ANZECC 1992 StockWatering	Mater (95%) Water (95%)						
	Sodium (Filtered) Suitohate	mg/L mo/l		180 250		3000	1000							
МАН	1.2.4-trimethylbenzene 1.3.5-trimethylbenzene Leonronvitherszene	101 Lot	n n n											
	n-butylbenzene	ng/L	ь ю I											
	n-propriopation p-isopropytoluene	hg/L	n 10 1											
	Sect-out/Mutanizariae State had and account	700 1001	n 40 4	4										
Metals	Tert-but vio enziene Arsen ic	mg/L	0.001		0.1	0.5	0.5		0.001	0.002	0.002	<0.001	-<0.001	0.001
	Arsenic (Filtered) Cadmium	mg/L mg/L	0.001		0.1	0.5	0.5	0.0 002	-0.0001	-0.0001	0.001 <0.0001	<0.001	<0.001	<0.001 <0.001
	Cadmium (Filtered) Calcium (Filtered)	mg/L mg/L	0.0001		0.01	0.05	1000	0.0002			<0.0001	<0.0001	<0.0001	<0.0001
	Chromium (III+VI) Chromium (III+VI) (Fillered)	mg/L ma/L	0.001			0.5			0.026	0.002	<0.001	<0.001 <<0.001	<0.001 <	<0.001
	Copper Conner (Filtered)	mg/L mo/l	0.001		02	10	0.5	0.0014	0.004	0.001	0.007	0.003	<0.001 <0.001	00.00 100.00
	Lead	mg/L	0.001	-	02	0.5	0.1	0.0034	0.005	<0.001	0.002	<0.001	<0.001	<0.001
	Lead (Filtered) Magnesium (Filtered)	mg/L	100.0		70	97D	0.0	0.0034						
	Mercury Mercury (Filtered)	mg/L	0.0001		0.002	0.01	0.002	0.0006	<0.0001	<0.0001	<0.0001	<0.0001 ≤0.0001	<0.0001 ≤0.0001	<0.0001
	Nickel Nickel (Filtered)	ma/L ma/L	0.001		02			0.011	0.012	0.014	0.005	0.002	0.003	0.003
	Potassium (Filtered)	mg/L	1		c	5	2	0000			-	- 000	-0.006	-0.005
	Zinc (Filtered)	ma/L	0.005	n m	5 4	8 8	8 8	0.008	-		0.012	<0.005	<0.005	<0.005
Nitroaromatics	2-Pholine 4-aminobiphenyl	113/L	7 7											
Organochlorine Pesticities	Pentachloron trobenzene 4.4-DDF	ua/L ua/L	~ ~	T	t	9	9	t						
0	a-BHC A Midde	-1/bri	~ ~ ~											
	Aldrin + Diel drin	hg/L	4			-	-							
	b-BHC d-BHC	ug/L Ug/L	2 2											
	DDD	hg/L	2 4					0.01						
	DDT+DDE+DDD Dial Artists	1/6rl	40											
	Endosulfan I	ng/L	100											
	Endosultan II Endosultan sulphate	ua/L	2 2											
	Endrin a-BHC (Lind ane)	na/L	~ ~			10	10	0.02						
	Heptachlor Heptachlor e poxide	hg/L Lio/L	~ ~			e	3	0.09						
Organophosphorous Pesticides	Chlorfenvin phos	10/L	~ ~			10	10	0.04						
	Chilopyridos-me fttyl	mg/L	0.002			7 9	7	10.0						
	Dichlorvos	hg/L	2			20	20	0.01						
	Dimethoate	hg/L LoA	2 0			100 6	100 6	0.15						
	Fenthion	hg/L	1 01 0			200		0.01						
	Malathon Prothio fos	ng/L	2 2			100	100	0.05						
PAH PAH/Phenole	7.12-dimethylbenz(a)an fhracene	La/L	~ ~										. ,	
SIG1911171171	2-chloronaphthalene	hg/L	2 2											
	2-methyln aphthale ne 2-methylo henol	ua/L Ua/L	~ ~											
	2-nitrophenol	μg/L	2											
	3-methylcholanthrene	hg/L	5 4											
	4-chloro-3-methylphenol A ce naphthene	119/L	2 2											
	A ce raphthylene A ce tooh enone	hg/L Ug/L	~ ~											
	Anthracene R enz(a)anthracene	ug/L un/l	2 0											
	Benzo(a) pyrene	hg/L	2			0.01	0.01							
	Caronogenic PAHS as B(a)P 1 PE Benzo(b)&(k)fluoranfhene	hg/L	4											
	B enzo(g, h,i)p erylene Chr vse ne	hg/L	0 0											
	Dibenz(a,h)anthracene Caroino canio DAHe (ae B/a)D TDE DEE 23)	hg/L	2							• •				
	Fluoranthene	DQ/L	2											
	Fluorene Indeno(1,2,3-c,d)pyrene	hg/L	0 0											
	Naphthalene	10/L	~ ~					16						
	Phenanthrene	hg/L	4 00 0					000						
	Pricence	ng/L	2					320						
Pesticides	Chlorobenziate Primphos-ethvi	hg/L Ug/L	0 0			-	-							
Phthalates	Bis(2-ethylhexyl) phthalate	- Tou	10											
	B unyi Denzyi pmmakate Diethyi phthalate	110/L	2					1000						
	Dimethyl phthalate	ug/L un/l	2 0					3700 26						
Columnia	Di-n-octil phthalate Mathal Ethol Kotono	-Vou	2											
200	2-hearing (MBK)	hg/L	3 25 5											
	4-Methyl-2-pentanone Carbon disulfide	hg/L	5					T						

Privileg ed and Confidential Human Health Risk Assessment - Downstream Users 5549 Geelong-Ballian Rd, Fiskville Vicbrid Astrurst

Page 5 of 9

Appendix C

Table 2 : Surface Water Data

				u Au	emi tioit	srea	092 2661	90 106	tuo	с				
Loci	Fiel	Sampled	Lab Repc		61 21	661 01193	CC Vat	JOCK MSE	IA Sto					
Code		Date-Time	ort Number	ч) LGS	(%9) ± 00	بد (6 200	CC:	N AZE	IA				
CKWM	CKWM	25/10/2012	EM1212747									,		
CKW/N	CKW/N	25/10/2012	EM1212747									,		
CKW/O	CKW/O	27/03/2013	EM1303265									,		
CKW/P	CKW/P	27/03/2013	EM1303265											
CKW/R	CKW/Q	28/03/2013	EM1303265											
CKW/R	CKW/R	28/03/2013	EM1303265											

Undot Undot <th< th=""><th></th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th>_</th><th></th></th<>		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Olive Olive <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																																	
Union Union <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>,</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></th<>												,																					-
Chevalore Chevalore <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></t<>																																	-
Observation												,																					-
Olume Olume <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																																	
Old Old <th></th> <th>-</th>																																	-
Observation Consistence	ANZECC 2000 Fresh Water (95%)																																
Openand Display Display <t< th=""><th>AVZECC 1992 StockWatering</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	AVZECC 1992 StockWatering																																
Oben_Octop Main	ANZECC 1992 Primary Contact Recreation																																
Chorn_Ocoup Lot of the coup Lot of the cou	Adiculture/Irrigation																																
Chonn_Group Chonnkame Units ECL SVOCA Disprivere Dispr	oiteriteeA htos OWQA																				0.095	0.095	902	150005						155			
Chern, Group Luenkame Luenkame Luenkame SVOCa 2.00 2.00 2.00 Magnetic 2.00 2.00 2.00 SVOCa 2.00 2.00 2.00 SVOCa 2.00 2.00 2.00 Address of the control of the contro	EQL	2	20	2	2	2	2	2	2	2	2	~	2	2	2	2	2	2	4	2	0.1	0.1	20	20	100	50	50	0.1	0.1	0.02	5	9	
Chem. Group Chem. Group SYOCA SYOCA SYOCA Chem. Benchman SYOCA Chem. Chem. Ch	Units	hg/L	na/L	лал	na/L	hg/L	ng/L	na/L	10g/L	10g/L	DQ/L	hg/L	10g/L	DQ/L	hg/L	10g/L	ng/L	hg/L	10g/L	ng/L	mg/L	mg/L	ng/L	hg/L	10g/L	DQ/L	ua/L	mg/L	mg/L	mg/L	-V6ri	-V6ri	
Chiam_Group Siro Co TPH TPH	ChemName	Isophorone	Vinvi acetate	2-(acetylam in o) fluorene	3.3-Dichlor oben zidine	4-(dimethylamino) azobenzene	4-brom ophenyi phenyi ether	4-chlorophenyl phenyl ether	4-Ntroquinoline-N-oxide	Azobenzene	Bis(2-chloroethoxy) m ethane	Bis(2-chloroisopropyl) ether	Carbazole	Diben zo furan	Hexachloro propene	Methapyrilene	N-n trosomor pholine	N-nitrosopiperidine	N-n trosopyrrolidine	Phenacetin	C10-C16	C16-C34	C10 - C14	C6 - C9	C15 - C28	C29-C36	+C10 - C36 (Sum of total)	C34 - C40	C10 - C40	C6-C10	cis-1,4-Dichloro-2-butene	Pentach loroe thane	
	Chem_Group			SVOCs																	ТРН										VOCS		

Appendix C
	Number of Guideline Exceedance (Detects Only)	2	4 0	00	0.0	00	0	000	0 0	0 +	00	00	0 0	00	000	000	000	0 0	0 0	00	00	00	, o c	000		0.0	000	000	000	000	0.00	000	00	00	00	00	00	00	0 0	0 0	00	0 0	0 0	00	0 0	00	00	40	>00		0 (2
	Number of Guideline Exceedanc	20	4	00	00	00	0	000	0 0	0 F	00	00	0 0	00	000	000	00	00	00	00	00	0 0	20	000		00		000	000	000	000	000	00	0 2	0 2	00	00	00	0 0	0 0	0	5	5	00	00	00	0 0	40	000		0 (
	Stand ard Deviation	2.5	0.33	00	00	00	00	000	0 0		0 7358	00	00	00	000	000	000	0 0	00	00	00	00	, <u>o c</u>	000	00	00	000	000	000	000	000	000	00	00	00	00	00	00	0 0	0 0	00	0 0	0 0	00	0 2.6	19 0.16	0.89	2.6	0 8	22	0.33	
	Median Concentration	2 0.05	0.01			+ 6	0.			180	5 6100	0.5		1	2.5 2.5 2.5	2.5	25	2.5	2.5	2.5	2.5	2.5	2.5	25 25	25 25	2.5	1	1	2.5	2.5 2.5 2.5	0.001	10	2.5		1 2.5	2.5	2.5	1 2.5	25 25	2.5			1 2	1 0.5	500 45	20 2.14	1 226	26	0.2 0.2 2.6.6.5	2.8	0.39	
	Average Concentration	2	0.19			1	2				5 9100	0.5		1	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	25 25	2.5 25 6 -	2.5	1 10	0 1 0 R	2.5	2.5 2.5	0.001	- 27	2.5		1 2.5	2.5	2.5	1 2.5	25 25	2.5 25		11	1	1 0.5	500 46	25 2.1	1.4	27 02	94 0.2 2.7	3.5	0.37	922
	Maxim um Detect	ND 6.7	0.85	Q Q	Q Q	22	Q			250 250	20000	Q Q	QQ	Q	22			n n	Q Q	9 Q	QN	QQ	225	Q Q									999	9 Q	9 Q	Q Q	9 Q	9 Q	Q Q	Q Q	gg	Q Q	Q Q	qq	ND 49	50 2.19	3	31	0.2 4.05	7.4	0.83	000
	I Maximum Concentration	<4 6.7	0.85	22	22	<2 <	44	<2 <2	5 5	250 250	<10 20000	4	<2<	<2	<5	29 19	0 0	<5	<5	<5	10 L0 V	40 20 20	40 45	450 75	-20 -20	<5	40 42	<10	22 22	45 45 750	<0.002	44	<5	<2 <2	42 45	<5	<5 44	² 2	<50	<5 <50	2 2	<2<	<2 <4	<2 <	<1000 49	50 2.19	3	31	0.2 4.95	7.4	0.83	- 24
	Minimur	0.2	0.12	QN	22	22	Q			110	1800	Q Q	QQ	QQ	22			ND	Q Q	qq	QN	QN											999	QQ	9 Q	Q Q	QQ	<u>9</u> 9	Q Q	Q Q	99	ON ON	QN N	QN QN	ND 43	1.81	3	24 80	0.2	2.1	0.02	ło c
	f Minimum Concentration	47 1-0-1	<0.02	80	00	83	4 (701	88	110	<10	20	88	03	÷۵	? \$? ¥	0 40 4	\$ \$	\$ \$	\$ \$	\$\$	\$\$	\$ \$	y 22	₈ 8	\$\$	004	2 v10	7 10 1	0 40 E	<0.002	1 2 0	19.0	88	8 8	\$ \$	\$ \$	88	<50	<5	88	22	64	42	<1000 43	<10	21	24 80	02 048	2.1	0.02	PV V* -
	Detects	5	6	0 0	000	000	0		0 0	0 0	5	00	0 0	00	000		000	0 0	0 0	00	00	00	000	000								000	000	00	00	00	00	00	0 0	0 0	00	0 0	0 0	00	5	5	4	<u>م</u>	- 40 -	4 10 1	2	
Statistical Summary	Number of Results	5 18	18	5	a a a		22	n 40 4	0.0	2	22	5	5	5		0.00.4	0 10 1	0.00	5	5	5	5	204	224	0 40 1	100	0 10 4	0 40 4	5 40 4	0 10 10	0 40 4	2 4 4	0.0	0.0	5	5	0.0	5	5	5	5	5	5	5	5	5	2		7 02 0	± ω ι	5	
LocCode Field_ID Med_Date-Time Report Number	ANZECC 2000 Fresh Water (95%)	5.13	5.1° 5.1°						250			950		350		CEO0	0069											360			85	220	10	260	60						20	160	490								72	
Samp Lab 1	ANZECC 1992		0.002							1000		10					0	0.3		10			e					30	10												- 6		10						2		30	10
	ANZECC 1992 Primary Contact Recreation									150		10					4	0.3		10			3					30	10												1 0		10			100		4000		445	100	
	ANZECC 1992 Agriculture/Infigation		0.023																																													30-700	-			
	DWG 2011 Aesthetic	0.2'	0.4"									e	25	20																				20 1	0.3		10				2	0.3	0.1					250				
	EQL	4	0.02	~ ~	2 2	c4 4	4 0	× ~ ~	~ ~			- 0	2 2	~	с с	о с о ч	n .n .	e e	5 5	ω Ω	2 2	ωω	• • •	50	20 2	2 2	0 00 0	2 ~ 4		0 v 9	0.002	4 0	10 01	~ ~	2 2	5 5	e 4	2 2	50	50	5 5	2 2	6 4	1 2	1000	10	0.01	- 4	0.1	0.1	0.01	
	si	hg/L	UQ/L	HQ/L	uo/L	1/0/L	1,61	no/L	uo/L	MPN/100ml	cfu/100ml mpn/100ml	na/L	10/L	UQ/L	no/L	10/L	hg/L	1/2/L	UQ/L	ua/L	uo/L	uo/L			ng/L	hộ/L	hor.	hg/L Log/L	hort hort	ווסוך הסוך	mg/L	hg/L	10/L	hg/L	hg/L	UQ/L	hg/L	ho/L	uo/L uo/L	1/0/L	ua/L	UQ/L	µ9/L µ9/L	ug/L ma/L	hg/L mg/L	ug/L mea/L	mg/L mea/L	mg/L	mo/L	mg/L	ma/L	mart
	onn ann	Nitrosodiphenyl & Diphenylamine Huorotelom er Sulfonate (6:2 FtS)	riluorooctanoale OS	nitrosodiethylam ine vitrosodiethylamine	hitrosodi-n-propylamine Vitrosome thylethyla mine	aphth/amine itroaniline	hitroaniine Novemine	hitroaniine	nethw-5-nitroaniine Line	ecal Coliforms Soli	eudomonas aeruginosa 'al Coliforms (Colilert)	nzene Wibenzene	luene ene (m & p)	lene (o)	1.1.2-tetrachloroethane	2,22-tetrachioroethane	.z-troniorethane	-dichioroethene -dichioropropene	2.3-trichi oropropane -dibromo-3-chloro propa ne	2-dichloroethane	-dichl oropro pane -dichl oropro pane	amodichlor omethane	ribon tetrachloride	lo roethane	loromethane	-1,2-dichloroethene -1,3-dichloropropene	zomometnane xachl orobu tad ie ne	xachi orocycio peritadiene xachi oroethan e	trachloroethene	ns-1,2-oicmor cemene ns-1,3-dichlor oproplene viri ohlorida	NI Chilonoe 3.5-Trinitrobenzene -Dinitrotvi uene	6-dinitrotoluene observationene	3.1 tichl orobe nzene (4.1 tichl orobe nzene	-dichloroben ze ne -dichloroben ze ne	-dichlorobenzene thlorotoluene	intoben ze ne	ilo roben ze ne xachil oroben zene	ntachl orobe nzene dibr omoethan e	o momethane Phorodifi uorome thane	lomethan e chlor ofiuoro methane	.5-trichlorophenol .6-trichlorophenol	-dichlorophenol	thiorophenol nachi orophenol	onamide allinity (Carbonate as CaCO3)	a linity (Hydroxide) as CaCO3 a linity (total) as CaCO3	nmonia as N ons Total	0 Nhne Trotal	lo ride	Du Dride to Balance	ind Ball ande Mdahi Nitrogen Total	rate (as N)	
	÷ S	0:2	PFC	flics N-n	-N	atics 1-n 2-n	100 V	44	2-r Ani	E. (Pst Tot	Eth	XVI	XVI	Hydrocarbons 1.1			11	1.2	1.2	1.3	Bro	Con	10	<u>518</u>	Cis Cis	He	Her	Tel	trai Voice	<u>13</u>	1917 1917	d Benzenes 1.2	1.2	<u>1,4</u> 2-d	Bro	Hei	1 Hydrocarbons 1.2	DIC	Tric	Phenols 2.4	2.6	2-c Per	Alk	AIK	Am	Cat	CH CH		Kle	UN I	- and a

Table 2 : Surface Water Data

							Sampled_Date	Time Imber Statistical Su	mmarv									
Chem_Group 6	- 	Units	EQL	DWG 2011 Resthetic	Additure/Imigation	ANZECC 1992 Primary Contact Recreation	ANZECC 1992	Mater (95%)	Detects	of Minimum Concentration	Minimum Detect	Maximum Concentration	Detect	concentration 0	Soncentration	Deviation G	Imber of Nu Midelline Gi Doe edances Ex	under of utdeline ceed ances etects Only)
100	sodium (Filtered)	mg/L		180 250		3000 4000	1000	n n	n n	23	23	28 23	23	6	8.0	22 0	00	
MAH 1	.2.4-trimethylbenzene .3.5-trimethylbenzene	uo/L	ωu					n n	00	& A	QN	<5	QN	5 5	25	00	00	
	Sopropylbenzene	hg/L	u u					2 4 4	00	<5 <5	QN	<5 <5	QN	29	2.5	00	00	
- <u>1</u> <u>>=</u> !	- propyliben zen e	LO/L	ы ю и					5 KD L	00	, ⊕ i	Q	65 r	Q		25			
	+ Bolzio Dynou ene ec-butylbenzene	hg/L	0 40 4					0 10 1	00	9 49 4		22 Y		0 10 1	222			
<u> 1</u>	ert-but/libe nz ene	ho/L	0 IO	ŧ				0 40	0	9 49	Q	22	Q	6 0 0	25	0 0	00	
Metals	visenic visenic (Filtered)	mg/L	0.001		0.1	0.5	0.5	9	<u>ത ന</u>	<0.001 ≤0.001	0.001	0.006	0.006	.0013	0.00075 0	0.0014 0	00	
	Sadm tum Sadm tum (Filtered)	mg/L	0.0001		0.01	0.05	0.01 0	0002 18	00	<0.0001	QN QN	<0.0001	DN DN	.00005 0	0.0005	0 0	0 0	
	Calcium (Filtered) Chromium (III+VI)	mg/L mg/L	0.001		-	0.5	1000	5 18	5 12	8 ≪0.001	8 0.001	10 0.026	0.026	.0037	0.002	0.71 0	00	
	Chromium (III+VI) (Filtered)	mg/L mg/L	0.001	-	1 0.2	0.5	1 0.5 0	0014 18	13	<0.001 ≤0.001	0.002	0.004	0.004	0034	0.005	0.0012 0	12	
	copper (Filtered)	mg/L mg/L	0.001	-	0.2	10 0.5	0.5 0	0014 9 0034 18	90	≤0.001≤0.001	0.003	0.006	0.006	0033	0.004	0.0022 6 0.0013 1	9	
	e ad (Filtered) 1agnesium (Filtered)	mg/L mg/L	1 0.001		0.2	0.5	0.1 0	0034 9 5	4 0	<0.001 6	0.001	0.002	0.002	.00094	0.0005	0.00063 0	00	
<u> 6 6</u>	Mercury (Filtered)	mg/L mg/L	0.0001		0.002 0.002	0.01	0.002 0	0006 18	00	≪0.0001 ≪0.0001	<u>9</u> 2	<0.0001	Q	.00005	0.0005	00	00	
	lickel	ma/L	0.001		0.2			011 18	18	0.002	0.002	0.014	0.014 0	0063	0.006	0.004 4	4 0	
-1	otassium (Filtered)	mg/L	1		4.0	. 0	- 00	5 5	9 40 a	4	4	50.026	5 000	.2	1	0.45 0		
	Inc (filtered)	mart	0.005	n en	2	50	20	1008 9	0 10 0	<0.005	0.011	0.026	0.026	.012	0.011	0.0099 5		
NEroaromatics	- mool me - aminobiphenyl	hg/L	7 7					0 40	00	2 62	ND	<2	QQ				0	
Organochlorine Pesticides 4	Pentachi oronitroben ze ne ,4-DDE	uo/L	2 2			9	9	5	00	88	QN	<2 <2	QN			00	00	
	- BHC Iddin	uo/L	~ ~			-	-	n n	00	88	QN	<2 <2	Q			0 0	00	
	Ndrin + Dieldrin	10/L	4 0) LO 4	000	4 (202	44	Q					
-1 01		hg/L	1010					0 10 1	00	101	202	2 5	2					
<u>-</u> , <u>-</u>	00	10/L	2 4			9	e	0.01 5	0.0	2 3	n n	<2 <4	n n			2 2 0	00	
	DDT+DDE+DDD	1)0/L	4 0			-	-	5 5	00	2 Q	9 Q	<4<<2			~ -	0 0	00	
100	Indosultan I	ho/L	~ ~					- LD LE	00	80	Q	22	Q			00	00	
-, -41 L	indosulfan sulphate	hg/L	• ~ ~					5	00	101	202	45 62	20					
<u></u>	- Indrin - BHC (Lindane)	עמיל. עמיל	~ ~			10	10	0.2 5 5 5	00	88	Q Q	2 2				0 0	00	
-	teptachlor teptachlor epoxide	10/L	~ ~			e.	e	0.09 5	00	88	Q Q	<2 <2				0 2	00	
Organophosphorous Pesticides	Chlorferwinphos	ho/L	~ ~			10	10	5 5	00	80	QN	<2	QN N			0 4	00	
-1015	Chlorpyreso	mg/L	0.002			4	4	5	00	₹0.002	201	<0.002	Q	1001	1000			
	hidhlorvos	hg/L	7 77			20	20	5	00	7 67	Q	22				00	0	
	Dimethoate :	hg/L	7 7			6	6	0.15 5 5	0 0	88	Q Q	<2 <2	QN			0 2	00	
<u></u>	centhion failathion	hg/L	2 0			100	100	0.05 5	00	80	QN	<2<	Q		_	0 4	00	
	Pro Thiofos	hg/L	7 7			3	3	5	0	78	Q	<2						
PAH PAH/Phenols 2	.12-dimethylibenzi a)anthracene .4-dimethyliphenol	UQ/L	~ ~					2 2	00	88	QQ	<2 <2				00	00	
- 4 54	- ch loron aphthale ne - mefh vina phth alen e	uo/L	~ ~					0.0	00	88	QQ	2 2	QQ			00	00	
- 14 C	-methylphenol	hg/L	~ ~					5	00	81	QN	<2	Q		_	0	00	
<u>-1 x 2 g</u>	- &4-methylphenol	LO(L	4 4 0					0 40 4	00	444		<44 50						
<u>-1 4</u>	-chloro-3-methylphenol	10/L	7 2					0.0	0	7 12		<2						
	cena phthene cena phthyle ne	10/L	~ ~					5 2	0 0	8 8	ON ON	<2 <2	ON ON			0 0	0 0	
<u> </u>	cetophenone infinacene	100/L	2 2					5	00	88	QN QN	<2 <2	QN			00	0 0	
	le nz(a)anthracen e	uo/L	~ ~			0.01	0.01	5 5	00	88	QQ	22	Q			0 0	00	
.04	arcinogenic PAHs as B(a)P TPE	ho/L						- LD LE	00	4.84	Q	<4.84	QN	4	2.42	00	00	
- 1771	Perizo (U/A) N/U di iti reci re Penizo (g,h.) (penyle ne	10/L	t (2)					0.0	0	7 V		<2						
2101	hitysen e bibenz(a,h)anfhracene	hg/L	~ ~					a a	00	88	ON ON	<2 <2				00	00	
	Sarcinogenic PAHs (as B (a)P TPE, PEFx3) Iluoranthene	ug/L	2					40 40	0.0	<14.52	QQ	<14.52 <2	QQ	8	126	00	00	
- <u>1 an</u>] 3	luorene duorene	LO/L	~ ~ ~					- 42	00	01	g	55	2					
-1×1	Loon of 1,2, o-C, u juytene	ho/L	7 2 9					16 5	00	701	29	25 %					00	
	AHs (Sum of total) Thenanthrene	uo'L	~ ~					5	0 0	88	Q QN	<2 <2	ON ON			0 0	0 0	
	The not	uo/L	2 0					320 5	00	80	QN	<2 <2	QN			00	00	
Pesticides	2 Noroben zila te	hg/L	1010					0 KD K	00	101	Q	100						
Phthalates E	visition os-erryi visi(2-ethylhexyl) phthalate	hg/L	10			-	-	0 40	00	<10	ND	<10	DN DN		- 10	00		
	butyl benzyl phthalate hiethvloh thalate	uo/L	~ ~					000 5	00	88	QQ	22	Q			00	00	
1	Dimethy phthalate		0 0					5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00	101	Q V	12	Q			0 0	00	
	Di-Docki phthalate	LO/L	4 ~~ 4					20 4	>00	104	201	25 2		-		100	<u>, o c</u>	
Solvents	Aethyl Ethyl keone -hexanone (MBK)	10/L	50					0 0	00	<50	ND	<50	ND	<u>a ca</u>	25	20	00	
40	-Methyl-2-pentanone	10/L	50					5 5	00	<50	QN	<50		5	25	00	00	

Appendix C

Appendix D 42 Pages

Soil Sampling and QA/QC

HUMAN HEALTH RISK ASSESSMENT - DOWNSTREAM USERS

4549 GEELONG-BALLAN RD, FISKVILLE VICTORIA

APPENDIX D

SOIL SAMPLING AWAY FROM TRAINING AREAS

Table of Contents

1	INTF	ODUCTION	2
	1.1	Sampling Event and Sample Locations	2
	1.2	Objective	3
2	SOIL	SÁMPLING	3
	2.1	Sample Strategy & Methodology	3
	2.2	Laboratory Analysis	4
3	QUA	LITY ASSURANCE AND QUALITY CONTROL REVIEW	4
	3.1	Intra-Laboratory Analysis (ALS)	4
	3.2	Inter-Laboratory Analysis (ALS and Eurofins-MGT)	5
	3.3	Field Blank – Rinsate	5
	3.4	Soil Results	6
4	ATT/	ACHMENTS	6
	Attac	hment A	6
	Attac	hment B	6
	Attac	hment C	6

Text Tables

Table 1-1: Sample Location ID and Georeferenced Positions	3
Table 2-1: Soil Investigation Summary	4
Table 3-1: %RPD Calculation for Intra-laboratory Assessment	5
Table 3-2: %RPD Calculation for Inter-laboratory Assessment	5
Table 3-3: Field Rinsate	5
Table 3-4: Summary of Soil Analysis	6

Figure

Figure 1-1: Sample Locations2	.2
-------------------------------	----

APPENDIX D - SOIL SAMPLING AWAY FROM TRAINING AREAS

1 INTRODUCTION

This summary is intended to provide a description for the additional soil sampling conducted by Cardno Lane Piper in areas away from the training area at the CFA Fiskville Training College, Fiskville Vic (the "Site"). The work was conducted as per proposal reference 212163.18Proposal01.2, dated 18 April 2013. This summary does not have nor provides any discussions with regards to results or corresponding criteria.

1.1 Sampling Event and Sample Locations

The field event was conducted on 29 April 2013. A total of 18 near surface soil samples were collected at the Site at depth of 0.05 to 0.1 m Below Ground Level (mBGL). Sample locations are shown in Figure 1-1. The corresponding sample identification number and approximate georeferenced locations are provided in Table 1-1. Field notes including sample description log are provided in Attachment A

Figure 1-1: Sample Locations

Sample ID	Easting ¹ (m)	Northing (m)								
SS65	254242	5826272								
SS66	254184	5825945								
SS67	254381	5825884								
SS68	254624	5825900								
SS69	254556	5826095								
SS70	254597	5826254								
SS71	254399	5825669								
SS72	254452	5825373								
SS73	254626	5825372								
SS74	254813	5825340								
SS76	255121	5825270								
SS77	255305	5825267								
SS78	255303	5825456								
SS79	255289	5825567								
SS80	255117	5825638								
SS81	255141	5825787								
SS82	SS82 254993 5825790									
Notes: 1. UTM Zone 55 (MGA94) and all decimal units rounded to metre. The GPS system reports an error or ± 10 m.										

Table 1-1: Sample Location ID and Georeferenced Positions

1.2 Objective

The additional soil sampling effort was to assess the extent of soil contamination and potential for impact of spray drift from the firefighting training due to the presence of Perfluoro Compounds (PFCs) in the water. The data obtained from this assessment is incorporated in the Human Health Risk Assessments prepared for the Fiskville Community and Downstream Users (reported separately).

2 SOIL SAMPLING

2.1 Sample Strategy & Methodology

The scope and method of the sampling event is summarised in Table 2-1. Locations, shown in Table 1-1, were chosen to provide even coverage of the site away from the main PAD area and target areas with potential deposition of windblown foam.

Activity	Details						
Dates of Field Activity	29 April 2014						
Sample Collection	Soil samples were collected using a shovel or hand trowel at a depth of 0.05 to 0.1 *mBGL.						
Soil Logging	Soils encountered during sampling were described and logged, and the corresponding soil descriptions are presented in Attachment A.						
Soil Sampling	Soil samples were collected into sample containers provided by the laboratory.						
Decontamination Procedure	Reusable soil sampling equipment was rinsed with Decon 90 and deionised water prior to the collection of subsequent samples.						
Soil Screening	PID screening did not report any evidence of hydrocarbons.						
Sample Preservation and Transport	Samples were stored on ice, in an esky while on-site and in transit to the laboratory under Chain of Custody documentation presented in Attachment B.						
*It is noted that the logs in	*It is noted that the logs indicate a depth of 0.2-0.3 mBGL however this is incorrect. A review of photos of sample						

Table 2-1: Soil Investigation Summary

*It is noted that the logs indicate a depth of 0.2-0.3 mBGL, however this is incorrect. A review of photos of sample locations (refer Attachment C) show near surface sample locations that are less than 0.1m in depth. This is further supported by the fact that the scope of work and the JSA for the work have shown "near surface samples" are to be collected.

2.2 Laboratory Analysis

All near-surface samples were submitted for laboratory testing and analysed for PFOS, PFOA and 6:2 FtS. Copies of the NATA accredited laboratory reports and sample receipt records are included in Attachment B. The Quality Assurance and Quality Control (QA/QC) of the soil sampling program is discussed in Section 3.

3 QUALITY ASSURANCE AND QUALITY CONTROL REVIEW

The following sections provide a summary review of QC.

3.1 Intra-Laboratory Analysis (ALS)

Two blind samples, QC1 and QC3, were submitted to ALS to assess the intra-laboratory reproducibility of the analysis. The Relative Percentage Difference (RPD) calculated from the parent samples (i.e. SS69 and SS78 respectively) are provided in Table 3-1.

Chemical Name	Units	LOR	SS69	QC1	RPD	SS78	QC3	RPD
PFOS ¹		0.0005	0.0168	0.0152	10	0.0399	0.018	35
PFOA	mg/kg	0.0005	0.0006	0.0005	18	0.0007	0.0006	15
6:2 FtS		0.005	<0.005	<0.005	0	<0.005	<0.005	0
Note: 1. PFOS is reported i	n units of µg/k	g in the anal	ytical reports.					

 Table 3-1: %RPD Calculation for Intra-laboratory Assessment

The %RPD calculation shows that there is no systematic error in the laboratory assessment and the results calculated are within the acceptable range of < 50%.

3.2 Inter-Laboratory Analysis (ALS and Eurofins-MGT)

One blind sample, QC2, was submitted to Eurofins-MGT to assess the intra-laboratory reproducibility of the analysis. The RPD calculated from the parent sample (i.e. SS69) for the corresponding analysis are provided in Table 3-2.

 Table 3-2: %RPD Calculation for Inter-laboratory Assessment

Chemical Name	Units	LOR	SS69	QC2	RPD						
PFOS ¹		0.0005	0.0168	0.018	14						
PFOA	mg/kg	0.0005	0.0006	<0.0022	-						
6:2 FtS		0.005	<0.005	<0.0033	-						
Note: 1 PEOS is reported in units of ug/kg in the analytical reports											

PFOS is reported in units of µg/kg in the analytical reports.
 "-" indicates %RPD not calculated due to one or more result less than laboratory LOR.

The %RPD for PFOS shows an acceptable correlation between the two laboratories. The high %RPD for PFOA and 6:2 FtS are outside the acceptable range; however, this is due to calculating an RPD for data which reported less than laboratory LOR and differences in the laboratories LOR. The data is considered acceptable since the results for PFOS has a %RPD less that 20% and it is the main chemical indicator for the current assessment.

3.3 Field Blank – Rinsate

One field rinsate was collected for the field event. The results from the analysis, shown in Table 3-3, for the contaminants of concern demonstrates that the field decontamination that was put in place did provide adequate quality control between sample locations.

Chemical Name	Units	LOR	Reported
PFOS	mg/L	0.00002	<0.00002
PFOA	mg/L	0.00002	<0.00002
6:2 FtS	mg/L	0.0001	<0.0001

Table 3-3: Field Rinsate

3.4 Soil Results

A summary of the soil results is provided in Table 3-4. The extended soil sampling away from the PAD training showed detectable levels of PFCs suggesting potential for windblown dispersion.

	Number of Analysis	Number of Detects	Minimum Detect	Maximum Detect	Detection (%)
PFOS	18	18	0.0032	0.258	100
PFOA	18	10	0.0005	0.0204	56
6:2 FtS	18	2	0.027	0.144	11

Table 3-4: Summary of Soil Analysis

4 ATTACHMENTS

Attachment A

Field Notes

Attachment B

Laboratory Reports and Chain of Custody

Attachment C

Photos

Cardno Lane Piper

March 2014

QF3.01 - Fieldwork Daily Report

Project Detail	S CONTRACTOR OF THE REAL PROPERTY OF
Project Name: Soil Assessment	Job Number: 212163 . 18
Site Address: Fiskirille	PP/PM: ADL/LMR
Client Company/Contact: CFA	Date: 29 4
Persons Present: SD	Notes By: 55

Site Activities	Yes	Comment/Details
PESA Site Inspection / Interview personnel	-	
Inspect or supervise bores/test pits/ observe sampling/ remediation works	1	*
Audit fieldwork methods QA/QC	-	
Soil sampling - test pit / soil bore (soil grab		
Soil gas / LFG investigation	-	
Groundwater bore construction / GME / Groundwater levels / sampling	-	
Geotechnical Investigation		
Compaction Control Tests	-,	
Field consumables used? (if so what?)	,	These must be charged via timesheet
Photographs (Digital)		
Supplementary notes attached		
Weather Conditions & Temperature	T: { °C	Windy Darthy sunny

Notes / Sketch Plan:

Arrival on site - 8:150m Arrival of Shocter - 8:35am - JSA & sign in \$\$\$ site \$ inspection, delay in CFA induction (JJ/Martyon preoccupied) > induction by Martyn at 10.15

Sheder left @ 10:30am Stort seil sampling @ 10:45 Lunch - 12:00 - 12:30 Finish - Left site - 3:30pm

() Candna	DAUVTOO	DOV CAFETV	NACETINIC
LanePiper	DAILY TOUL	BUX SAFETY	WEETING
Date:4 13	Time:	Car Car	dno Job No.: 212163 · 18
Site Address:	Site ID:	Fiskerlle	
Specific Location:	yedang Dallam	Kol	
Type of Work:	assessment	Chemicals Used:	
SAFETY TOPICS PRESENTED			
Protective Clothing / Equipment	Steel-Tood Poots	VI and Sloove Protection	
Biological Hazards	Reflective Traffic Vest	Tyvek Suit	Other:
Bees / Wasps	Spiders	Snakes	Other:
Chemical Hazards	N 201 2 2		
Petroleum Constituen	ts in Soil / Groundwater	X Other: P-Cs	
Drilling Equipment	Vehicle Traffic	Material Handling	Overhead/Buried Utilities
Earth-moving Equip.	Pedestrian Traffic	Pinch Points	 Inclement Weather
Crane(s)	Slips, Trips & Falls	Elec /Shock Hazards	Other:
Special Equipment			
Traffic Control	Exclusion Zone	Barricades	Other:
Safety Documents	I PS Training	ISA/SW/P Reviewed	Safety Alerts
Required Permits			
Hot Work Permit	Well Const/Dest Permit	Other	Other:
Additional / Other Safety Topics	Presented:	2	
	14		
EMERGENCY PROCEDURES	Call 0-0-0 (cell phone) 1-1-2	Apply First Aid	Emergency Rally Point
HOSPITAL/CLINIC INFORMATION		DIRECTIONS TO HOSPI	TAL/CLINIC:
Name: Ballowat)	tospital		
Address:			
City, State:			
ATTENDEES	c		COMPANY
Pap ma son I		IGNATORE	COMPANY
DULL Shall Song		y de	The SALL FAD 199
PHIL SAIN SOLVI	- m		JENSAN MARINI
	//		SERVICES
MEETING CONDUCTED BY:			
SPIREETA D	Anto	ula are	CIP
NAME PRINTED		IGNATURE	COMPANY

C Cardno LanePiper

Integrated Management System Procedure Manual QF3.03 – Soil Sample Descriptions

QF3.03 – Soil Sample Descriptions

Project Details	
Project Name: Community Risk - Soil Assessment	Job Number: 212163 - 18
Site Address: Fiskwille V	PP/PM: RPL I LINE
Client Company/Contact: CPA	Date: 29/4/13
Persons Present: SD	Notes By: 'SD'

Sample No.	Depth Interval	Soil Type	Description (Include fill/natural, texture, moisture, plasticity, colour, odours noted, inclusions)	PID (ppm) (Headspace)
SS 65	0.2-0.3	Saudy Clar	Brawn, Orange metting, L- Mp, dry, dred grained	0.0
SS 66	0.2-0.3	Sitty Clay	Brewn Grey, Lp, dry, fire grained	0-0
F9 22	0.2-2.3	Sty Coy	69 V V	0.0
S68	0.2 - 0.3	Sundy Clay	" Mp, dury fine to med quained,	0-0
SS69	0.2 - 0.3	S.H. Uay	Grey/Breven, LP, dry, five around	Q - Q
of SS	0.2-0.3	2 =		0-0
Itss	0.2-0.3	И	N N N	1.0
S5 72	0.2 - 0.3	М	il 11 11	0.0
SFSS	0.2-0.3	Sandy Copy	As SS 65 without wet	0-0
		9		

Printed: 24/04/2013

QF3.03 Soil Sample Descriptions.dotx This document is current for 24 hours after print date

Revision: 1 Approved: 4 January 2013

C Cardno LanePiper

Integrated Management System Procedure Manual QF3.03 – Soil Sample Descriptions

Sample No.	Depth Interval	Soil Type	Description (Include fill/natural, texture, moisture, plasticity, colour, odours noted, inclusions)	PID (ppm) (Headspace)
4tSS	0.2-0.3	Sandy Clay	AS SS 68	0.0
SFSS	М	Sandy Clary	As the SS68	0 00
9£SS	N	Sity Clay	MS SS 66	0-0
tt SS	И	Sty Clay	61	0-1
SS78	М	Silfy Clay	[1]	0.0
bt SS	J.1	Sandy Clay	Brewn, orange red , metting, MP, dry, redgeend	0.0
SS 80	1	7		0.0
SS&1	М	М	1/ of bi 1/ 1/	0.0
BCI	Ņ		45 SS 69	0,0
QC2	И		N I	0.0
QC3	Ņ		NS SS 76	0,
Sct	=		M	Q.0
Revision: 1 Approved: 4 J	anuary 2013		QF3.03 Soil Sample Descriptions.dotx This document is current for 24 hours after print date	Page 2 of 3 2 inted: 24/04/2013

QF3.01 – Quality Control Sample Register

Project Details	S
Project Name: & Soil Assessment	Job Number: 2\2\63 - 18
Site Address: Fiskville	PP/PM: APLILMR
Client Company/Contact: CFA	Date: 29 4
Persons Present: <0	Notes By: SD

Quality Control Requirements

Standard QC Sample Requirements (see Proposal for project specific details)

Rinsate Blank:	1/day (even if only placed on hold)
DI Water Blank:	1/day (even if only placed on hold)
Trip Blank:	1/day or 1/esky (if volatiles are suspected or present at site)
Blind Replicate (Primary List):	1 in 20 primary samples
Split Replicate (Secondary List):	1 in 20 primary samples

Labelling

Samples to be labelled **QC##_date** where "##" is a numerical sequence commencing at **01** for each field event and **date** is the date of sampling in ddmmyyyy format (**e.g. QC01_03112010**)

たまいのいい 三指の部分	Quality	/ Control Sample Register	
QC Sample e.g. QC01_03112010	Primary Sample	Description	DI Water Batch Number
84	SS 69	Dup	
QCZ	5569	Trip	
QC3	SS78	Dup	
QC4	SS78	Trip	
3			
QCA	Rinsafe		
QCB	Trip. B		
0			

	Group			Fordiant Pranaceutical Sciences
Environmenta	l Division			
		CERTIFICAT	TE OF ANALYSIS	
Work Order	: EM1304402		Page	: 1 of 7
Client	CARDNO LANE PIPER P	ΤΥ LTD	Laboratory	: Environmental Division Melbourne
Contact	: MS SRIJEETA DE		Contact	: Carol Walsh
Address	: 154 HIGHBURY ROAD	1 1 0 0 1 0 E	Address	: 4 Westall Rd Springvale VIC Australia 3171
E-mail	sriieeta.de@cardno.com.	ALIA 3123 AU	E-mail	carol walsh@alsolobal.com
Telephone	: +61 03 98880100	2	Telephone	: +61-3-8549 9608
Facsimile	: +61 03 98083511		Facsimile	: +61-3-8549 9601
Project	: 212163 18		QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:			
C-O-C number	:		Date Samples Received	: 30-APR-2013
Sampler	SDe		Issue Date	: 07-MAY-2013
Site	: CFA			
Quote number	: MEBQ/115/12		No. of samples received No. of samples analysed	. 23
This report sup-	arsedes any previous report(s) w	ith this reference Results apply to	the samule(s) as submitted	All names of this report have been checked and approved for
release.				
This Certificate of General (^c Analysis contains the following inforn Comments	nation:		
Analytica	al Results			
NATA	NATA Accredited Laboratory 825 Accredited for compliance with ISO/IEC 17025.	Signatories This document has been electr carried out in compliance with proceo Signatories	ronically signed by the auth Jures specified in 21 CFR Part 11 Position	lorized signatories indicated below. Electronic signing has been 1.
WORLD RECOGNISED		Phalak Inthaksone Phalak Inthaksone	Laboratory Manager - Laboratory Manager -	Organics Sydney Inorganics Organics Sydney Organics
		Addeese A Westall DA Sociencial VIC Australia 2	1111 DUTINE 4413.0640 0600 Essemilo 46	1: 1: 2: 86/10 0601
		Environmental Division Melbourne ABN 84.	009 936 029 Part of the ALS Group An ALS Lin	or-occes soor mited Company
Enulronme	ntal 🔏	ww	vw.alsglobal.com	

RIGHT SOLUTIONS RIGHT PARTNER

2 of 7	EM1304402	CARDNO LANE PIPER PTY LTD	212163 18
	Work Order :	Client :	Project :

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting Key :

A = This result is computed from individual analyte detections at or above the level of reporting

- EP231: PFOA & PFOS results are reported as an aggregate of linear and branched isomers.
 - PFOS/PFOA conducted by ALS Sydney, NATA accreditation no. 825, site no 10911.

: 3 of 7	: EM1304402	: CARDNO LANE PIPER PTY LTD	: 212163 18	
^{>} age	Nork Order	Client	Project	

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SS65	SS66	SS67	SS68	SS69
	Cli	ent samplir	ng date / time	29-APR-2013 10:45				
Compound	CAS Number	LOR	Unit	EM1304402-001	EM1304402-002	EM1304402-003	EM1304402-004	EM1304402-005
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	19.3	10.9	7.2	10.2	8.8
EP231: Perfluorinated Compounds								
PFOS	1763-23-1	0.0005	mg/kg	0.0032	0.0575	0.0117	0.0180	0.0168
PFOA	335-67-1	0.0005	mg/kg	<0.0005	0.0024	0.0005	0.0005	0.0006
6:2 Fluorotelomer sulfonate (6:2	27619-97-2	0.005	mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005
FtS)								

: 4 of 7	: EM1304402	: CARDNO LANE PIPER PTY LTD	: 212163 18
age	Nork Order	Client	Project

ALS

ts	
in:	
es	
R	
al	
tic	
Ň	
Ja	
Ā	

Sub-Matrix: SOIL (Matrix: SOIL)		Clik	ent sample ID	SS70	SS71	SS72	SS73	SS74
	Ci	ient samplii	ng date / time	29-APR-2013 10:45				
Compound	CAS Number	LOR	Unit	EM1304402-006	EM1304402-007	EM1304402-008	EM1304402-009	EM1304402-010
EA055: Moisture Content								
Moisture Content (dried @ 103°C)	-	1.0	%	12.8	4.6	10.0	23.5	11.7
EP231: Perfluorinated Compounds								
PFOS	1763-23-1	0.0005	mg/kg	0.0102	0.0043	0.0073	0.0146	0.0298
PFOA	335-67-1	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	0.0011
6:2 Fluorotelomer sulfonate (6:2	27619-97-2	0.005	mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005
FtS)								

5 of 7	EM1304402	CARDNO LANE PIPER PTY LTD	212163 18
 Page	Work Order	Client :	Project :

Analytical Results								
Sub-Matrix: SOIL (Matrix: SOIL)		Clier	nt sample ID	SS75	SS76	SS77	SS78	SS79
	Cli	ent samplin _t	g date / time	29-APR-2013 10:45	29-APR-2013 10:45	29-APR-2013 10:45	29-APR-2013 10:45	29-APR-2013 14:45
Compound	CAS Number	LOR	Unit	EM1304402-011	EM1304402-012	EM1304402-013	EM1304402-014	EM1304402-015
EA055: Moisture Content								
Moisture Content (dried @ 103°C)	1	1.0	%	15.5	6.7	9.2	10.6	8.4
EP231: Perfluorinated Compounds								
PFOS	1763-23-1	0.0005	mg/kg	0.258	0.0073	0.0079	0.0399	0.0427

0.0427 0.0023 <0.005

0.0399 0.0007 <0.005

0.0079 <0.0005 <0.005

0.0073 <0.0005 <0.005

0.258 0.0204 0.144

mg/kg mg/kg mg/kg

 1763-23-1
 0.0005

 335-67-1
 0.0005

 27619-97-2
 0.005

6:2 Fluorotelomer sulfonate (6:2 FtS)

PFOA

: 6 of 7	: EM1304402	: CARDNO LANE PIPER PTY LTD	: 212163 18	
Page	Nork Order	Client	Project	

FtS)

•								
Sub-Matrix: SOIL (Matrix: SOIL)		Clie	nt sample ID	SS80	SS81	SS82	QC1	QC3
	Cli	ient samplin,	g date / time	29-APR-2013 15:00				
Compound	CAS Number	LOR	Unit	EM1304402-016	EM1304402-017	EM1304402-018	EM1304402-021	EM1304402-022
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	10.0	8.7	9.5	8.8	10.6
EP231: Perfluorinated Compounds								
PFOS	1763-23-1	0.0005	mg/kg	0.0384	0.0794	0.0510	0.0152	0.0279
PFOA	335-67-1	0.0005	mg/kg	0.0011	0.0062	<0.0005	0.0005	0.0006
6:2 Fluorotelomer sulfonate (6:2	27619-97-2	0.005	mg/kg	<0.005	0.027	<0.005	<0.005	<0.005

: 7 of 7	CARDNO LANE PIPER PTY LTD	: 212163 18	:
Page	vvork Uraer Client	Project	

Analytical Results

QCA	
Client sample ID	
Sub-Matrix: WATER (Matrix: WATER)	

									_
	Clie	nt sampling	I date / time	29-APR-2013 15:00					
Compound CAS N	Number	LOR	Unit	EM1304402-019		ł	1	ł	
EP231: Perfluorooctyl Acids and Sulfonates.									_
PFOS 17(63-23-1	0.02	hg/L	<0.02					
PFOA 30	35-67-1	0.02	hg/L	<0.02					_
6:2 Fluorotelomer sulfonate (6:2 276 [.] FtS)	19-97-2	0.1	hg/L	<0.1					
	-			-	-		-		

	Group			Entremental Parameteritad
Environmental [Division	QUALITY CONT	ROL REPORT	
Work Order	: EM1304402		Page	: 1 of 5
Client Contact Address	: CARDNO LANE PIPER P : MS SRIJEETA DE : 154 HIGHBURY ROAD BURWOOD VIC, AUSTR	TY LTD ALIA 3125	Laboratory Contact Address	: Environmental Division Melbourne : Carol Walsh : 4 Westall Rd Springvale VIC Australia 3171
E-mail Telephone Facsimile	: srijeeta.de@cardno.com. : +61 03 98880100 : +61 03 98083511	au	E-mail Telephone Facsimile	: carol.walsh@alsglobal.com : +61-3-8549 9608 : +61-3-8549 9601
Project Site	: 212163 18 · CFA		QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
C-O-C number Sampler Order number	S De		Date Samples Received Issue Date	: 30-APR-2013 : 07-MAY-2013
Quote number	: MEBQ/115/12		No. of samples received No. of samples analysed	: 23
This report supe release. This Quality Contr • Laboratory • Method Bi	rsedes any previous report(s) w ol Report contains the following inforr Duplicate (DUP) Report; Relative Percen ank (MB) and Laboratory Control Spike (L ce (MS) Report; Recovery and Acceptanci	ith this reference. Results apply to the s mation: tage Difference (RPD) and Acceptance Limits CS) Report; Recovery and Acceptance Limits e Limits	sample(s) as submitted. <i>I</i>	Il pages of this report have been checked and approved for
ATA	NATA Accredited Laboratory 825 Accredited for compliance with ISO/IEC 17025.	Signatories This document has been electronical carried out in compliance with procedures <i>Signatories</i> Phalak Inthaksone Phalak Inthaksone	ly signed by the author specified in 21 CFR Part 11. <i>Position</i> Laboratory Manager - Orga Laboratory Manager - Orga	zed signatories indicated below. Electronic signing has been Accreditation Category ics Sydney Inorganics ics sydney Organics
		Address 4 Westall Rd Springvale VIC Australia 3171 PH Environmental Division Melbourne ABN 84 009 936 (IONE +61-3-8549 9600 Facsimile +61-5 229 Part of the ALS Group An ALS Limiti	8549 9601 J Company
Enuronmer	ntal 🐊	www.al	sglobal.com	

RIGHT SOLUTIONS RIGHT PARTNER

Page	: 2 of 5
Work Urder	EIN11304402
Client	: CARDNO LANE PIPER PTY LTD
Project	: 212163 18

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot RPD = Relative Percentage Difference LOR = Limit of reporting Key :

= Indicates failed QC

Page	: 3 of 5
Work Order	: EM1304402
Client	: CARDNO LANE PIPER PTY LTD
Project	212163 18

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:- 0% - 20%.

Sub-Matrix: SOIL						Laboratory D	uplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Cor	ntent (QC Lot: 2853239)								
EM1304402-003	SS67	EA055-103: Moisture Content (dried @ 103°C)	-	1.0	%	7.2	6.6	9.5	No Limit
EM1304402-014	SS78	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	10.6	11.3	6.7	0% - 50%
EP231: Perfluorinate	d Compounds (QC Lot: 284	6523)							
EM1304402-001	SS65	EP231: PFOS	1763-23-1	0.0005	mg/kg	0.0032	0.0019	50.2	No Limit
		EP231: PFOA	335-67-1	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		EP231: 6:2 Fluorotelomer sulfonate (6:2 FtS)	27619-97-2	0.005	mg/kg	<0.005	<0.005	0.0	No Limit
EM1304402-011	SS75	EP231: PFOS	1763-23-1	0.0005	mg/kg	0.258	0.229	11.9	0% - 20%
		EP231: PFOA	335-67-1	0.0005	mg/kg	0.0204	0.0179	13.0	0% - 20%
		EP231: 6:2 Fluorotelomer sulfonate (6:2 FtS)	27619-97-2	0.005	mg/kg	0.144	0.119	19.5	0% - 20%
Sub-Matrix: WATER						Laboratory D	uplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231: Perfluorinate	d Compounds (QC Lot: 284	7277)							
EM1304402-019	QCA	EP231: PFOS	1763-23-1	0.02	hg/L	<0.02	<0.02	0.0	No Limit
		EP231: PFOA	335-67-1	0.02	hg/L	<0.02	<0.02	0.0	No Limit
		EP231: 6:2 Fluorotelomer sulfonate (6:2 FtS)	27619-97-2	0.1	hg/L	<0.1	<0.1	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Method Blank (MB)

Laboratory Control Spike (LCS) Report

=
Q
S
×
Ŧ
<u>a</u>
Ş
, c
Б
S

				Report	Spike	Spike Recovery (%)	Recovery	-imits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SDT	Том	High	
EP231: Perfluorinated Compounds (QCLot: 2846523)									
EP231: PFOS	1763-23-1	0.0005	mg/kg	<0.0005	.0025 mg/kg	85.8	54	146	
EP231: PFOA	335-67-1	0.0005	mg/kg	<0.0005	.0025 mg/kg	74.8	54	134	
EP231: 6:2 Fluorotelomer Sulfonate (6:2 FtS)	27619-97-2	0.005	mg/kg	<0.005	.0125 mg/kg	72.8	56	138	
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report		
				Report	Spike	Spike Recovery (%)	Recovery	-imits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SDT	Том	High	
EP231: Perfluorinated Compounds (QCLot: 2847277)									
EP231: PFOS	1763-23-1	0.02	hg/L	<0.02	0.25 µg/L	111	02	136	
EP231: PFOA	335-67-1	0.02	hg/L	<0.02	0.25 µg/L	94.6	72	134	
EP231: 6:2 Fluorotelomer Sulfonate (6:2 FtS)	27619-97-2	0.1	hg/L	<0.1	1.25 µg/L	7.77	61	145	

Matrix Spike (MS) Report

Ы parameter is to monitor potential matrix effects The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma	trix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	mits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	SW	Гом	High	
EP231: Perfluorina	ted Compounds (QCLot: 2846523)							
EM1304402-001	SS65	EP231: PFOS	1763-23-1	.0025 mg/kg	82.3	54	146	
		EP231: PFOA	335-67-1	.0025 mg/kg	102	54	134	
		EP231: 6:2 Fluorotelomer sulfonate (6:2 FtS)	27619-97-2	.0125 mg/kg	63.2	56	138	
Sub-Matrix: WATER				Ma	trix Spike (MS) Report			
			1	Spike	SpikeRecovery(%)	Recovery L	mits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	SW	том	High	
EP231: Perfluorina	ted Compounds (QCLot: 2847277)							
EM1304402-019	QCA	EP231: PFOS	1763-23-1	0.25 µg/L	106	70	136	
		EP231: PFOA	335-67-1	0.25 µg/L	102	72	134	
		EP231: 6:2 Fluorotelomer sulfonate (6:2 FtS)	27619-97-2	1.25 µg/L	98.8	61	145	

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

9 parameters are The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOS). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Page	: 5 of 5
Work Order	: EM1304402
Client	: CARDNO LANE PIPER PTY LTD
Project	: 212163 18

Sub-Matrix: SOIL					Matrix Spike (M	S) and Matrix Spi	ke Duplicate	(MSD) Repor	t	
			I	Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPD	s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	WS	MSD	Том	High	Value	Control Limit
EP231: Perfluorina	ted Compounds(QCLot: 2846523)									
EM1304402-001	SS65	EP231: PFOS	1763-23-1	.0025 mg/kg	82.3		54	146	1	
		EP231: PFOA	335-67-1	.0025 mg/kg	102	-	54	134	-	
		EP231: 6:2 Fluorotelomer sulfonate (6:2 FtS)	27619-97-2	.0125 mg/kg	63.2		56	138		
Sub-Matrix: WATER					Matrix Spike (M	S) and Matrix Spi	ke Duplicate	(MSD) Repor	t	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPD	s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	WS	MSD	Том	High	Value	Control Limit
EP231: Perfluorina	ted Compounds(QCLot: 2847277)									
EM1304402-019	QCA	EP231: PFOS	1763-23-1	0.25 µg/L	106	1	20	136	-	
		EP231: PFOA	335-67-1	0.25 µg/L	102		72	134	-	
		EP231: 6:2 Fluorotelomer sulfonate (6:2 FtS)	27619-97-2	1.25 µg/L	98.8	-	61	145		

group	rision
	Environmental Div

INTERPRETIVE OUALITY CONTROL REPORT

Work Order	:EM1304402	Page	: 1 of 5
Client	CARDNO LANE PIPER PTY LTD	Laboratory	: Environmental Division Melbourne
Contact	: MS SRIJEETA DE	Contact	: Carol Walsh
Address	: 154 HIGHBURY ROAD BURWOOD VIC, AUSTRALIA 3125	Address	: 4 Westall Rd Springvale VIC Australia 3171
E-mail	: srijeeta.de@cardno.com.au	E-mail	: carol.walsh@alsglobal.com
Telephone	:+61 03 98880100	Telephone	: +61-3-8549 9608
Facsimile	: +61 03 98083511	Facsimile	: +61-3-8549 9601
Project	: 212163 18	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	: CFA		
C-O-C number		Date Samples Received	: 30-APR-2013
Sampler	: SDe	Issue Date	: 07-MAY-2013
Order number			
		No. of samples received	: 23
Quote number	: MEBQ/115/12	No. of samples analysed	: 21

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
 - Brief Method Summaries
- Summary of Outliers

www.alsglobal.com

Address 4 Westall Rd Springvale VIC Australia 3171 | PHONE +61-3-8549 9600 | Facsimile +61-3-8549 9601 Environmental Division Melbourne ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Environmental 🛴

RIGHT SOLUTIONS RIGHT PARTNER

Analysis Holding Time Compliance

dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date the Summary of Outliers. Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: SOIL					Evaluation:	<pre>x = Holding time</pre>	oreach; ✓ = Withir	I holding time
Method		Sample Date	Ê	draction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055-103)								
SS65,	SS66,	29-APR-2013	1			06-MAY-2013	13-MAY-2013	>
SS67,	SS68,							
SS69,	SS70,							
SS71,	SS72,							
SS73,	SS74,							
SS75,	SS76,							
SS77,	SS78,							
SS79,	SS80,							
SS81,	SS82,							
QC1,	QC3							
EP231: Perfluorinated Compounds								
Soil Glass Jar - Unpreserved (EP231)								
SS65,	SS66,	29-APR-2013	02-MAY-2013	26-OCT-2013	>	02-MAY-2013	11-JUN-2013	>
SS67,	SS68,							
SS69,	SS70,							
SS71,	SS72,							
SS73,	SS74,							
SS75,	SS76,							
SS77,	SS78,							
SS79,	SS80,							
SS81,	SS82,							
QC1,	QC3							
Matrix: WATER					Evaluation:	<pre>x = Holding time</pre>	oreach ; < = Withir	holding time
Method		Sample Date	Û	draction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231: Perfluorooctyl Acids and Sulfonates.								
Sterile Plastic Bottle - Sodium Thiosulfate (EP231) O_{O} $_{O}$		29-APR-2013	I	26-OCT-2013		02-MAY-2013	26-OCT-2013	7

>

QCA

: 3 of 5	: EM1304402	: CARDNO LANE PIPER PTY LTD	: 212163 18
Page	Work Order	Client	Project

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL

Evaluation: x = Quality Control frequency not within specification; × = Quality Control frequency within specification.

Quality Control Sample Type		C	unt		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	7	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Perfluorooctyl Acids and Sulfonates by LC/MS/MS	EP231	2	20	10.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Perfluorooctyl Acids and Sulfonates by LC/MS/MS	EP231	-	20	5.0	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Perfluorooctyl Acids and Sulfonates by LC/MS/MS	EP231	۲	20	5.0	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Perfluorooctyl Acids and Sulfonates by LC/MS/MS	EP231	۲	20	5.0	5.0	>	ALS QCS3 requirement
Matrix: WATER				Evaluation:	× = Quality Co	ntrol frequency no	ot within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	unt		Rate (%)		Quality Control Specification
Analytical Methods	Method	oc	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
PFOS and PFOA	EP231	۲	4	100.0	10.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
PFOS and PFOA	EP231	٢	1	100.0	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
PFOS and PFOA	EP231	۲	1	100.0	5.0	>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
PFOS and PFOA	EP231	٢	-	100.0	5.0	>	ALS QCS3 requirement

: 4 of 5	: EM1304402	: CARDNO LANE PIPER PTY LTD	: 212163 18
Page	Work Order	Client	Project

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2010 Draft) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Perfluorooctyl Acids and Sulfonates by LC/MS/MS	EP231	SOIL	In-House. A portion of soil is soaked in sodium hydroxide followed by extraction with methanol. The extract is neutralised with HCl and an aliquot taken to dryness, made up in mobile phase. Analysis is by LC/MSMS, ESI Negative Mode using MRM.
PFOS and PFOA	EP231	WATER	In-house: Direct injection analysis of fresh and diluted saline waters. In order to meet standard reporting limits, saline waters may be adsorped onto a solid phase extraction medium, the salt washed out and the sample eluted for analysis. Analysis by LC-Electrospray-MS-MS, Negative Mode using MRM.
Preparation Methods	Method	Matrix	Method Descriptions
Sample Extraction for Perfluoroalkyl Compounds	EP231-PR	SOIL	In-House

: 5 of 5 · EM1304402	CARDNO LANE PIPER PTY LTD	: 212163 18	
Page Work Order	Client	Project	

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

- (24 Ilouitto Ilouito dayalo dayal

Page 1 of 1 Printed 24/04/2013

QF3.01 Chain of Custody.xltx

Revision 3 Approved 3 Jan 2013

C Cardno LanePiper

Chain of Custody

Sheet 2 of 2

	PM Name: S. Q										
	Phone: 03 9888 0100 Fax: 03 9808 3511	Mobile: ⊘	44750000	1+		заприе маних	Sample preservat	5-		Analysis	
	Address: Building 2, 154 Highbury Rd, Burv	wood, Vic, 3125						12			
	PM Email: Srijeeja. Le (@cardno.com.au						2:19			
	Project Number: 212163-18	Site: CF1	đ					+ A A(
	Laboratory (name, phone,fax no & contact	person)	ALS		,	N		ગ્રધ	g		
	Samulo []	I aboratory ID	Container	Sampling	<i> PQ</i>	(g)	2)	ટબ	101		
				Date Tim	<u>۳</u> ک	5	7	9			
				-				*			
	IL SSRO		JON	221/4				X			
	11 5581		1	1	≯			Х			
	Is SS82		•				1	X			
	11 SLA		Playtic hottle		-			X			
	20 NCS		Vial						X		
	P										
	J OCI		Jav					Х			
4	♦ & C2		1					T X	FORUDAR	D TO NGT	
Cruch 1	22 QCS	-						X			
04.3e/4	113 23 OCA		7	1	7				X		
1			•	-							
En Fr								-			
					_						
	Sampler: I attest that the proper field sampling pr	oceedures were us	ed during the collection of th	ese samples S.O	e	Sampler name: (print a	nd signature)	the Letters	" 30/4 II3		
	Relinquished by (Sampler): (print and signature)			Date		Time	eceived by (Courier/Laby (pri	t and signature)	Date	Time	
	Relinquished by: (print and signature)			. Date		Time	eceived by: (print and signatu); ;;	Date Date	Time fcs -tt /	
	Relinquished by: (print and signature)			Date		Time .	eceived by: (print and signatu	(9)	Date	Time	

QF3.01 Chain of Custody.xltx

Please circle

Please supply results electronically in spreadsheet and ESDAT files Turn around time: (24 hour/48 hour/3 dayp/5 days)

Revision 3 Approved 3 Jan 2013

Page 1 of 1 Printed 22/04/2013

	mgt
SU	
ofil	
eur	

 Melbourne
 Melbourne

 3.5 Kingston Town Close
 3.6 Kingston Town Close

 3.6 Kingston
 3.6 Kingston Town Close

 3.6 Kingston
 3.6 Kingston

 3.6 Kingston
 3.6 Kingston

 3.6 Kingston
 3.8 Kingston

 3.6 Kingston
 3.8 Kingston

 ABN – 50 005 085 521
 e.mail : enviro@mgtlabmark.com.au

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NNT A # 1261 Stle # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Address:	Cardno Lane Piper Pty Ltd Building 2, 154 Highbury Road Burwood VIC 3125	Order No.: Report #: Phone: Fax:	377489 9888 0100 9808 3511	Received: Due: Priority: Contact Name:	Apr 30, 2013 2:13 PM May 7, 2013 5 Day Srüeeta De	
Client Job No.:	CFA 212163.18			Eurofins mgt (Client Manager: Natalie Krasselt	
	Sample Detail	PFOS/PFOA				
Laboratory where and	alysis is conducted					
Melbourne Laborator	y - NATA Site # 1254 & 14271					
Sydney Laboratory -	NATA Site # 18217					
Brisbane Laboratory	- NATA Site # 20794					

×

LAB ID M13-My01089

Soil

 \times

Matrix

Sampling Time

Sample Date

External Laboratory Sample ID San Apr 29, 2013

QC2

mgt

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram	mg/I: milligrams per litre
ug/I: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100ml - Most Probable Number of organisms per 100 millilitres	

TERMS

Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environment Protection Authority
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

mgt

Comments

NB: PFOS/PFOA analysis subcontracted to eurofins|GfA Lab Service, reference number AR-13-GF-011769-01, DAkkS accreditation number D-PL-14629-01-00.

N/A Yes Yes Yes Yes Yes

Sample Integrity
Custody Seals Intact (if used)
Attempt to Chill was evident
Sample correctly preserved
Organic samples had Teflon liners
Sample containers for volatile analysis received with minimal headspace
Samples received within HoldingTime
Some samples have been subcontracted

Authorised By

Natalie Krasselt

Client Services

Glenn Jackson

Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

GfA Lab Service

Eurofins GfA Lab Service GmbH Otto-Hahn-Str. 22 D-48161 Münster GERMANY

> Tel: +49 2534 807 300 Fax: +49 2534 807 310

www.dioxine.de; www.dioxins.de

dioxins@eurofins.de

Eurofins GfA Lab Service GmbH · Otto-Hahn-Str.22 · D-48161 Münster

Mgt-LabMark Ltd attn. Results 2-5 Kingston Town Close Vic 3166 Oakleigh **AUSTRALIEN**

Person	in	charg
ASM		

e Mr. J. Fuchs Mr. B. Homburg

- 102

Report date 16.05.2013

Page 1/2

Analytical report AR-13-GF-011769-01

Soil QC2

Sample Code 710-2013-09129001

Tammy Lakeland

08.05.2013

01.05.2013

16.05.2013

M13-My01089

glass with screw closure

FedEx

377489

cooled

1

Reference

Sample sender **Reception date time** Transport by Client Purchase order nr. Purchase order date **Client sample code** Packaging Number of containers **Reception temperature End analysis**

Test results

CYP07 dry matter (°) (#) Method Internal method, produce dry matter of original samp dry residue	le 91.7	%
GF06J PFC (10 + H4PFOS) ~ environment (°) (#) Method Internal method, LC-MS/MS		
Perfluorooctane sulfonate (PFOS)	18.0	µg/kg dm
Perfluorooctanoic acid (PFOA)	< 2.2	µg/kg dm
total PFOS / PFOA excl. LOQ	18.0	µg/kg dm
total PFOS / PFOA incl. LOQ	20.2	µg/kg dm
Perfluorbutansulfonate (PFBS)	< 3.3	µg/kg dm
Perfluorobutanoic acid (PFBA)	< 2.2	µg/kg dm
Perfluoropentane acid (PFPeA)	< 2.2	µg/kg dm
Perfluorohexane sulfonate (PFHxS)	< 3.3	µg/kg dm
Perfluorohexanoic acid (PFHxA)	< 2.2	µg/kg dm
Perfluorheptanoic acid (PFHpA)	< 2.2	µg/kg dm
The results of examination refer exclusively to the checked samples.		Durch die Deutsche Akkreditierungsst

The results of examination refer exclusively to the checked samples. Duplicates - even in parts - must be authorized by the test laboratory in written form. Eurofins GfA Lab Service GmbH - Otto-Hahn-Str. 22 · D-48161 Münster Headquarters: Eurofins GfA Lab Service GmbH – Neuländer Kamp 1 D-21079 Hamburg HRB 115907 AG Hamburg General Manager: Dr. Christian Temme Our General Terms & Conditions of Sales are applicable. VAT No.: DE 275912372 Nord/LB • Bank code: 250 500 00 • Account No.: 199878695 • SWIFT-BIC: NOLADE2HXXX IBAN: DE37 2505 0000 0199 8786 95

akkreditierungsstelle GmbH

DIN EN ISO/IEC 17025:2005 Akkreditierungsstelle D-PL-14629-01-00 Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren

Page 2/2

GfA Lab Service

Perfluorononanoic acid (PFNA)	< 2.2	µg/kg dm
Perfluordecanoic acid (PFDA)	< 2.2	µg/kg dm
6:2 Fluorotelomer sulfonate (FTS)	< 3.3	µg/kg dm
total PFC compounds excl. LOQ	18.0	µg/kg dm
total PFC compounds incl. LOQ	43.2	µg/kg dm

(°) = The test was performed at the site Hamburg.

(#) = Eurofins GfA Lab Service Gmbh (Hamburg) is accredited for this test.

< - Concentration below the indicated limit of quantification (LOQ)

This electronically generated test report has been checked and approved. It is also valid without signature.

Joachim Fuchs (Analytical Services Manager)

The results of examination refer exclusively to the checked samples. Duplicates - even in parts - must be authorized by the test laboratory in written form. Eurofins GfA Lab Service GmbH - Otto-Hahn-Str.22 · D-48161 Münster Headquarters: Eurofins GfA Lab Service GmbH – Neuländer Kamp 1 D-21079 Hamburg HRB 115907 AG Hamburg General Manager: Dr. Christian Temme Our General Terms & Conditions of Sales are applicable. VAT No. : DE 275912372 Nord/L B - Bank code: : 250 500 00 • Account No.: : 199878695 • SWIFT-BIC: NOLADE2HXXX IBAN: DE37 2505 0000 0199 8786 95

Durch die Deutsche Akkreditierungsstelle GmbH akkreditiertes Prüflaboratorium

LKS DIN EN ISO/IEC 17025:2005 Deutsche Abzeditierung stelle DPU-14629-01-00 Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren

Cardno Lane Piper Pty Ltd Building 2, 154 Highbury Road Burwood VIC 3125

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

377489-S

Srijeeta De

Report **Client Reference** Received Date

CFA 212163.18 Apr 30, 2013

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	QC2 Soil M13-My01089 Apr 29, 2013
PFOS/PFOA			see attached

mgt

mgt

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

Description

Testing Site

Extracted

Holding Time

ABN – 50 005 085 521 e.mail : enviro@mgtlabmark.com.au web : www.mgtlabmark.com.au Stife # 1254 & 14271 NATA;

 Sydney
 Brisbane

 Unit F6, Building F
 1/21 Smallwood Place

 Unit F6, Building F
 1/21 Smallwood Place

 Inf Mars Road
 Murame QLD 4172

 Lane Cove Wers NSW 2066
 Phone : +617 3902 4600

 NATA # 1261 29900 8400
 NATA # 1261 Site # 20794

Eurofins | mgt Client Manager: Natalie Krasselt Apr 30, 2013 2:13 PM May 7, 2013 5 Day Srijeeta De Received: Due: Priority: Contact Name: 9888 0100 9808 3511 377489 Order No.: Report #: Phone: Fax: Cardno Lane Piper Pty Ltd Building 2, 154 Highbury Road Burwood VIC 3125 CFA 212163.18 Company Name: Address: Client Job No.:

PFOS/PFOA					\times		\times
% Moisture		×					×
						LAB ID	M13-Mv01089
		271				Matrix	Soil
Sample Detail	onducted	site # 1254 & 14;	# 18217	ie # 20794		Sampling Time	
	re analysis is co	oratory - NATA S	ory - NATA Site	atory - NATA Sit	itory	Sample Date	Apr 29, 2013
	Laboratory whe	Melbourne Labo	Sydney Laborat	Brisbane Labor	External Labors	Sample ID	QC2

mgt

ABN - 50 005 085 521 e.mail

e.mail : enviro@mgtlabmark.com.au

 Melbourne
 3-5 Kingston Town Close

 3-5 Kingston Town Close
 Oakleigh Vic 3166

 Phone : +61 3 8564 5000
 NATA # 1261

 Site # 1254 & 14271
 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Cardno Lane Piper Pty Ltd
Contact name:	Srijeeta De
Client job number:	CFA 212163.18
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Apr 30, 2013 2:13 PM
Eurofins mgt reference:	377489

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- \square All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- ☑ Organic samples had Teflon liners.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Natalie Krasselt on Phone : (+61) (3) 8564 5000 or by e.mail: Natalie.Krasselt@mgtlabmark.com.au

Results will be delivered electronically via e.mail to Srijeeta De - srijeeta.de@lanepiper.com.au.

Eurofins | mgt Sample Receipt

Environmental Laboratory M Air Analysis S Water Analysis T Soil Contamination Analysis C

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

Chain of Custody				Ś	neet <u>& of 2 '</u>
M Name: S. O.C. hone: 03 9888 0100 Fax: 03 9808 3511 Mobile: 04475	500007	Sample Mat	ix Sample preservation	5-	Analysis
ddress: Building 2, 154 Highbury Rd, Burwood, Vic, 3125 M Email: Sバリビル・人と @cardno.com.au roject Number: 212163-18 Site: ビドA aboratory (name, phone,fax no & contact person) ハ. C) PFoA+6:2F	· · · · · · · · · · · · · · · · · · ·
Sample ID Laboratory ID Cont	ontainer Date Date	1495) ارو	2 pros ji pros ji hou	
SS 80	21/12 July				
SS82				X	
SCR Partic	ic hottle	->		X	
GCI (Ja	U.V.			XX	the aller
OC4		>			
ampler: I attest that the proper field sampling proceedures were used during the c	e collection of these samples	Sampler name:	print and signature)	CAM Date: 30/4/13	
elinquished by (Sampler): (print and signature)	Da	Time	Received by (Courier/Laby (print and	1 signature) Date	Time
elinquished by: (print and signature)		te Time	Received by: (print and signature)	Date July	Time 10 · ਪ S
einquished by: (print and signature)	Da	Time	Received by: (print and signature)	Date	Time 2:13 PM
lease supply results electronically in spreadsheet and ESDAT files	(+	0	bontez.t
Turn around time: (24 hour/48 hour/3 days/5 da	davs) Please circle	2014		Kepe	10,110,1

QF3.01 Chain of Custody.xltx

Revision 3 Approved 3 Jan 2013

Printed 22/04/2013

HUMAN HEALTH RISK ASSESSMENT - DOWNSTREAM USERS

4549 GEELONG-BALLAN RD, FISKVILLE VICTORIA

APPENDIX D – ATTACHMENT C

SOIL SAMPLING AWAY FROM TRAINING AREAS

Appendix E

Fish Sampling and QA/QC

HUMAN HEALTH RISK ASSESSMENT - DOWNSTREAM USERS

4549 GEELONG-BALLAN RD, FISKVILLE VICTORIA

APPENDIX E

FISH QA/QC DATA REVIEW

Table of Contents

1	INTF	RODUCTION	.2
	1.1	Sample Locations	.2
	1.2	Laboratory Analysis	.3
2	AQU	IATIC BIOTA SAMPLING	.3
3	QUA	LITY ASSURANCE AND QUALITY CONTROL REVIEW	4
	3.1	Intra-Laboratory Analysis - NMI	4
	3.2	Spiked Recovery - NMI	.4
	3.3	Inter-Laboratory Analysis – NMI and AQ	6
	3.4	Surrogate Recovery – NMI	.7
	3.5	Laboratory QA/QC	.8
	3.6	Summary of Aquatic Biota Results	9
4	ATT	ACHMENTS	.9
	Attac	chment A	9
	Attac	chment B	9

Text Tables

Table 1-1: Summary of Sample Numbers and Analysis for Aquatic Species	3
Table 3-1: %RPD Calculation for Intra-laboratory Assessment – NMI	4
Table 3-2: Spiked Recovery Calculation – NMI	5
Table 3-3: %RPD summary for NMI and QA Inter-laboratory Assessment	6
Table 3-4: % Surrogate Recovery Summary for all Laboratory Data	7
Table 3-5: % Surrogate Recover for Primary and Duplicate Sample – CEL09	7
Table 3-6: % Surrogate Recover Summary for Redfin Perch, Lake Fiskville	8
Table 3-7: Laboratory Quality Control	9
Table 3-8: Summary of Aquatic Biota Analysis – Including all species	9

APPENDIX E - FISH QA/QC DATA REVIEW

1 INTRODUCTION

This QA/QC summary is intended to provide a description of the laboratory analysis data for the biological tissue analysis conducted by Cardno Ecology Lab, Sydney NSW (Cardno Eco) at CFA Fiskville Training College, Fiskville Vic (the "Site"). The field work was conducted as per proposal reference 212163.10Proposal01.1 (dated 23 November 2012) under the instructions of Cardno Eco. This summary does not have nor provides any discussions with regards to results or corresponding criteria for the rabbit data as these are addressed in the main body of the report.

This summary collates the laboratory results and records for a review of the whole data quality as part of the assessment of fish tissue testing including:

- 1. Total number of samples;
- 2. Laboratory QA / QC review;
- 3. Surrogate recovery; and
- 4. Statistical summary of % surrogate recovery in muscle tissue.

1.1 Sample Locations

The sampling field event, sample preservation, dissection and biometric data collection was conducted by Cardno Eco and not discussed in this review.

Sample locations within the surface water bodies are identified as:

- **Dam 3 –** (Results reported in certificate nos. DAU13_37, DAU13_038 and DAU13_039);
 - CEL22, CEL23, CEL24, CEL25, CEL26, CEL27, CEL28, CEL29, CEL30.
- Lake Fiskville (Results reported in certificate nos. DAU13_016, DAU13_017, DAU13_037, DAU13_038, DAU13_039, DAU13_116, DAU13_152, 134672);
 - CEL01, CEL02, CEL03, CEL03A, CEL04, CEL05, CEL06, CEL07, CEL08, CEL09, CEL10, CEL11, CEL12, CEL13, CEL14, CEL15, CEL16, CEL17, CEL18, CEL19, CEL20, CEL21; and
 - PF M5A/B, PF M6A/B, PFM7, PF M8A/B, PF M9A/B, PF M10A/B, PF M11A/B, PF M12A/B, PFM13, PF M14A/B, PFM15, PFM16, PFM17, PFM18, PFM19, PFM20, PFM21
- **Moorabool River (Site J), downstream from the Site –** (Results reported in certificate nos. DAU13_116, DAU13_061);
 - CEL31, CEL32, CEL33, CEL34, CEL022; and
- **Moorabool River, upstream of the Site –** (*Results reported in certificate nos. DAU13_117, DAU13_118, DAU13_119*).
 - CEL035, CEL037, CEL039, CEL041, CEL043, CEL045, CEL047, CEL049, CEL064, CEL072, CEL076, CEL053, CEL055, CEL057, CEL094, CEL096.

The range of PFC concentrations reported for the different sample matrix or species are not discussed in the context of this summary..

1.2 Laboratory Analysis

The samples were analysed by two laboratories as follows:

- National Measurement Institute (NMI), Sydney NSW, was the primary laboratory; and
- Asure Quality (AQ), Wellington NZ, was the secondary laboratory for Quality Control (QC).

The total analyses conducted are:

- NMI analysed a total of 60 samples for PFCs and metals, not including matrix spike, blank or surrogates; and
- AQ analysed a total of 8 inter-laboratory (i.e. fish muscle) split samples for PFCs only.

The corresponding number of samples analysed from each sample location, noted in Section 1.1, is provided in Table 1-1, and the data collated with corresponding sample ID, laboratory report and sample matrix are provided in Table A1, Attachment A..

	Number of samples analysed							
	Dam 3	Lake Fiskville	Moorabool Downstream	Moorabool Upstream				
Total	9	44	5	16				
Note:	Note:							

 Table 1-1: Summary of Sample Numbers and Analysis for Aquatic Species

1- QA/QC analysis were conducted and noted in Table 1A, Attachment A.

The analytical suite was for the Contaminant of Potential Concern (CoPC) taking into account the extended Perfluoro Compounds (PFCs) that are present in firefighting foams or breakdown products. The main PFCs analysed by both laboratories and included in this review were: PFPeA, PFHxS, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFDS, PFUdA, PFDoA, PFOS, 6:2 FtS and 8:2 FtS.

Copies of the corresponding laboratory reports and sample receipt records are included in Attachment B. The Quality Assurance and Quality Control (QA/QC) for the data analysis program is discussed in Section 3. Tabulated data for all laboratory results is provided in Attachment A.

2 AQUATIC BIOTA SAMPLING

The scope and method of the sampling event was prepared by Cardno Eco. The samples were collected were placed on ice and transported to Sydney, NSW. The dissection and biometric measurements was conducted at Cardno Eco laboratory in Sydney. Samples were weighed, labelled and frozen. A summary of sample type and matrix collated by Cardno Eco is provided in Table A1, Attachment A.

The blind inter-laboratory analysis was conducted from samples taken from either side of Redfin Perch. Then the two muscle tissue samples were labelled "A" and "B", shown in Table 3-1.

3 QUALITY ASSURANCE AND QUALITY CONTROL REVIEW

Intra-Laboratory Analysis - NMI 3.1

NMI conducted a total of six internal duplicate assessments to assess the intra-laboratory reproducibility of the analysis. The duplicate samples are analysed concurrently with the parent sample. The Relative Percentage Difference (%RPD) calculated from the parent samples (i.e. CEL09 and CEL09D respectively) are provided in Table 3-1.

ID	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS
CEL09	<10	4.73	16.8	<9	<40	99.6	293	16.1	122000
CEL09D ¹	<10	6.42	8.32	<5	<20	93.2	308	16.6	128000
%RPD	<loq< td=""><td>-30</td><td>67</td><td><loq< td=""><td><loq< td=""><td>7.0</td><td>-5.0</td><td>-3.0</td><td>-5.0</td></loq<></td></loq<></td></loq<>	-30	67	<loq< td=""><td><loq< td=""><td>7.0</td><td>-5.0</td><td>-3.0</td><td>-5.0</td></loq<></td></loq<>	<loq< td=""><td>7.0</td><td>-5.0</td><td>-3.0</td><td>-5.0</td></loq<>	7.0	-5.0	-3.0	-5.0
CEL04	-	-	<2	<2	<2	11.6	42.3	3.07	22300
CEL04D	-	-	<2	<2	<2	10.7	43.6	3.23	23000
%RPD	N/A	N/A	<loq< td=""><td><loq< td=""><td><loq< td=""><td>8.0</td><td>-3.0</td><td>-5.1</td><td>-3.0</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>8.0</td><td>-3.0</td><td>-5.1</td><td>-3.0</td></loq<></td></loq<>	<loq< td=""><td>8.0</td><td>-3.0</td><td>-5.1</td><td>-3.0</td></loq<>	8.0	-3.0	-5.1	-3.0
CEL25	3.39	2.8	<2	22.5	2.11	<2	2.56	3.97	3000
CEL25D	4.3	4.8	<2	38.8	4.1	2.66	5.06	5.99	3800
%RPD	27	-53	<loq< td=""><td>-53</td><td>64</td><td><loq< td=""><td>-66</td><td>-40</td><td>-23</td></loq<></td></loq<>	-53	64	<loq< td=""><td>-66</td><td>-40</td><td>-23</td></loq<>	-66	-40	-23
CEL23	5.3	10	8.53	8.96	4	20.4	46.2	25.9	260000
CEL23D	<5	9.84	7.77	8.25	3.89	17.1	39.6	23.4	280000
%RPD	<loq< td=""><td>2.0</td><td>9.0</td><td>8.2</td><td>2.7</td><td>17.6</td><td>15</td><td>10</td><td>-7.0</td></loq<>	2.0	9.0	8.2	2.7	17.6	15	10	-7.0
CEL28	14	26	6.25	11.5	<2	<2	<2	<2	6000
CEL28D	14	23	5.69	9.77	<2	<2	<2	<2	5000
%RPD	0	12	9.0	16	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>18</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>18</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>18</td></loq<></td></loq<>	<loq< td=""><td>18</td></loq<>	18
CEL32	<5	<5	<5	<5	<2	<2	<2	<2	25
CEL32D	<5	<5	<5	<5	<7	<2	<2	<2	24
%RPD	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>4.0</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>4.0</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>4.0</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>4.0</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>4.0</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>4.0</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>4.0</td></loq<></td></loq<>	<loq< td=""><td>4.0</td></loq<>	4.0
Notes: 1. CELID-E 2. " – " No	D refers to "Du sample collec	uplicate" samp	le.						

Table 3-1: %RPD Calculation for Intra-laboratory Assessment – NMI

3. N/A – not applicable.

The intra-laboratory assessment showed acceptable reproducibility with only four analytes (i.e. PFHxA, PFHpA PFNA and PFUdA) exceeding %RPD of 50%. Where compounds reported below the laboratory limit of reporting (<LOR), no %RPD was calculated.

3.2 Spiked Recovery - NMI

NMI conducted a total of eight spiked sample assessment as follows:

1. Sample CEL09 and CEL09D, spiked CEL09S (Certificate No. DAU13 016) was spiked with an internal standard with concentration of 104 ng/g for PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUdA, PFDoA, PFOS;

- 2. Sample CEL04 and CEL04D, spiked CEL04S (Certificate No. DAU13_037) was spiked with an internal standard with concentration of 44 ng/g for PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFDA, PFDA, PFOA, PFOS;
- Sample CEL25 and CEL25D, spiked CEL25S (Certificate No. DAU13_016) was spiked with an internal standard with concentration of 45 ng/g for PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFDA, PFDA, PFOS;
- 4. Sample CEL23 and CEL23D, spiked CEL23S (Certificate No. DAU13_038) was spiked with an internal standard with concentration of 44 ng/g for PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFDA, PFDA, PFDA, PFOS;
- 5. Sample CEL28and CEL28D, spiked CEL28S (Certificate No. DAU13_039) was spiked with an internal standard with concentration of 45 ng/g for PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFDA, PFDoA, PFOS;
- 6. Sample CEL32 and CEL32D, spiked CEL32S (Certificate No. DAU13_061) was spiked with an internal standard with concentration of 97 ng/g for PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFDA, PFDoA, PFOS, and 78 ng/g for 6:2 FtS;
- 7. Sample PMF14A, spiked PMF14A S (Certificate No. DAU13_117) was spiked with an internal standard with concentration of 21 ng/g for PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFDA, PFDA, PFOS, and 17 ng/g for 6:2 FtS; and
- 8. Sample CEL64, spiked CEL64S (Certificate No. DAU13_119) was spiked with an internal standard with concentration of 21 ng/g for PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUdA, PFDoA, PFOS, and 17 ng/g for 6:2 FtS.

Table 3-2 provides a summary of the spiked sample calculations, % Recovery compared with primary and duplicate samples where applicable. Overall, the spiked analysis showed good reproducibility with either the primary or duplicate samples for the corresponding batches. However, some compounds highlighted with bold font in Table 3-2 exceeded 130% showing a potential bias for overestimating these compounds.

ID	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS	6:2 FtS
CEL09	-	172%	95%	282%	92%	69%	86%	98%	88%	101%	-
CEL09D	-	172%	93%	304%	94%	75%	89%	94%	88%	96%	-
CEL09S	-	187	103	341	100	85.7	175	389	106	123000	-
CEL04	-	-	-	113%	180%	136%	124%	121%	128%	106%	-
CEL04D	-	-	-	113%	180%	136%	126%	119%	127%	102%	-
CEL04S	-	-	-	51	81	61	69	104	60.2	23600	-
CEL25	-	91%	128%	117%	133%	137%	132%	139%	142%	72%	-
CEL25D	-	89%	122%	117%	107%	131%	128%	132%	137%	57%	-
CEL25S		44.0	61.0	54.0	89.9	64.4	60.9	65.9	69.7	2200	-
CEL23	-	81%	117%	255%	109%	111%	123%	119%	123%	92%	-
CEL23D	-	86%	117%	259%	110%	111%	129%	128%	128%	86%	-
CEL23S	-	40	63.1	134.0	57.7	53.3	79.1	107.0	86.2	240000	-
CEL28	-	114%	114%	119%	103%	118%	131%	125%	116%	76%	-
CEL28D	-	114%	119%	120%	106%	118%	131%	125%	116%	91%	-

Table 3-2: Spiked Recovery Calculation – NMI

Privileged and Confidential

Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

ID	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS	6:2 FtS
CEL28S)		67	81.0	60.8	58.0	54.5	60.3	57.4	53.2	4600	-
CEL32	84%	93%	99%	111%	92%	94%	90%	87%	99%	98%	99%
CEL32D	84%	93%	99%	110%	92%	92%	90%	87%	99%	98%	99%
CEL32S	86	93	99	110	92	92	88	85	97	119	78
PF M14A	-	-	-	-	-	-	136%	-	-	100%	99%
PFM14A S	29	31	32	41	27	29	39	-	-	7140	22
CEL064	127%	152%	162%	190%	119%	114%	143%	-	-	133%	103%
CEL064S	28	32	34	40	25	24	30	-	-	28	18

3.3 Inter-Laboratory Analysis – NMI and AQ

Eight samples, as shown in Table 3-3, were submitted to NMI and AQ as part of an interlaboratory assessment. The corresponding samples were taken from the same specimen (i.e. Redfin Perch) and labelled Sample A and Sample B as shown in Table 3-3.

Comple ID	Samp	ole Results	(ng/g)		% RPD	
	PFDA	PFOS	6:2 FtS	PFDA	PFOS	6:2 FtS
PF M5A	9	5,990	4.8	22	0 5	67
PF M5B	7.2	5,500	2.4	22	0.0	07
PF M6A	8.1	5,520	4.4	42	27	50
PF M6B	5.3	4,200	2.4	42	21	59
PF M8A	7.7	6,450	4.9	22	14	45
PF M8B	6.2	5,600	3.1	22	14	40
PF M9A	8.2	7,440	4.5	12	0.0	61
PF M9B	7.3	6,800	2.4	12	9.0	01
PF M10A	10	9,600	3.4	0.0	0.0	6.0
PF M10B	11	8,800	3.2	-9.0	9.0	0.0
PF M11A	6.9	7,940	3.9	16	10	100
PF M11B	8.1	6,600	1.3	-10	10	100
PF M12A	9.6	8,870	3.9	20	11.0	70
PF M12B	13	9,900	1.7	-30	-11.0	19
PF M14A	7.7	7,100	5.3	20	13	79
PF M14B	6.3	6,200	2.3	20	15	19

 Table 3-3: %RPD summary for NMI and QA Inter-laboratory Assessment

Cardno Lane Piper conducted a statistical summary of the %RPD for each corresponding sample within a single batch analysis for the 8 inter-laboratory samples. Note that the inter-

laboratory analysis was conducted for fish muscle samples from Lake Fiskville. The %RPD calculated are shown in Table A1, Attachment A.

The %RPD was calculated for the batch analysis for the Redfin Perch (muscle) for samples collected from Lake Fiskville only (Certificate numbers DAU13_116 for NMI, and 134672 for AQ). The %RPD for PFOS for all 8 samples was less than 30%¹. This is considered as a good and acceptable correlation between the primary sample and the inter-laboratory duplicate analysis of that sample. The %RPD for PFOA was less tha 50% for all samples, and it is considered as an acceptable result between the two laboratories. However, 6:2 FtS only reported one analysis less than 50% with the remainder of the analysis having a %RPD greater than 50%. This is considered not a reliable set of results for 6:2 FtS and it may be in part due to NMI reporting higher concentrations than AQ for most samples.

3.4 Surrogate Recovery – NMI

The results for the surrogate analysis for all samples provided by NMI are included in Table 1A, Attachment A. There are some recovery inconsistencies between batches, for the NMI reports. Table 3-4 provides a summary for all surrogate recovery analysis conducted by NMI and AQ.

	PFBA	PFHxA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS	6:2 FTS
Total No.	36	94	103	103	103	74	66	103	57
Average	27	95	68	45	63	111	93	47	72
Minimum	13	28	25	6	4	1	1	7	21
Lower Quartile	17	57	44	11	18	58	31	16	52
Median	19	75	67	38	47	86	76	33	70
Upper Quartile	23	91	88	75	94	121	99	80	90
Maximum	75	433	123	144	349	467	457	112	122

 Table 3-4: % Surrogate Recovery Summary for all Laboratory Data

The surrogate recoveries shown in the maximum values, Table 3-4, which have values up to 467% are from NMI's report batch DAU13_016. These samples comprised of Redfin Perch liver tissues from Lake Fiskville and were among the first batch of samples to be analysed. However, the following comments are made with regards to sample ID CEL09 (Lab ID N12/034245) which had an internal laboratory duplicate analysis (ID for duplicate N12/034245DUP) and a matrix spike (ID for spike N12/034245SPK). The surrogate recovery for the primary, duplicate and spike for CEL09 is summarized in Table 3-5. The duplicate and spike samples have a lower surrogate recover than the primary sample for PFHxA, PFDA, PFUda and PFDoA. This inconsistency may be due in part to human error during the sample manipulation and set up.

Table 3-5: % Surrogate Recover for Primary and Duplicate Sample – CEL09

	PFHxA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS
N12/034245	432.6	94	11	349	467	457	77

1 The Australian Standard AS4482.1 (2005) AS 4482.1-2005 *Guide to the investigation and sampling of sites with potentially contaminated soil - Non-volatile and semi-volatile* compounds recommends a %RPD range of 30 to 50% of mean concentration as an acceptance criteria for quality control samples.

	PFHxA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS
N12/034245DUP	96.2	37	10	65	93	98	18
N12/034245SPK ¹	62.4	26	11	55	74	75	15
Notes: 1- The spiked conc	entration w	as 104 ng/	/g.				

Table 3-6 shows varying levels of recoveries for different PFC compounds including an average and median values for the redfin muscle samples from Lake Fiskville only, and it includes the data provided by NMI and AQ.

Table 3-6: % Surrogate Recover Summary feedback	for Redfin Perch, Lake Fiskville
---	----------------------------------

	PFBA	PFHxA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS	6:2 FTS
Total No.	9	31	40	40	40	31	23	40	30
Average	18	73	67	29	40	58	39	31	79
Minimum	13	40	26	6	6	4	2	8	25
Lower Quartile	16	62	54	8	20	46	13	12	62
Median	19	75	63	10	40	60	31	17	70
Upper Quartile	20	81	84	37	54	70	63	37	110
Maximum	23	107	100	106	112	95	90	101	122

Considering that this file note is summarizing the data for the analysis of muscle tissues for Redfin Perch only from Lake Fiskville, these samples were analysed in batches No.:

- DAU13_017 (Sample ID CEL1, 2, 3, 4, 5, 6 and 7);
- DAU13_116 (Sample ID PFM5, 6, 8, 9, 10, 11, 12, 14 and CEL0222);
- DAU13_152 (Sample ID PFM7, 13, 15, 16, 17, 18, 19, 20 and 21): and
- DAU13_153 (Sample ID CEL04 and 06 repeat).

The surrogate recovery data for AQ is within recommended range of 70 to 130%.

3.5 Laboratory QA/QC

Table 3-7 provides a summary of the QC program established by NMI and AQ. Internal laboratory blanks corresponding to a minimum of one blank per batch and summarized was conducted by both labs.

² Sample ID CEL022 was collected from the Moorabool River, downstream and it is included here only due to batch completeness.

		QA/QC Ana	Ilysis	
Certificate No Lab	Blank	Spiked	Intra Laboratory Duplicate	Inter Laboratory Duplicate
DAU13_016 – NMI	1	1	1	0
DAU13_017 – NMI	1	1	1	0
DAU13_037 – NMI	1	1	1	0
DAU13_038 – NMI	1	1	1	0
DAU13_039 – NMI	1	1	1	0
DAU13_061 – NMI	1	1	1	0
DAU13_116 – NMI	1	0	0	8
DAU13_117 – NMI	0	1	0	0
DAU13_118 – NMI	1	0	0	0
DAU13_119 – NMI	0	1	0	0
134672 – AQ	1	0	0	8
Sum	9	8	6	16

Table 3-7: Laboratory Quality Control

3.6 Summary of Aquatic Biota Results

A summary of the results is provided in Table 3-8, with analytes reporting greater than 50% detection rate highlighted with bold numbers.

	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS	6:2 FtS
Minimum	0.0	2.1	1.2	4.0	2.3	2.1	2.2	2.3	2.2	1.1	1.3
Median	< LOR	5.6	5.7	6.5	11.3	4.7	8.1	25.5	3.5	6650	3.4
Maximum	0.0	14	23	16.8	101	14	110	387	40	280000	5.3
Total	36	84	93	103	103	103	103	73	74	103	57
%detects	0	33	40	31	34	28	68	83	61	79	61

Table 3-8: Summary of Aquatic Biota Analysis – Including all species

4 ATTACHMENTS

Attachment A

Table A1 - Summary %RPD and % for Primary Duplicate Recoveries

Attachment B

Laboratory Reports

Cardno Lane Piper March 2014

NMI LRN	CARDNO Ref. S	sample Location	Sample Type	Sample Matrix	Certificate	PFBA F	FPeA P	FHXA P	FHpA F	FOA PF	in ng/g NA PFD	A PFUdz	A PFDoA	PFOS	6:2 FtS	lanks Sum
LK L841 12/034244	CF1.08	ake Fiskville	Redfin Perch	Mer	DAU13_016 DAU13_016		<0.9	< 0.6	<0.6	40.5 <	0.3 <0. 10 55	2 <0.3	<0.4	<1 56200		AII < LOQ
112/034245 0	CEL09 L	ake Fiskvile ake Fiskvile	Redfin Perch Redfin Perch	Ner	DAU13 016 DAU13 016		<10 <10	4.73	16.8 5.04	6.1 6.1	40 99) 10 80,	6 293 87 387	16.1 28.7	122000 91400		
12/034247 12/034245DUP	CEL11 L	ake Fiskvile	Redfin Perch	Ner	DAU13 016 DAU13 016		<10	5.5 6.42	15 B.32	14 14	4 110 20 93	363	23	86000 128000		
112/034245SPK (104 ng/g) JLK L840					DAU 13_016 DAU 13_017		187	103	341	2 8	5.7 17; 2 <0;	5 389	106 <0.5	123000 <0.5		AII < LOQ
112/034237 012/034238 0	CEL01 L	ake Fiskvile ake Fiskvile	Redfin Perch Redfin Perch	Muscle Muscle	DAU13 017 DAU13 017				88	88	2 8.6	4 24.7	2.17	12100		
112/034239 112/034240 0	CEL03 L	.ake Fiskvile .ake Fiskvile	Redfin Perch Redfin Perch	Muscle Muscle	DAU13 017 DAU13 017				0 0	88 8	2 8.0	8 40.1 5 42.3	3.48 3.07	14900 22300		
V12/034241 0 V12/034242 0	CEL06 L	ake Fiskville ake Fiskville	Redfin Perch Redfin Perch	Muscle Muscle	DAU13 017 DAU13 017				88	22	2 7.9	3 27.8 5 40.5	2.21	13500 23500		
V12/034243 V12/034240DUP	CEL07	ake Fiskvile	Redfin Perch	Muscle	DAU13 017 DAU13 017				88	22	2 6.3	5 27.5 7 43.6	2.9 3.23	11200 23000		
N12/034240SPK (44 ng/g) BLK L846					DAU13_017 DAU13_037		40.5	<0.5	51 <0.5	81 6 0.5 <	1 69	104	60.2 <0.6	23600		AII < LOO
N12/034251 0	CEL15 L	ake Fiskvile	Yabby	Single Whole ani	DAU 13 037		5.9	1.7	4.0	21.0 10	0.8 15. 7 2.7	1 51.6	40.1	560		
N12/034253	CEL17 L	ake Fiskvile	Yabby	Single Whole an	DAU 13 037		3.4	14	40,	23.2	3 4 5	16.4	2.5	2000		
V12/034264 0	CEL25 L	.ake Fiskvile Dam 3	Yabby	Jomposite Whole ani	DAU13_037 DAU13_037		3.4	2.8	24	22.5 2	3 2.2	2.6	4.0	3000		
N12/034262 012/034263 012/034263 012/034263 012/034263 012/034263 012/034263 012/034263 012/034263 012/034266 012/034266 012/034266 012/03466 012/03466 012/03466 012/03466 012/03466 012/03466 012/03466 012/0366 0120000000000000000000000000000000000	CEL26 C	Dam 3 Dam 3	Yabby	Single Whole ani	DAU13_037 DAU13_037		5.6	12.0	4.1	01.0 8	5 4.5	4.7	4.8	8000 5200		
N12/034267	CEL03A L	ake Fiskvile.	Yabby	Single Whole ani	DAU13_037		11.0	6.9 4.R	4.4	19.4 4 38.8 4	5 7.7	51	15.6 6.0	5000		
N12/034261SPK (45 ng/g)					DAU13 037		44.0	61.0	54.0	39.9 64	1.4 60.	9 65.9	69.7	2200		VI / I W
N12/034248 0	CEL12 L	ake Fiskvile	Mosquito Fish	Composite whole	DAU 13 038		~0.4 <5	\$2	2.5	4.5 6	4 12	3 35.6	3.7	20000		MINLOOU
N12/034250 0	CEL13 L	ake Fiskvile ake Fiskvile	Mosquito Fish Mosquito Fish	Composite whole Composite whole	DAU 13_038 DAU 13_038		S5 55	\$ \$	25	2.3 2.3 2	3 6.3	25.0	3.8	36000		Π
N12/034258 0 012/034259 0	CEL22 C	Dam 3 Dam 3	Mosquito Fish Mosquito Fish	Composite whole Composite whole	DAU 13 038 DAU 13 038		<5.3	12.0	8.5	9.0 4	.0 20.	6 58.1 4 46.2	35.6 25.9	260000 260000		
N12/034260 012/034259DUP	CEL24 [Dam 3	Mosquito Fish	Composite whole	DAU 13 038 DAU 13 038		<5 <5	8.3 9.8	6.5 7.8	7.3 4 8.3 3	9 17.	3 52.1 1 39.6	29.8	240000 280000		
N12/034259SPK (44 ng/g) BI K I 849					DAU 13_038		40	63.1 1 <0 0	34.0	57.7 52	5.3 79. 1 <1	1 107.0	862	240000		AII < 1 OO
N12/034255 N12/034255 N12/034255	CEL19 L	ake Fiskvile ake Fiskvile	Macrophyle	Composite Whole	DAU13 039		6.2	5.7 5.8 6.6	90	32	.00	23	.00	1440		5
N122034257 0	CEL21	ake Fiskvile	Macrophyle	Composite Whole	DAU13 039		2 ² 2	32 32 38.0	102	121	100	300	100	440 A000		
N12/034265 0	CEL29	Dam 3	Macrophyle	Composite Whole	DAU 13 039		t == 5	23.0	6.5	0.0	100	100	100	6800		
N12/034264DUP N12/034264SDV (45 no/0)	OLLW.	0.110			DAU 13 039		14 67	23.0	5.7	9.8	2 2 2	3 574	<2 <2	5000 4600		
NTZ/0042040511X (40.11g/g) BLK L854					DAU13_061	Ş	5 V -	12	<1 -	× 1	12		40°	4000	<0.08	AII < LOQ
N13/006930 0	CEL31 0 CEL32 0	Noorabool Site (J Moorabool Site (J	Trench	Muscle	DAU13 061 DAU13 061	<10	5 V	29	5 F	\$ \$	000	88	5 77 V	<10 25	88	
N13/006932 0	CEL34 N	Acoraticol Site (J Acoraticol Site (J	Redfin	Muscle	DAU13_061	<10	\$ \$	€ V	0 V	0 V	20	98	2 72 7	33 60	28	
N13/006930DUP N13/006930SPK (97 ng/g, and 6:2 78 ng/g)					DAU 13_061 DAU 13_061	<10 86	& £	8 5	<5 110	≤5 92 92 92	2 88	85	<2 97	24 119	2	
BLK L873 N13/014202 F	PF M5A	ake Fiskville	Redfin Perch	Muscle	DAU13_116 DAU13_116	<2 <2	<0.5	<0.5	<0.5	0.5	2 <0	6		<1 5990	<02 4.8	All < LOQ
F134672-1 DUP (Asure Quality) F	PF M5B 1	ake Fiskville ake Fiskville	Redfin Perch Redfin Perch	Muscle Miscle	134672 DAU13 116	<2	<0.5	<1.0	<1.0	2.0 <	2.0 7.2 2 8 1	18	<2.0	5500 5520	2.4	
134672-2 DUP (Asure Quality) F	PF M6B	ake Fiskvile	Redfin Perch	Muscle	134672	; ;	-0.E	<1.0	<1.0	20.0	20 5:0	14	<2.0	4200	2.4	
134672-3 DUP (Asure Quality)	PF M8B [ake Fiskvile	Redfin Perch	Muscle	134672	75	0.07	<1.0	<1.0	2.0	2.0 6.2	20	<2.0	5600	3.1	
N13/014205 1346724 DUP (Asure Quality) F	PF M9A L	ake Fiskvile ake Fiskvile	Redfin Perch Redfin Perch	Muscle Muscle	DAU13 116 134672	<2	<0.5	<0.5	<0.5	20.6	2 8.2	23	<2.0	7440 6800	4.5 2.4	
N13/014206 134672-5 DUP (Asure Quality) F	PF M10A L	ake Fiskvile ake Fiskvile	Redfin Perch Redfin Perch	Muscle Muscle	DAU13_116 134672	<2	<0.5	<0.5	<0.5	40.5	2 10	35	2.4	9600	3.4 3.2	
H 13/014207 F 13/4672-45 D1 IP (Asure Outsille)	PF M11A 1 PF M11R 1	ake Fiskvile ake Fiskvile	Redfin Perch Redfin Perch	Muscle Miscle	DAU13_116 134672	<2	<0.5	<0.5	<0.5	0.5	2 6.5	26	2.4	7940 6600	3.9	
N13/014208	PF M12A	ake Fiskvile	Redfin Perch	Muscle	DAU13_116	<2	<0.5	<0.5	<0.5	0.5	2 9.6	2 6	L 4	8870	3.9	
13/014209 (Maure duality)	PF M14A	ake Fiskvile	Redfin Perch	Muscle	DAU13_116	<2	<0.5	<0.5	<0.5	0.5	2 7.7	7	4.1 2	7100	5.3	
134672-8 DUP 134672-8 L	PF M14B	ake Fiskvile	Redtin Perch	Muscle	134672			<1.0	<1.0	2:0	2.0 6.2 2.0 <2)	24	<2.0	<2.0	<1.0	AII < LOQ
N13/014210 0	CELOZZ	Acorabool ake Fiskvile	Brown trout Redfin Perch	Composite whole Muscle	DAU13_152	²	<0.5 <0.5	<0.5	<0.5	0.5	1 0	8	<2	41 <0.5	<0.1	All < LOQ
N13/017964 F	PFM7 L	ake Fiskville ake Fiskville	Redfin Perch Redfin Perch	Muscle Muscle	DAU13_152 DAU13_152		<0.5 <0.5	<0.5	<0.5	0.5	1 7.6	18	5 ²	7600	2.6 3.4	
N13/017966 F	PFM15 L	ake Fiskvile ake Fiskvile	Redfin Perch Redfin Perch	Muscle	DAU13 152 DAU13 152		40.5 40.5	<0.5	<0.5	0.5	44	21	22	8300 6700	3.4	
N13/017968 F	PFM17	ake Fiskvile ake Fiskvile	Redfin Perch Redfin Perch	Muscle	DAU13 152		<0.5	<0.5	<0.5	0.5	6.9	24	. 5 0	8000	6.4	
N13/017970 N13/017970 N13/017970	PEM19	ake Fiskvile	Redfin Perch	Muscle	DAU13 152		<0.5 20.5	<0.5	<0.5 <0.5	0.5	2 2 2	4	.01	5500	5.3	
N13/01/9/1	PFM21 [ake Fiskvile	Redfin Perch	Muscle	DAU13_152		<0.5 6.5	<0.5	<0.5	0.5	44	15	<22	5800	5 4 F	
N12/034242Repeat	CEL06	ake Fiskvile	Redfin Perch	Muscle	DAU 13_153		<0.5	<0.5	<0.5 <0.5	0.5	12	2 2	3.5	15000	3.3	[
N13/014211 N13/014212 0		Accrabool u/s Accrabool u/s	Roach Boach	Muscle Muscle	DAU13 117 DAU13 117 DAU13 117	200	<0.5 <0.5	<0.5	<0.5 <0.5	0.5	0.5 <0.	0.00		~ ~ ~	<0.1	
N13/014209SPK (21 ng/g, and 6:2 17 ng/g) (CEL041	Acoraticol u/s	Roach	Miscle	DAU13 117 DAU13 117	-28 -29	31 <0.5	32 <0.5	41	27 22	39 39 0.5 <0.			7140	22 <0.1	
N13/014215 N13/014215	CEL043 A	Accrabool u/s	Roach	Muscle	DAU13 118	2 %	<0.5	<0.5	<0.5	20.5 ×	0.5 <0.	10 10		~ ~ ~	<0.1	
N13/014217 0	CEL047 N	Acorabool u/s	Carp	Muscle	DAU13 118	· ~ ~	<0.5	<0.5	<0.5	0.5	0.5			2.1	<0.1	
N13/014219 0		Acorabool u/s Acorabool u/s	Brown trout	Muscle	DAU13 118	225	405 405	<0.5 <0.5	<0.5 <0.5	0.5	500			322	<0.1 20.1	
N13/014221 0		Acorabool u/s Acorabool u/s	Brown trout	Muscle	DAU13 118	700	0.5 0.5	<0.5	<0.5 <0.5	0.5	5.5			<1	<0.1	
N13/014223 0	CEL065	Noorabool u/s	Short-finned eel	Auscle	DAU13 118	105	0.5 0.5	<0.5 <0.5	<0.5 <0.5	0.5	0.5 <0.0			2 5	<0.1 <0.1	AIL 100
N13/014224 0	CEL057	Accepted u/s	Short-finned eel	Muscle	DAU13 119	7 67 6	<0.5 20.5	<0.5	<0.5 <0.5	0.0	0.5 0.5			2.6	<0.1	MI > FOOD
N13/014225 N13/014219SPK (21 ng/g, and 6:2 17 ng/g) N13/014226	CELUSH N	Anoration urs	Short-finned eel	Miscle	DAU13 119 DAU13 119 DAU13 119	° 88	32 32	34 20	40	25 25 4 4	4 30	0 10		28 28	<0.1 <0.1 <0.1	
N 0.014750	VE FV30			202010		7	002	0.02	8	mmarvofR	oculte in nru	_		77	-1/2]
			Average Minimum			PFBA F < LOR 0.0	FPeA P 6.7 2.1	FHxA P 7.9 1.2	FHpA F 7.8 4.0	FOA PF 20.1 6 2.3 2 2.3 2	NA PFD 1 16. 1 2.2	4 PFUd/ 2 56.3 2 2.3	A PFDoA 11.0 2.2	PFOS 24082 1.1	6:2 FtS 3.6 1.3	
tum ber of Samples (total)	10		Lower Quartile Median			< LOR < LOR	3.4 5.6 110	3.4 5.7 9.4	5.1 6.5 8.9	8.3 3 11.3 4 21.0 8		8 17.3 25.5 8 42.2	2.7 3.5	2150 6650 11875	2.5 3.4 4.5	
Vum ber of Duplicates - NMI (Analysis) E Vum ber of Interlaboratory (Analysis) E	98		Maximum Total (Not Inc. Bl	ank, Spike & Dup	(30	14.0 64	23.0 72	80	01.0 14 80 8	0 110	.0 387.0 55	40.1	280000 80	5.3 49	
Vumber of Spikes (Analysis) E fotal Number of Analysis NMI	8		Total No. Analysi Analysis less thai	s (Inc. Blank, Spi h LOQ (Not inc. b	ke & Dup) lanks)	88	84 51	93 51	103 66	63 10	8 30	3 73	26	103	57 24	
Total Number of Analysis AQ NMI QA/QC Ratio	9 > 1:10		Number of Detec Sample Percents	ts (Not inc. spike ge detects (Tota	()	0%	25 33%	34 40%	31%	32 26	7 bo	6 83%	40 61%	79%	30 61%	

Attachment A

NMI LRN CARD	NO Ref. Sample L	ocation	PFBA	%RPD al	PEHXA PF	10 PFOA	or Primary &	Duplicate St JA PFUdA	P FD oA	PFOS 6:2 Ft	S MPFBA	MP FHXA	APFOA MPF	NA MPFDA	covery % MPFUdA	MPFDoA	MPFOS	6:2 FTS 0	ertificate
BLK L841	A she find				╞							78.4	72	82 8	88 28	80	66		
N12/034245 CEL0	D Lake Fisk	WE %RPD		<100	-30.3 61	.5 <loq< td=""><td><loq 6.1<="" td=""><td>5.0</td><td>-3.1</td><td>-4.8</td><td></td><td>432.6</td><td>94</td><td>11 34</td><td>9 467</td><td>457</td><td>77</td><td></td><td></td></loq></td></loq<>	<loq 6.1<="" td=""><td>5.0</td><td>-3.1</td><td>-4.8</td><td></td><td>432.6</td><td>94</td><td>11 34</td><td>9 467</td><td>457</td><td>77</td><td></td><td></td></loq>	5.0	-3.1	-4.8		432.6	94	11 34	9 467	457	77		
N12/034246 CEL1	D Lake Fisk	cville ruille										149.8	65	17 11	2 121	130	98 63		AU13_016
N12/034245DUP	Lake rise	Priman		172%	95% 28	2% 92%	69% 86	% 98%	88%	101%		962	37	10 6	5 320 5	995 985	18		
N12/034245SPK (104 ng/g) PI K I 840		Duplica		172%	93% 34	4% 94%	75% 89	% 94%	88%	- %96		62.4	26	11 5	5 74 7 66	75	15		
N12/034237 CELO	1 Lake Fisk	cville										73	55	000	1 63	09	11		
N12/034239 CELU N12/034239 CELU	2 Lake Fisk	(ville										75	83.85	8 0 I	9 60	61	10		
N12/034240 CELU N12/034241 CELO	4 Lake Hisk 5 Lake Fisk	sville %KPU			√	m ≮00	<lou 8.<="" td=""><td>0.5</td><td>L.¢</td><td>-9.1</td><td></td><td>66.4</td><td>52</td><td>8 4</td><td>7 58</td><td>22</td><td>10</td><td></td><td>AU13_017</td></lou>	0.5	L.¢	-9.1		66.4	52	8 4	7 58	22	10		AU13_017
N12/034242 CEL0 N12/034243 CEL0	5 Lake Fisk 7 Lake Fisk	cville tville										80.2	83	10 5	4 61 8 69	68 75	12		
N12/034240DUP		Primar			- 11	3% 180%	136% 124	121% 121%	128%	106%		69.6 8.6	55 £4	7 4	5 57	62	ω σ		
BLK L846		ning				a/o	120.001	0/011 0/0	0/ /7	107.70		108	123	129 9	8 82	24	86		
N12/034251 CEL1 N12/034252 CEL1	5 Lake Fisk 5 Lake Fisk	cville cville		t	+					+		130	52 83	87 10	3 121	77	22		
N12/034253 CEL1	7 Lake Fisk	(ville										75	87	88	5 102	42	66		
N12/034264 CEL1 N12/034261 CEL2	5 Dam 3	WIE %RPD		-23.7	-52.6 <l< td=""><td>00 -53.2</td><td>-64.1 <lc< td=""><td>10 -65.6</td><td>-40.6</td><td>-23.5</td><td></td><td>82</td><td>93</td><td>88 11</td><td>8 144</td><td>91</td><td>93 93</td><td></td><td>AU13_037</td></lc<></td></l<>	00 -53.2	-64.1 <lc< td=""><td>10 -65.6</td><td>-40.6</td><td>-23.5</td><td></td><td>82</td><td>93</td><td>88 11</td><td>8 144</td><td>91</td><td>93 93</td><td></td><td>AU13_037</td></lc<>	10 -65.6	-40.6	-23.5		82	93	88 11	8 144	91	93 93		AU13_037
N12/034262 CEL2 N13/034262 CEL2	5 Dam 3				╡					-		82	79	59 11	2 140 E 24	54	112		
N12/034267 CEL0	3A Lake Fisk	(ville										64	8	38	9 1	4	75		
N12/034261DUP N12/034261SPK (45 nolo)		Primar		91% 89%	128% 11	7% 133%	137% 132	2% 139%	142%	72%		75	105	66 75 6	6 120 1 60	71	88		
BLK L845												68	79	86 8	4 121	104	101		
N12/034248 CEL1 N12/034249 CEL1	2 Lake Fisk 3 Lake Fisk	cville :ville		t	+					+		192	102	81 27 88 13	1 274	318 196	65 82		
N12/034250 CEL1	4 Lake Fisk	(ville										286	112	144 19	9 412	290	85	6	000 0011
N12/034258 CEL2 N12/034259 CEL2	2 Dam 3	%RPD		400	1.6 9	.3 8.3	2.8 17.	6 15.4	10.1	- 47-		236	8 2	36 12 12	9 236	196	39		AU13_038
N12/034260 CEL2	4 Dam 3											277	114	38 13	6 229	192	36		
N12/034259DUP N12/034259SPK (44 ng/g)		Duplicat		85%	117% 25	5% 109% 9% 110%	111% 128	% 119%	12.8%	92% 86%		2/16 262	113	38 38	8 219	208	88		
BLK L849	I alto Elab	1 dile			╞				╞			28	31	33	0 35	28	66		
N12/034256 CEL2	D Lake Fisk	(vile										98	95	98 10	5 135	98	82		
N12/034257 CEL2	1 Lake Fisk	(ville suppo		0	0 001	46.2			201	10.7		81	88	106 10	133	99	80		AI 11.2 0.20
N12/034265 CEL2	Dam 3	20KFU		0.0	771	10.0		7	87	- 10.4		105	7 06	20 8	133	114	80		2010-000
N12/034266 N12/034264DUP	Dam 3	Priman		114%	114% 11	9% 10.3%	118% 131	% 125%	116%	76%		97	87	69 55 8	1 105	102	80		
N12/034264SPK (45 ng/g)		Duplicat		114%	119% 12	0% 106%	118% 131	% 125%	116%	91%		67	63	44	6 77	62	82	Γ	
BLK L854 CEI 2	Montheast	ol Cito /									92	66	65 66	85 89 OF	8 8	67	65	93	
N13/006930	2 Moorabox	ol Site (J %RPD	100	100	400 4	00 <⊥00	1001	XQ <l0q< td=""><td>400</td><td>4.1 <loc< td=""><td>2</td><td>70</td><td>82</td><td>110 9</td><td>2 108</td><td>88</td><td>82</td><td>58</td><td></td></loc<></td></l0q<>	400	4.1 <loc< td=""><td>2</td><td>70</td><td>82</td><td>110 9</td><td>2 108</td><td>88</td><td>82</td><td>58</td><td></td></loc<>	2	70	82	110 9	2 108	88	82	58	
N13/006931 CEL3 N13/006932 CEL3	3 Moorabov 1 Moorabov	ol Site (J			+						55	566	88	120 8	10 90	100	83	115 D	AU13_061
N13/006930DUP		Priman	/ 84%	93%	99% 11	1% 92%	94% 90	% 87%	%66	98% 99%	76	20	65	103	5 110	8	65	8	
N13/0069305PK (97 ng/g, and 6/2 / 8 ng/g) BI K I 873		Duplica	e 84%	93%	33% 1	0.% 87.%	87% 80	% 81%	28.%	36.% 88.%	13	40	73	18	5 88 88	99	26	103	
N13/014202 PF Mi	5A Lake Fisk	wille %RPD			- 4	001 <100	<l00 22<="" td=""><td>2 -</td><td></td><td>8.5 66.7</td><td>16</td><td>49</td><td>42</td><td>6</td><td>2</td><td></td><td>13</td><td>52</td><td></td></l00>	2 -		8.5 66.7	16	49	42	6	2		13	52	
134672-1 DUP (Asure Quality) PF Mi N13/014203 PF Me	SB Lake Fisk. A Lake Fisk	wile %RPD				00 1 00	4 00 41	-		27.2 58.8	23	55	92	75 9 3	1 82		17	106	
134672-2 DUP (Asure Quality) PF Mi	3B Lake Fisk	(ville				201	1			-		3	32	101	1 88		8	113	
N13/014204 [PF Mi 134872-3 D1 [P. (Asure Outsliky) [PF Mi	3A Lake Fish R Lake Fiek	wille %RPD				00 4.00	<l00 21<="" td=""><td>- 9</td><td></td><td>14.1 45.0</td><td>20</td><td>59</td><td>45 84</td><td>8 2</td><td>5 84</td><td></td><td>14</td><td>80</td><td></td></l00>	- 9		14.1 45.0	20	59	45 84	8 2	5 84		14	80	
1340/2-3 DOT (Asure Goally) FF MI N13/014205 PF MI	A Lake Fisk	wille %RPD				00 <100	<l00 11.<="" td=""><td>- 9</td><td></td><td>9.0 60.9</td><td>15</td><td>50</td><td>8</td><td>7 2</td><td>5</td><td></td><td>12</td><td>52</td><td></td></l00>	- 9		9.0 60.9	15	50	8	7 2	5		12	52	
134672-4 DUP (Asure Quality) PF Mi	B Lake Fisk	(ville automotion)				001	001						84	78	3 87		95	118 D.	AU13_116
N13/014206 134672-5 DUP (Asure Quality) PF M	10A Lake Hisk 10B Lake Fisk	Wile %KHU				00 400	4000 -9	-		8.7 6.1	2	8	80	65 1	59 0		13	113	a 134672
N13/014207 PF M	11A Lake Fisk	wile %RPD				00 400	<loq -16<="" td=""><td>- 0.</td><td></td><td>18.4 100.0</td><td>17</td><td>52</td><td>42</td><td>. 2</td><td>2</td><td></td><td>11</td><td>51</td><td></td></loq>	- 0.		18.4 100.0	17	52	42	. 2	2		11	51	
134672-6 DUP (Asure Quality) PF MI N132014208	11B Lake Fish	wille %BDD			- d		00 - 00 P			-11 D 78.6	00	R.F.	83	18	7 71		70	122	
134672-7 DUP (Asure Quality) PF M:	12B Lake Fisk	Wile 79KFU					107	- 15		10.07	4	8	66	106	4 87		101	113	
N13/014209 PF M	14A Lake Fisk	wille %RPD			-	00 <100	<loq 20.<="" td=""><td>- 0</td><td></td><td>13.5 78.9</td><td>22</td><td>67</td><td>52</td><td>0</td><td></td><td></td><td>16</td><td>79</td><td></td></loq>	- 0		13.5 78.9	22	67	52	0			16	79	
134672-8 DUP 134672-8L	14B Lake Fisk	cville											88	101	2 85	06	71	117	
N13/014210 CEL0.	22 Moorabox	ol Duplicat	0				- 145	- %		115% 114%	23	75	42	48 1	0	2	33	78	
BLK L884	Lake Fisk	(ville										93	55	28	9 4	2	20	25	
N13/017964 PFMI N13/017965 PFM1	3 Lake Fisk	wie .			\dagger	+	t	ļ	t	T	+	76	62	12 7	1 49	20	19	69	
N13/017966 PFM1	5 Lake Fisk	cville										91	85	10	3 45	16	17	70	
N13/017967 PFM1	6 Lake Fisk	cville					╞					106	95	12 7	2 47	13	21	63 D	AU13 152
N13/017968 PFMI	2 Lake Fisk	(ville 										88	79	0 0	1 43	4	17	69	1
N13/01/970 PFM1	9 Lake Fisk	wile .								T		200	67	n 97	4 26	8	17	88	
N13/017971 PFM2	0 Lake Fisk	cville										81	82	11 6	44	20	22	70	
N12/034240Repeat CELO	1 Lake Fisk	tylle			╉	+	+	ļ	╞		+	10/	<u>8</u>	10	12 08	31	13	35	01100
N12/034242Repeat CEL0	5 Lake Fisk	cville										88	63	11	4 20	8	18	41 0	AU13_103
N13/014211 CELG N13/014212 CELO	35 Moorabo. 37 Moorabox	ol u/s									24	99	39	47 2	0 90		30	75	
N13/014213 CEL0	39 Moorabox	ol u/s									22	63	41	42 1	7		23	72 D	AU13_117
N13/014209SPK (21 ng/g, and 6:2 17 ng/g) CFI 00 N13/014214	11 Movehov	Primar				•	- 13	- %		100% 99%	15	36	70	25 1	0 :		15	32	
N13/014215 CEL0	13 Moorabox	ol u/s									17	49	34	27	6		18	39	
N13/014216 CELO	45 Moorabox	ol u/s			+					+		48	37	32 1	2		22	38	
N13/01421/ N13/014218 CELO	19 Moorabox	ol u/s Di u/s	_	t	+	+	+	+	+	+	18	44	39	40	0 01		24	88	
N13/014219 CELO	54 Mooraboo	ol u/s									19	46	31	25	7		13	28 28 D.	AU13_118
N13/014220 N13/014221 CELO	76 Moorabox	ol u/s bl u/s	_	t	+	+	+	+	+	+	19	202	88	37	8		25	8	I
N13/014222	53 Moorabox	ol u/s	$\left \right $		H	H		Ħ	H	$\left \right $	16	46	36	30	0 4		20	37	
N13/014223 CELO	55 Moorabox	ol u/s			\dagger	+			+		22	45	25 26	19	6		6	48	
DLN L0/4 N13/014224 CEL0	57 Moorabox	s/n lc			$\left \right $					T	21	45	38	38	1 40		21	68	
N13/014225 CEL0	94 Moorabox	ol u/s									19	45	34	29	-		14	80 D	AU13 119
N13/014219SPK (21 ng/g, and 6:2 17 ng/g) CEL0	16 Mooraboo	primar primar	/ 127%	152%	162% 15	0% 119%	114% 14	- %		133% 103%	6 16	45	35	6	7		18	45	
	N0010011	0.00.00							1			2	~	N#	~		>	ř	
											MDCDA	MDEUVA		Surrogate Recov	er Summary	MDEDOA	MDECO	Me-2 ET C	
_									1	tal No.	36	24 24	103	103 10	3 74	86	103	M0.4 F1 3	
									A	erage	27	95	88	45 6	3 111	* 66	47	72	
Number of Samples (total) 79	Γ								<u>ال</u>	wer Quartile	17	. 57	8 4	10	8 4	31	16	52	
Number of Blanks - NMI & AQ (Analysis) 10									Me	edian	19	3 75	67	38	7 86	76	33	70	
Number of Duplicates - NMI (Analysis) 6 Number of Interlaboratory (Analysis) 8									212	oper Quartile	22	433	88 [2]	144 34	4 121	457	112	122	
Number of Spikes (Analysis)												00F	241	E	2 2	Pr-	-	-	
Total Number of Analysis NMI 94 Total Number of Analysis AD	Π																		
I D Tal Number of Artarysis Ave 2 100 NMI OA/OC Ratio	T																		

Attachment A

National Measurement Institute

	CERTIFICATE OF A	ANALYSIS # DAU	J13_016
Client	Cardno Ecology Lab L9, 203 Pacific Highway, St I	Job No. ∟eonards	CARD20/121218
	NSW, 2065	Sampled by	Client
		Date Sampled	not specified
Contact	Marcus Lincoln-Smith	Date Received	18-Dec-12
		•	
	The resu	ults relate only to the samp	ole(s) tested.

Method	AUTL_07	Date Reported	22-Feb-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

Haw

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

	Sample Deta	ils : Job No. CAF	RD20/121218
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description
N12/034244	CEL08	Fish Livers	Freshwater. Dec 2012
N12/034245	CEL09	Fish Livers	Freshwater. Dec 2012
N12/034246	CEL10	Fish Livers	Freshwater. Dec 2012
N12/034247	CEL11	Fish Livers	Freshwater. Dec 2012
N12/034245DUP	Duplicate	Fish Livers	Duplicate Sample
N12/034245SPK	Spike	Fish Livers	Spiked sample (104 ng/g)
BLK L841	Lab Blank	Lab Blank	Lab Blank

Pr	0	je	С	t	Details
-					

Fiskville Study

NA49913-034

Project Name Project Number

Key		
Analytes		Surrogate
PFPeA	Perfluoro-n-pentanoic acid	
PFHxA	Perfluoro-n-hexanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid
PFHpA	Perfluoro-n-heptanoic acid	
PFOA	Perfluoro-n-octanoic acid	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid
PFNA	Perfluoro-n-nonanoic acid	Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]nonanoic acid
PFDA	Perfluoro-n-decanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid
PFUdA	Perfluoro-n-undecanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]undecanoic acid
PFDoA	Perfluoro-n-dodecanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]dodecanoic acid
PFOS	Perfluoro-n-octanesulfonate	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanesulfonate
Units & Abbreviations		
ng/g	nanograms per gram	
<	level less than limit of detection (LOD)	
Surrogate Recovery	percentage recovery for ¹³ C ₁₂ labelled surrogate standa	ard
ħ	Laboratory surrogate recovery outside normal acceptant	ice criteria (25 - 125%)

Laboratory Reg. No. N12/034244

Client Sample Ref. CEL08 Matrix Fish Livers Description Freshwater. Dec 2012 Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level	Labelled Sur	rogate
	ng/g	recove	ry
PFPeA	<10		
PFHxA	5.0	288	þ
PFHpA	9.4		
PFOA	<6	88	
PFNA	<10	54	
PFDA	55	265	þ
PFUdA	170	363	þ
PFDoA	12	336	þ
PFOS	56300	88	

Laboratory Reg. No. N12/034245

Client Sample Ref. CEL09 Matrix Fish Livers Description Freshwater. Dec 2012 Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level ng/g	Labelled Sur recover	rrogate ry
PFPeA PFHxA	<10 4.7	433	ħ
PFHpA PFOA	17 <9	94	
PFNA	<40	11	þ
PFDA	100	349	þ
PFUdA	290	467	þ
PFDoA	16	457	þ
PFOS	122000	77	

Laboratory Reg. No. N12/034246

Client Sample Ref. CEL10 Matrix Fish Livers Description Freshwater. Dec 2012 Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level ng/g	Labelled Sur recover	rogate ry
PFPeA PFHxA	<10 8.2	150	F
PFHpA PFOA	6.0 6.1	65	
PFNA	<10	17	þ
PFDA	81	112	
PFUdA	390	121	
PFDoA	29	130	þ
PFOS	91400	98	

Laboratory Reg. No. N12/034247

Client Sample Ref. CEL11 Matrix Fish Livers Description Freshwater. Dec 2012 Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level ng/g	Labelled Sur recover	rogate ry
PFPeA PFHxA	<10 5.5	348	장
PFHpA PFOA	15 14	60	
PFNA	14	44	
PFDA	110	232	þ
PFUdA	360	320	þ
PFDoA	23	306	þ
PFOS	86000	124	

Laboratory Reg. No. N12/034245DUP

Client Sample Ref. Duplicate Matrix Fish Livers Description Duplicate Sample Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level	Labelled Sur	rrogate
	ng/g	recove	ry
PFPeA	<10		
PFHxA	6.4	96	
PFHpA	8.3		
PFOA	<5	37	
PFNA	<20	10	þ
PFDA	93	65	
PFUdA	310	93	
PFDoA	17	98	
PFOS	128000	18	þ

Laboratory Reg. No. N12/034245SPK

Client Sample Ref. Spike Matrix Fish Livers Description Spiked sample (104 ng/g) Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level ng/g	Labelled Sur recove	rrogate ry
PFPeA PFHxA	190 100	62	
PFHpA PFOA	340 100	26	
PFNA	86	11	þ
PFDA	180	55	
PFUdA	390	74	
PFDoA	110	75	
PFOS	123000	15	þ

Laboratory Reg. No. BLK L841

Client Sample Ref. Lab Blank Matrix Lab Blank Description Lab Blank Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level	Labelled Surrogate recovery	
	ng/g		
PFPeA	<0.9		
PFHxA	<0.6	78	
PFHpA	<0.6		
PFOA	<0.5	72	
PFNA	<0.3	82	
PFDA	<0.2	86	
PFUdA	<0.3	88	
PFDoA	<0.4	80	
PFOS	<1	66	

National Measurement Institute

CERTIFICATE OF ANALYSIS # DAU13_017				
Client	Cardno Ecology Lab L9, 203 Pacific Highway, St I	Job No.	CARD20/121218	
	NSW, 2065	Sampled by	Client	
		Date Sampled	not specified	
Contact	Marcus Lincoln-Smith	Date Received	18-Dec-12	
The results relate only to the sample(s) tested.				

Method	AUTL_07	Date Reported	1-Feb-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

Haw

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

Sample Details : Job No. CARD20/121218				
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description	
N12/034237	CEL01	Fish muscle	Freshwater. Dec 2012	
N12/034238	CEL02	Fish muscle	Freshwater. Dec 2012	
N12/034239	CEL03	Fish muscle	Freshwater. Dec 2012	
N12/034240	CEL04	Fish muscle	Freshwater. Dec 2012	
N12/034241	CEL05	Fish muscle	Freshwater. Dec 2012	
N12/034242	CEL06	Fish muscle	Freshwater. Dec 2012	
N12/034243	CEL07	Fish muscle	Freshwater. Dec 2012	
N12/034240DUP	Duplicate	Fish muscle	Duplicate Sample	
N12/034240SPK	Spike	Fish muscle	Spiked sample (44 ng/g)	
BLK L840	Lab Blank	Lab Blank	Lab Blank	

Project Details Project Name

Project Number

Fiskville Study NA49913-034

Кеу			
Analytes		Surrogate	
PFHpA PFOA	Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid	
PFNA	Perfluoro-n-nonanoic acid	Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]nonanoic acid Surrogate	
PFDA	Perfluoro-n-decanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid Surrogate	
PFUdA	Perfluoro-n-undecanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]undecanoic acid Surrogate	
PFDoA	Perfluoro-n-dodecanoic acid	Perfluoro-n-[1,2-13C2]dodecanoic acid Surrogate	
PFOS	Perfluoro-n-octanesulfonate	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanesulfonate	
Units & Abbreviations			
ng/g	nanograms per gram		
<	level less than limit of reporting (LOR)		

Laboratory Reg. No. N12/034237

Client Sample Ref. CEL01 Matrix Fish muscle Description Freshwater. Dec 2012 Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level	Labelled Surrogate	
	ng/g	recove	ry
PFHpA	<2		
PFOA	<2	55	
PFNA	<2	9	þ
PFDA	8.6	51	
PFUdA	25	63	
PFDoA	2.2	60	
PFOS	12100	11	þ

Laboratory Reg. No. N12/034238

Client Sample Ref. CEL02 Matrix Fish muscle Description Freshwater. Dec 2012 Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level	Labelled Surrogate	
	ng/g	recovery	
PFHpA	<2		
PFOA	<2	56	
PFNA	<2	8	þ
PFDA	13	46	
PFUdA	46	61	
PFDoA	3.1	68	
PFOS	22100	9	þ

Laboratory Reg. No. N12/034239

Client Sample Ref. CEL03 Matrix Fish muscle Description Freshwater. Dec 2012 Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level	Labelled Surrogate recovery	
	ng/g		
PFHpA	<2		
PFOA	<2	63	
PFNA	<2	9	þ
PFDA	8.1	49	
PFUdA	40	60	
PFDoA	3.5	61	
PFOS	14900	10	þ
Laboratory Reg. No. N12/034240

Client Sample Ref. CEL04 Matrix Fish muscle Description Freshwater. Dec 2012 Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level ng/g	Labelled Sur recover	rrogate ry
PFHpA PFOA	<2 <2	58	
PFNA	<2	7	þ
PFDA	12	46	
PFUdA	42	61	
PFDoA	3.1	64	
PFOS	22300	9	þ

Laboratory Reg. No. N12/034241

Client Sample Ref. CEL05 Matrix Fish muscle Description Freshwater. Dec 2012 Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level	Labelled Su	rrogate
	ng/g	recove	ry
PFHpA	<2		
PFOA	<2	57	
PFNA	<2	8	þ
PFDA	7.9	47	
PFUdA	28	58	
PFDoA	2.2	64	
PFOS	13500	10	þ

Laboratory Reg. No. N12/034242

Client Sample Ref. CEL06 Matrix Fish muscle Description Freshwater. Dec 2012 Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level	Labelled Sur	rrogate
	ng/g	recove	ry
PFHpA	<2		
PFOA	<2	63	
PFNA	<2	7	þ
PFDA	13	44	
PFUdA	41	61	
PFDoA	2.7	68	
PFOS	23500	8	þ

Laboratory Reg. No. N12/034243

Client Sample Ref. CEL07 Matrix Fish muscle Description Freshwater. Dec 2012 Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level	Labelled Sur	rogate
	ng/g	recover	ry
PFHpA	<2		
PFOA	<2	64	
PFNA	<2	10	þ
PFDA	6.4	59	
PFUdA	28	69	
PFDoA	2.9	75	
PFOS	11200	12	þ

Laboratory Reg. No. N12/034240DUP

Client Sample Ref. Duplicate Matrix Fish muscle Description Duplicate Sample Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level	Labelled Sur	rrogate
	ng/g	recove	ry
PFHpA	<2		
PFOA	<2	55	
PFNA	<2	7	þ
PFDA	11	45	
PFUdA	44	57	
PFDoA	3.2	62	
PFOS	23000	8	þ

Laboratory Reg. No. N12/034240SPK

Client Sample Ref. Spike Matrix Fish muscle Description Spiked sample (44 ng/g) Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level	Labelled Sur	rogate
PFHpA PFOA	81 62	51	,
PFNA	61	7	þ
PFDA	69	43	
PFUdA	100	51	
PFDoA	60	61	
PFOS	23600	9	þ

Laboratory Reg. No. BLK L840

Client Sample Ref. Lab Blank Matrix Lab Blank Description Lab Blank Extraction Date 2-Jan-13 Analysis Date 21-Jan-13

	Level na/a	Labelled Surrogate recovery
PFHpA	<2	59
PFNA	<2	63
PFDA	<0.5	57
PFUdA	<0.5	66
PFDoA	<0.5	61
PFOS	<0.5	62

National Measurement Institute

CERTIFICATE OF ANALYSIS # DAU13_037			
Client	Cardno Ecology Lab	Job No.	CARD20/121218
	NSW 2065	Sampled by	Client
		Date Sampled	not specified
Contact	Marcus Lincoln-Smith	Date Received	18-Dec-12
	The resu	ults relate only to the sam	ole(s) tested.

Method	AUTL_07	Date Reported	21-Feb-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

au

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

Sample Details : Job No. CARD20/121218			
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description
N12/034251	CEL15	Yabbie	Freshwater. Dec 2012
N12/034252	CEL16	Yabbie	Freshwater. Dec 2012
N12/034253	CEL17	Yabbie	Freshwater. Dec 2012
N12/034254	CEL18	Shrimp	Freshwater. Dec 2012
N12/034261	CEL25	Yabbie	Freshwater. Dec 2012
N12/034262	CEL26	Yabbie	Freshwater. Dec 2012
N12/034263	CEL27	Yabbie	Freshwater. Dec 2012
N12/034267	CEL03A	Yabbie	Freshwater. Dec 2012
N12/034261DUP	Duplicate	Yabbie	Duplicate Sample
N12/034261SPK	Spike	Yabbie	Spiked sample (45 ng/g)

Project Details	
Project Name	ŀ

Project Number

Fiskville Study NA49913-034

Key		
Analytes		Surrogate
PFPeA	Perfluoro-n-pentanoic acid	
PFHxA	Perfluoro-n-hexanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid
PFHpA	Perfluoro-n-heptanoic acid	
PFOA	Perfluoro-n-octanoic acid	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid
PFNA	Perfluoro-n-nonanoic acid	Perfluoro-n-[1,2,3,4,5- $^{13}C_5$]nonanoic acid
PFDA	Perfluoro-n-decanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid
PFUdA	Perfluoro-n-undecanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]undecanoic acid
PFDoA	Perfluoro-n-dodecanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]dodecanoic acid
PFOS	Perfluoro-n-octanesulfonate	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanesulfonate
Units & Abbreviations		
ng/g	nanograms per gram	
<	level less than limit of reporting (LOR)	

Laboratory Reg. No. N12/034251

Client Sample Ref. CEL15 Matrix Yabbie Description Freshwater. Dec 2012 Extraction Date 24-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Surrogate recovery	
PFPeA PFHxA	5.9 <5	130	ħ
PFHpA PFOA	4.0 21	52	
PFNA	11	17	þ
PFDA	15	4	þ
PFUdA	52	1	þ
PFDoA	40	1	þ
PFOS	560	77	

Laboratory Reg. No. N12/034252

Client Sample Ref. CEL16 Matrix Yabbie Description Freshwater. Dec 2012 Extraction Date 24-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Surrogate recovery
PFPeA PFHxA	<5 <5	82
PFHpA PFOA	<2 18	83
PFNA	6.7	87
PFDA	2.4	103
PFUdA	5.8	121
PFDoA	<2	77
PFOS	2600	90

Laboratory Reg. No. N12/034253

Client Sample Ref. CEL17 Matrix Yabbie Description Freshwater. Dec 2012 Extraction Date 24-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Surrogate recovery
PFPeA	<5 <5	75
PFHpA PEOA	<2 23	87
PFNA	8.3	88
PFDA	4.3	95
PFUdA PFDoA	2.5	42
PFOS	2000	99

Laboratory Reg. No. N12/034254

Client Sample Ref. CEL18 Matrix Shrimp Description Freshwater. Dec 2012 Extraction Date 24-Jan-13 Analysis Date 19-Feb-13

	Level	Labelled Surrogate
	ng/g	recovery
PFPeA	<5	
PFHxA	<5	82
PFHpA	<2	
PFOA	<2	93
PFNA	2.3	101
PFDA	2.2	86
PFUdA	2.5	100
PFDoA	<2	84
PFOS	260	99

Laboratory Reg. No. N12/034261

Client Sample Ref. CEL25 Matrix Yabbie Description Freshwater. Dec 2012 Extraction Date 24-Jan-13 Analysis Date 19-Feb-13

	Level	Labelled Surrogate	
	ng/g	recove	ry
PFPeA	<5		
PFHxA	<5	75	
PFHpA	<2		
PFOA	23	90	
PFNA	2.1	88	
PFDA	<2	118	
PFUdA	2.6	144	þ
PFDoA	4.0	91	
PFOS	3000	93	

Laboratory Reg. No. N12/034262

Client Sample Ref. CEL26 Matrix Yabbie Description Freshwater. Dec 2012 Extraction Date 24-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Sur recover	rogate ry
PFPeA PFHxA	5.6 12	82	
PFHpA PFOA	4.1 53	79	
PFNA	7.5	59	
PFDA	4.9	112	
PFUdA	4.7	140	þ
PFDoA	4.8	94	
PFOS	8000	112	

Laboratory Reg. No. N12/034263

Client Sample Ref. CEL27 Matrix Yabbie Description Freshwater. Dec 2012 Extraction Date 24-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Sur recover	rogate ry
PFPeA PFHxA	<5 <5	77	
PFHpA PFOA	4.5 100	77	
PFNA	8.6	54	
PFDA	8.9	45	
PFUdA	15	24	þ
PFDoA	15	11	þ
PFOS	5200	93	

Laboratory Reg. No. N12/034267

Client Sample Ref. CEL03A Matrix Yabbie Description Freshwater. Dec 2012 Extraction Date 24-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Sur recove	rogate ry
PFPeA PFHxA	11 6.9	64	
PFHpA PFOA	4.4 19	80	
PFNA	4.5	38	
PFDA	7.7	21	þ
PFUdA	33	9	þ
PFDoA	16	4	þ
PFOS	5000	75	

Laboratory Reg. No. N12/034261DUP

Client Sample Ref. Duplicate Matrix Yabbie Description Duplicate Sample Extraction Date 24-Jan-13 Analysis Date 19-Feb-13

	Level	Labelled Surrogate
	ng/g	recovery
PFPeA	<5	
PFHxA	<5	75
PFHpA	<2	
PFOA	39	79
PFNA	4.1	66
PFDA	2.7	95
PFUdA	5.1	120
PFDoA	6.0	71
PFOS	3800	88

Laboratory Reg. No. N12/034261SPK

Client Sample Ref. Spike Matrix Yabbie Description Spiked sample (45 ng/g) Extraction Date 24-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Surrogate recovery
PFPeA PFHxA	44 61	103
PFHpA PFOA	54 90	105
PFNA	64	75
PFDA	61	61
PFUdA	66	60
PFDoA	70	32
PFOS	2200	99

National Measurement Institute

CERTIFICATE OF ANALYSIS # DAU13_038			
Client	Cardno Ecology Lab L9, 203 Pacific Highway, St I	Job No.	CARD20/121218
	NSW, 2065	Sampled by	Client
		Date Sampled	not specified
Contact	Marcus Lincoln-Smith	Date Received	18-Dec-12
The results relate only to the sample(s) tested.			

Method	AUTL_07	Date Reported	21-Feb-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

aun

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

Sample Details : Job No. CARD20/121218			
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description
N12/034248	CEL12	Mosquito Fish	Freshwater. Dec 2012
N12/034249	CEL13	Mosquito Fish	Freshwater. Dec 2012
N12/034250	CEL14	Mosquito Fish	Freshwater. Dec 2012
N12/034258	CEL22	Mosquito Fish	Freshwater. Dec 2012
N12/034259	CEL23	Mosquito Fish	Freshwater. Dec 2012
N12/034260	CEL24	Mosquito Fish	Freshwater. Dec 2012
N12/034259DUP	Duplicate	Mosquito Fish	Duplicate Sample
N12/034259SPK	Spike	Mosquito Fish	Spiked sample (44 ng/g)
BLK L845	Blank	Blank	Laboratory Blank
Project Details			
Project Name	Fiskville Study		
Project Number	NA49913-034		
Кеу			
Analytes			Surrogate
PFPeA	Perfluoro-n-pentanoic acio	1	
PFHxA	Perfluoro-n-hexanoic acid		Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid
PFHpA	Perfluoro-n-heptanoic acio	ł	
PFOA	Perfluoro-n-octanoic acid		Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid
PFNA	Perfluoro-n-nonanoic acid		Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]nonanoic acid
PFDA	Perfluoro-n-decanoic acid		Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid
PFUdA	Perfluoro-n-undecanoic ac	cid	Perfluoro-n-[1,2- ¹³ C ₂]undecanoic acid
PFDoA	Perfluoro-n-dodecanoic ad	cid	Perfluoro-n-[1,2- ¹³ C ₂]dodecanoic acid
PFOS	Perfluoro-n-octanesulfona	te	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanesulfonate
Units & Abbreviations			

ng/g < ns nanograms per gram level less than limit of reporting (LOR)

Surrogate Recovery percentage recovery for ¹³C₁₂ labelled surrogate standard

D Laboratory surrogate recovery outside normal acceptance criteria (25 - 125%)

Laboratory Reg. No. N12/034248

Client Sample Ref. CEL12 Matrix Mosquito Fish Description Freshwater. Dec 2012 Extraction Date 22-Jan-13 Analysis Date 19-Feb-13

	Level	Labelled Sur	rogate
	ng/g	recover	ry
PFPeA	<5		
PFHxA	<5	192	Þ
PFHpA	2.5		
PFOA	4.5	102	
PFNA	6.4	81	
PFDA	12	270	þ
PFUdA	36	392	þ
PFDoA	3.7	318	þ
PFOS	50000	65	

Laboratory Reg. No. N12/034249

Client Sample Ref. CEL13 Matrix Mosquito Fish Description Freshwater. Dec 2012 Extraction Date 22-Jan-13 Analysis Date 19-Feb-13

	Level Labelled Surrogate		rogate
	ng/g	recove	ry
PFPeA	<5		
PFHxA	<5	182	þ
PFHpA	<2		
PFOA	2.3	102	
PFNA	2.3	88	
PFDA	6.3	131	þ
PFUdA	25	274	þ
PFDoA	2.6	196	þ
PFOS	30000	82	

Laboratory Reg. No. N12/034250

Client Sample Ref. CEL14 Matrix Mosquito Fish Description Freshwater. Dec 2012 Extraction Date 22-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Sur recover	rrogate ry
PFPeA PFHxA	<5 <5	286	
PFHpA PFOA	2.5 3.0	112	
PFNA	5.3	144	þ
PFDA	9.0	199	þ
PFUdA	40	412	þ
PFDoA	3.8	290	þ
PFOS	36000	85	

Laboratory Reg. No. N12/034258

Client Sample Ref. CEL22 Matrix Mosquito Fish Description Freshwater. Dec 2012 Extraction Date 22-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Sur recove	rogate ry
PFPeA PFHxA	<5 12	236	전
PFHpA PFOA	11 11	88	
PFNA	<5	36	
PFDA	20	127	þ
PFUdA	58	227	þ
PFDoA	36	196	þ
PFOS	260000	40	

Laboratory Reg. No. N12/034259

Client Sample Ref. CEL23 Matrix Mosquito Fish Description Freshwater. Dec 2012 Extraction Date 22-Jan-13 Analysis Date 19-Feb-13

	Level	Labelled Sur	rogate
	ng/g	recover	ry
PFPeA	5.3		
PFHxA	10	240	Þ
PFHpA	8.5		
PFOA	9.0	94	
PFNA	<4	41	
PFDA	20	109	
PFUdA	46	236	þ
PFDoA	26	179	þ
PFOS	260000	39	

Laboratory Reg. No. N12/034260

Client Sample Ref. CEL24 Matrix Mosquito Fish Description Freshwater. Dec 2012 Extraction Date 22-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Sur recover	rogate ry
PFPeA PFHxA	<5 8.3	277	관
PFHpA PFOA	6.5 7.3	114	
PFNA	4.2	38	
PFDA	17	136	þ
PFUdA	52	229	þ
PFDoA	30	192	þ
PFOS	240000	36	

Laboratory Reg. No. N12/034259DUP

Client Sample Ref. Duplicate Matrix Mosquito Fish Description Duplicate Sample Extraction Date 22-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Sur recover	rogate ry
PFPeA PFHxA	<5 9.8	276	F
PFHpA PFOA	7.8 8.3	113	
PFNA	3.9	38	
PFDA	17	148	þ
PFUdA	40	271	þ
PFDoA	23	208	þ
PFOS	240000	38	

Laboratory Reg. No. N12/034259SPK

Client Sample Ref. Spike Matrix Mosquito Fish Description Spiked sample (44 ng/g) Extraction Date 22-Jan-13 Analysis Date 19-Feb-13

	Level	Labelled Surrogate	
	ng/g	Tecover	У
PFPeA	40		
PFHxA	63	262	þ
PFHpA	130		
PFOA	58	115	
PFNA	53	38	
PFDA	79	118	
PFUdA	110	219	þ
PFDoA	86	186	þ
PFOS	280000	36	

Laboratory Reg. No. BLK L845

Client Sample Ref. Blank Matrix Blank Description Laboratory Blank Extraction Date 22-Jan-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Surrogate recovery
PFPeA PFHxA	<0.4 <0.4	68
PFHpA PFOA	<0.4 <0.4	79
PFNA	<0.3	86
PFDA	<0.3	84
PFUdA	<0.5	121
PFDoA	<0.3	104
PFOS	<100	101

National Measurement Institute

CERTIFICATE OF ANALYSIS # DAU13_039			
Client	Cardno Ecology Lab L9, 203 Pacific Highway, St	Job No.	CARD20/121218
	NSW, 2065	Sampled by	Client
		Date Sampled	not specified
Contact	Marcus Lincoln-Smith	Date Received	18-Dec-12
The results relate only to the completed tested			
The results relate only to the sample(s) tested.			

Method	AUTL_07	Date Reported	22-Feb-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

tuur

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

Sample Details : Job No. CARD20/121218					
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description		
N12/034255	CEL19	Macrophyte	Freshwater. Dec 2012		
N12/034256	CEL20	Macrophyte	Freshwater. Dec 2012		
N12/034257	CEL21	Macrophyte	Freshwater, Dec 2012		
N12/034264	CEL28	Macrophyte	Freshwater, Dec 2012		
N12/034200	CEL29	Macrophyte	Freshwater, Dec 2012		
N12/034264DLIP	Duplicate	Macrophyte	Dunlicate Sample		
N12/034264SPK	Snike	Macrophyte	Sniked sample (45 ng/g)		
BLK I 849	Blank	Blank	Laboratory Blank		
BEINEO IO	Diam	Bidink			
Project Dotaile					
	Fisherille Oferster				
Project Name	FISKVIIIE Study				
Floject Nulliber	NA49913-034				
Kev					
Ameliates					
Analytes			Surrogate		
PFPeA	Perfluoro-n-pentanoic acid	1	Surrogate		
PFPeA PFHxA	Perfluoro-n-pentanoic acio Perfluoro-n-hexanoic acid	1	Surrogate Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid		
PFPeA PFHxA PFHpA	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid	1	Surrogate Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid		
PFPeA PFHxA PFHpA PFOA	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid	1	Surrogate Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid		
PFPeA PFHxA PFHpA PFOA PFNA	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid	1	Surrogate Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]nonanoic acid		
PFPeA PFHxA PFHpA PFOA PFNA PFDA	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid	1	Surrogate Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]nonanoic acid Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid		
PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-undecanoic acid	I I	SurrogatePerfluoro-n- $[1,2-^{13}C_2]$ hexanoic acidPerfluoro-n- $[1,2,3,4-^{13}C_4]$ octanoic acidPerfluoro-n- $[1,2,3,4,5-^{13}C_5]$ nonanoic acidPerfluoro-n- $[1,2-^{13}C_2]$ decanoic acidPerfluoro-n- $[1,2-^{13}C_2]$ undecanoic acid		
PFPeA PFHpA PFHpA PFOA PFNA PFDA PFUdA PFDoA	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-undecanoic acid Perfluoro-n-dodecanoic acid	I Sid	Surrogate Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]nonanoic acid Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid Perfluoro-n-[1,2- ¹³ C ₂]dodecanoic acid		
PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUdA PFDoA PFDoS	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-undecanoic acid Perfluoro-n-dodecanoic acid Perfluoro-n-octanesulfona	I I cid cid	SurrogatePerfluoro-n-[1,2- $^{13}C_2$]hexanoic acidPerfluoro-n-[1,2,3,4- $^{13}C_4$]octanoic acidPerfluoro-n-[1,2,3,4,5- $^{13}C_5$]nonanoic acidPerfluoro-n-[1,2- $^{13}C_2$]decanoic acidPerfluoro-n-[1,2- $^{13}C_2$]undecanoic acidPerfluoro-n-[1,2- $^{13}C_2$]dodecanoic acidPerfluoro-n-[1,2,3,4- $^{13}C_4$]octanesulfonate		
PFPeA PFHxA PFHpA PFOA PFDA PFDA PFUdA PFDoA PFOS Units & Abbreviations	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-undecanoic acid Perfluoro-n-dodecanoic acid	I Sid Sid	SurrogatePerfluoro-n- $[1,2-^{13}C_2]$ hexanoic acidPerfluoro-n- $[1,2,3,4-^{13}C_4]$ octanoic acidPerfluoro-n- $[1,2,3,4,5-^{13}C_5]$ nonanoic acidPerfluoro-n- $[1,2-^{13}C_2]$ decanoic acidPerfluoro-n- $[1,2-^{13}C_2]$ undecanoic acidPerfluoro-n- $[1,2-^{13}C_2]$ dodecanoic acidPerfluoro-n- $[1,2,3,4-^{13}C_4]$ octanesulfonate		
PFPeA PFHxA PFHpA PFOA PFNA PFDA PFDA PFDoA PFDoA PFOS Units & Abbreviations	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-undecanoic acid Perfluoro-n-dodecanoic acid Perfluoro-n-octanesulfona	I Sid Sid	SurrogatePerfluoro-n-[1,2- $^{13}C_2$]hexanoic acidPerfluoro-n-[1,2,3,4- $^{13}C_4$]octanoic acidPerfluoro-n-[1,2,3,4,5- $^{13}C_5$]nonanoic acidPerfluoro-n-[1,2- $^{13}C_2$]decanoic acidPerfluoro-n-[1,2- $^{13}C_2$]undecanoic acidPerfluoro-n-[1,2- $^{13}C_2$]dodecanoic acidPerfluoro-n-[1,2,3,4- $^{13}C_4$]octanesulfonate		
PFPeA PFHxA PFHpA PFOA PFNA PFDA PFDA PFDoA PFDoA PFOS Units & Abbreviations	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-undecanoic acid Perfluoro-n-dodecanoic acid Perfluoro-n-octanesulfona	i sid sid te (LOR)	SurrogatePerfluoro-n-[1,2- $^{13}C_2$]hexanoic acidPerfluoro-n-[1,2,3,4- $^{13}C_4$]octanoic acidPerfluoro-n-[1,2,3,4,5- $^{13}C_5$]nonanoic acidPerfluoro-n-[1,2- $^{13}C_2$]decanoic acidPerfluoro-n-[1,2- $^{13}C_2$]undecanoic acidPerfluoro-n-[1,2- $^{13}C_2$]dodecanoic acidPerfluoro-n-[1,2,3,4- $^{13}C_4$]octanesulfonate		

Surrogate Recovery percentage recovery for ¹³C₁₂ labelled surrogate standard

D Laboratory surrogate recovery outside normal acceptance criteria (25 - 125%)

Laboratory Reg. No. N12/034255

Client Sample Ref. CEL19 Matrix Macrophyte Description Freshwater. Dec 2012 Extraction Date 1-Feb-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Surrogate recovery
PFPeA PFHxA	6.2 5.7	79
PFHpA PFOA	<2 3.2	81
PFNA	<2	56
PFDA	<2	33
PFUdA	<2	43
PFDoA	<2	77
PFOS	1440	83

Laboratory Reg. No. N12/034256

Client Sample Ref. CEL20 Matrix Macrophyte Description Freshwater. Dec 2012 Extraction Date 1-Feb-13 Analysis Date 19-Feb-13

	Level	Labelled Sur	rrogate
	ng/g	recove	ry
PFPeA	<5		
PFHxA	5.6	98	
PFHpA	<2		
PFOA	<2	95	
PFNA	<2	98	
PFDA	<2	105	
PFUdA	<3	135	þ
PFDoA	<2	98	
PFOS	1240	82	

Laboratory Reg. No. N12/034257

Client Sample Ref. CEL21 Matrix Macrophyte Description Freshwater. Dec 2012 Extraction Date 1-Feb-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Sur recove	rogate ry
PFPeA PFHxA	<2 3.2	81	
PFHpA PFOA	<2 <2	88	
PFNA	<2	106	
PFDA	<2	101	
PFUdA	<2	133	þ
PFDoA	<2	99	
PFOS	440	80	

Laboratory Reg. No. N12/034264

Client Sample Ref. CEL28 Matrix Macrophyte Description Freshwater. Dec 2012 Extraction Date 1-Feb-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Surrogate recovery
PFPeA PFHxA	14 26	73
PFHpA PFOA	6.3 12	72
PFNA	<2	41
PFDA	<2	80
PFUdA	<2	106
PFDoA	<2	78
PFOS	6000	78
Laboratory Reg. No. N12/034265

Client Sample Ref. CEL29 Matrix Macrophyte Description Freshwater. Dec 2012 Extraction Date 1-Feb-13 Analysis Date 19-Feb-13

	Level	Labelled Sur	rogate
	ng/g	recover	ry
PFPeA	11		
PFHxA	23	105	
PFHpA	6.5		
PFOA	10	90	
PFNA	<2	50	
PFDA	<2	99	
PFUdA	<2	133	þ
PFDoA	<2	114	
PFOS	6800	80	

Laboratory Reg. No. N12/034266

Client Sample Ref. CEL30 Matrix Macrophyte Description Freshwater. Dec 2012 Extraction Date 1-Feb-13 Analysis Date 19-Feb-13

	Level ng/g	Labelled Surrogate recovery
PFPeA PFHxA	13 22	97
PFHpA PFOA	6.7 11	87
PFNA	<2	69
PFDA	<2	101
PFUdA	<2	105
PFDoA	<2	102
PFOS	3600	80

Laboratory Reg. No. N12/034264DUP

Client Sample Ref. Duplicate Matrix Macrophyte Description Duplicate Sample Extraction Date 1-Feb-13 Analysis Date 19-Feb-13

	Level	Labelled Surrogate
	ng/g	recovery
PFPeA	14	
PFHxA	23	91
PFHpA	5.7	
PFOA	9.8	90
PFNA	<2	55
PFDA	<2	87
PFUdA	<2	124
PFDoA	<2	97
PFOS	5000	82

Laboratory Reg. No. N12/034264SPK

Client Sample Ref. Spike Matrix Macrophyte Description Spiked sample (45 ng/g) Extraction Date 1-Feb-13 Analysis Date 19-Feb-13

	Level	Labelled Surrogate
	ng/g	recovery
PFPeA	67	
PFHxA	81	67
PFHpA	61	
PFOA	58	63
PFNA	55	44
PFDA	60	59
PFUdA	57	77
PFDoA	53	62
PFOS	4600	82

Laboratory Reg. No. BLK L849

Client Sample Ref. Blank Matrix Blank Description Laboratory Blank Extraction Date 1-Feb-13 Analysis Date 19-Feb-13

	Level	Labelled Surrogate
	ng/g	recovery
PFPeA	<0.7	
PFHxA	<0.9	28
PFHpA	<1	
PFOA	<1	31
PFNA	<1	33
PFDA	<1	30
PFUdA	<1	35
PFDoA	<1	28
PFOS	<80	90

National Measurement Institute

CERTIFICATE OF ANALYSIS # DAU13_061			
Client	Cardno Ecology Lab L9, 203 Pacific Highway, St I	Job No. ∟eonards	CARD20/130315
	NSW 2065	Sampled by	Client
		Date Sampled	not specified
Contact	Marcus Lincoln-Smith	Date Received	15-Mar-13
The results relate only to the sample(s) tested.			

Method	AUTL_07	Date Reported	8-Apr-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

aun

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

Sample Details : Job No. CARD20/130315			
Laboratory Reg. No.	Client Sample Ref.	Matrix Fish muscle	Description
N13/006930	CEL31 CEL32	Fish muscle	Freshwater, Dec 2012
N13/006931	CEL33	Fish muscle	Freshwater. Dec 2012
N13/006932	CEL34	Fish muscle	Freshwater. Dec 2012
N13/006930DUP	Duplicate	Fish muscle	Duplicate Sample
N13/006930SPK	Spike	Fish muscle	Spiked sample (97 ng/g, 78 ng/g for FTS)
BLK L854	Lab Blank	Lab Blank	Lab Blank
		1	
Droiget Detaile			
Project Details			
Project Name	Fiskville Study		
Project Number	NA49913-034		
Key			
Analytes			Surrogate
PFBA	Perfluoro-n-butanoic acid		Perfluoro-n-[1,2,3,4- ¹³ C ₄]butanoic acid
PFPeA	Perfluoro-n-pentanoic acid		
PFHxA	Perfluoro-n-hexanoic acid		Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Surrogate
PFHpA	Perfluoro-n-heptanoic acid		
PFOA	Perfluoro-n-octanoic acid		Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid
PFNA	Perfluoro-n-nonanoic acid		Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]nonanoic acid
PFDA	Perfluoro-n-decanoic acid		Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid
PFUdA	Perfluoro-n-undecanoic ac	id	Perfluoro-n-[1,2-13C2]undecanoic acid
PFDoA	Perfluoro-n-dodecanoic acid		Perfluoro-n-[1,2-13C2]dodecanoic acid
PFOS	Perfluoro-n-octanesulfonate		Perfluoro-n-[1,2,3,4-13C4]octanesulfonate
6:2 FTS	1H,1H,2H,2H-perfluoro-n-octane sulfonate		1H,1H,2H,2H-perfluoro-n-[1,2- ¹³ C ₂]octane sulfonate
Units & Abbreviations			
ng/g	nanograms per gram		
<	level less than limit of reporting	(LOR)	

Laboratory Reg. No. N13/006929

Client Sample Ref. CEL31 Matrix Fish muscle Description Freshwater. Dec 2012 Extraction Date 22-Mar-13 Analysis Date 3-Apr-13

	Level	Labelled Surrogate
	ng/g	recovery
PFBA	<10	45
PFPeA	<5	58
FITIKA	-5	
PFHpA	<5	
PFOA	<5	65
PFNA	<6	95
PFDA	<2	74
PFUdA	<2	99
PFDoA	<2	83
PFOS	<10	66
6:2 FTS	<2	81

Laboratory Reg. No. N13/006930

Client Sample Ref. CEL32 Matrix Fish muscle Description Freshwater. Dec 2012 Extraction Date 22-Mar-13 Analysis Date 3-Apr-13

	Level	Labelled Surrogate
	ng/g	recovery
PFBA	<10	58
PFPeA	<5	70
PFHxA	<5	
PFHpA	<5	
PFOA	<5	78
PFNA	<2	110
PFDA	<2	92
PFUdA	<2	108
PFDoA	<2	98
PFOS	25	82
6:2 FTS	<2	84

Laboratory Reg. No. N13/006931

Client Sample Ref. CEL33 Matrix Fish muscle Description Freshwater. Dec 2012 Extraction Date 22-Mar-13 Analysis Date 3-Apr-13

	Level	Labelled Surrogate
	ng/g	recovery
PFBA	<10	53
PFPeA PFHxA	<5 <5	66
PFHpA PFOA	<5 <5	77
PFNA	<2	120
PFDA	<2	84
PFUdA	<2	90
PFDoA	<2	95
PFOS	60	83
6:2 FTS	<2	115

Laboratory Reg. No. N13/006932

Client Sample Ref. CEL34 Matrix Fish muscle Description Freshwater. Dec 2012 Extraction Date 22-Mar-13 Analysis Date 3-Apr-13

	Level	Labelled Surrogate
	ng/g	recovery
PFBA	<10	67
PFPeA PEHxA	<5 <5	75
РЕНРА	<5	
PFOA	<5	72
PFNA	<2	105
PFDA	<2	98
PFUdA	<2	110
PFDoA	<2	100
PFOS	33	80
6:2 FTS	<2	100

Laboratory Reg. No. N13/006930DUP

Client Sample Ref. Duplicate Matrix Fish muscle Description Duplicate Sample Extraction Date 22-Mar-13 Analysis Date 3-Apr-13

	Level	Labelled Surrogate	
	ng/g	recovery	
PFBA	<10	75	
PFPeA	<5	70	
PFHxA	<5		
PFHpA	<5		
PFOA	<5	75	
PFNA	<7	103	
PFDA	<2	95	
PFUdA	<2	110	
PFDoA	<2	96	
PFOS	24	65	
6:2 FTS	<2	88	

Laboratory Reg. No. N13/006930SPK

Client Sample Ref. Spike Matrix Fish muscle Description Spiked sample (97 ng/g, 78 ng/g for FTS) Extraction Date 22-Mar-13 Analysis Date 3-Apr-13

	Level	Labelled Surrogate
	ng/g	recovery
PFBA	86	62
PFPeA PFHxA	93 99	75
PFHpA PFOA	110 92	79
PFNA	92	97
PFDA	88	94
PFUdA	85	98
PFDoA	97	90
PFOS	120	73
6:2 FTS	78	103

Laboratory Reg. No. BLK L854

Client Sample Ref. Lab Blank Matrix Lab Blank Description Lab Blank Extraction Date 22-Mar-13 Analysis Date 3-Apr-13

	Level	Labelled Surrogate
	ng/g	recovery
PFBA	<6	62
PFPeA	<1	66
PFHxA	<1	
PFHpA	<1	
PFOA	<1	83
PFNA	<1	85
PFDA	<1	86
PFUdA	<2	84
PFDoA	<0.9	67
PFOS	<4	65
6:2 FTS	<0.08	93

National Measurement Institute

CERTIFICATE OF ANALYSIS # DAU13_116			
Client	Cardno Ecology Lab	Job No.	CARD20/130527
	NSW 2065	Sampled by	Client
		Date Sampled	5/13-Dec-2012
Contact	Marcus Lincoln-Smith	Date Received	27-May-2013
The results relate only to the sample(s) tested.			

Method	AUTL_07	Date Reported	21-Jun-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

aun

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

Sample Details : Job No. CARD20/130527			
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description
N13/014202X	PFM5A	Fish muscle	Fish Muscle 13/12/2012
N13/014203X	PFM6A	Fish muscle	Fish Muscle 13/12/2012
N13/014204X	PFM8A	Fish muscle	Fish Muscle 13/12/2012
N13/014205X	PFM9A	Fish muscle	Fish Muscle 13/12/2012
N13/014206X	PFM10A	Fish muscle	Fish Muscle 13/12/2012
N13/014207X	PFM11A	Fish muscle	Fish Muscle 13/12/2012
N13/014208X	PFM12A	Fish muscle	Fish Muscle 13/12/2012
N13/014209X	PFM14A	Fish muscle	Fish Muscle 13/12/2012
N13/014210X	CEL022	Fish muscle	Fish Muscle 5/12/2012
BLK L873	Lab Blank	Lab Blank	Lab Blank
Project Details			
Project Name	Fiskville Study		
Project Number	NA49913-034		

Key		
Analytes		Surrogate
PFBA	Perfluoro-n-butanoic acid	Perfluoro-n-[1,2,3,4- ¹³ C ₄]butanoic acid
PFPeA	Perfluoro-n-pentanoic acid	
PFHxA	Perfluoro-n-hexanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Surrogate
PFHpA	Perfluoro-n-heptanoic acid	
PFOA	Perfluoro-n-octanoic acid	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid
PFNA	Perfluoro-n-nonanoic acid	Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]nonanoic acid
PFDA	Perfluoro-n-decanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid
PFOS	Perfluoro-n-octanesulfonate	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanesulfonate
6:2 FTS	1H,1H,2H,2H-perfluoro-n-octane sulfonate	1H,1H,2H,2H-perfluoro-n-[1,2- ¹³ C ₂]octane sulfonate
Units & Abbreviations	5	
ng/g	nanograms per gram	
<	level less than limit of reporting (LOR)	
þ	surrogate recovery outside normal method range (25-	125%)

Laboratory Reg. No. N13/014202X

Client Sample Ref. PFM5A Matrix Fish muscle Description Fish Muscle 13/12/2012 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level	Labelled Surrogate	
	ng/g	recove	ry
PFBA	<2	16	þ
PFPeA PFHxA	<0.5 <0.5	49	
PFHpA PFOA	<0.5 <0.5	42	
PFNA	<2	6	þ
PFDA	9.0	22	þ
PFOS	5990	13	þ
6:2 FTS	4.8	52	

Laboratory Reg. No. N13/014203X

Client Sample Ref. PFM6A Matrix Fish muscle Description Fish Muscle 13/12/2012 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level ng/g	Labelled Sur recove	rrogate ry
PFBA	<2	23	þ
PFPeA PFHxA	<0.5 <0.5	55	
PFHpA PFOA	<0.5 <0.5	50	
PFNA	<2	9	þ
PFDA	8.1	31	
PFOS	5520	17	þ
6:2 FTS	4.4	82	

Laboratory Reg. No. N13/014204X

Client Sample Ref. PFM8A Matrix Fish muscle Description Fish Muscle 13/12/2012 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level	Labelled Surrogate	
	ng/g	Tecove	у
PFBA	<2	20	þ
PFPeA PFHxA	<0.5 <0.5	59	
PFHpA PFOA	<0.5 <0.5	45	
PFNA	<2	8	þ
PFDA	7.7	26	
PFOS	6450	14	þ
6:2 FTS	4.9	80	

Laboratory Reg. No. N13/014205X

Client Sample Ref. PFM9A Matrix Fish muscle Description Fish Muscle 13/12/2012 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level	Labelled Surrogate	
	ng/g	recover	ry
PFBA	<2	15	þ
PFPeA PFHxA	<0.5 <0.5	50	
PFHpA PFOA	<0.5 <0.6	38	
PFNA	<2	7	þ
PFDA	8.2	23	þ
PFOS	7440	12	þ
6:2 FTS	4.5	52	

Laboratory Reg. No. N13/014206X

Client Sample Ref. PFM10A Matrix Fish muscle Description Fish Muscle 13/12/2012 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level	Labelled Surrogate	
	ng/g	Tecove	y
PFBA	<2	19	þ
PFPeA	<0.5		
PFHxA	<0.5	54	
PFHpA	<0.5		
PFOA	<0.5	42	
PFNA	<2	7	þ
PFDA	10	29	
PFOS	9600	13	þ
6:2 FTS	3.4	60	

Laboratory Reg. No. N13/014207X

Client Sample Ref. PFM11A Matrix Fish muscle Description Fish Muscle 13/12/2012 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level ng/g	Labelled Sur	rrogate rv
PFBA	<2	17	þ
PFPeA PFHxA	<0.5 <0.5	52	
PFHpA PFOA	<0.5 <0.5	42	
PFNA	<2	6	þ
PFDA	6.9	22	þ
PFOS	7940	11	þ
6:2 FTS	3.9	51	

Laboratory Reg. No. N13/014208X

Client Sample Ref. PFM12A Matrix Fish muscle Description Fish Muscle 13/12/2012 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level	Labelled Sur	rrogate
	ng/g	Tecove	У
PFBA	<2	20	þ
PFPeA	<0.5		
	<0 E	55	
РГПХА	<0.5	55	
PFHpA	<0.5		
PFOA	<0.5	47	
110/1			1
PFNA	<2	7	þ
PEDA	9.6	27	
TIDA	5.0	21	
PFOS	8870	14	þ
6.2 FTS	3.0	70	
0.2 F13	5.9	70	

Laboratory Reg. No. N13/014209X

Client Sample Ref. PFM14A Matrix Fish muscle Description Fish Muscle 13/12/2012 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level ng/g	Labelled Sur recove	rrogate ry
PFBA	<2	22	þ
PFPeA PFHxA	<0.5 <0.5	67	
PFHpA PFOA	<0.5 <0.5	52	
PFNA	<2	9	þ
PFDA	7.7	37	
PFOS	7100	16	þ
6:2 FTS	5.3	79	

Laboratory Reg. No. N13/014210X

Client Sample Ref. CEL022 Matrix Fish muscle Description Fish Muscle 5/12/2012 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level ng/g	Labelled Sur recove	rrogate ry
PFBA	<2	23	þ
PFPeA PFHxA	<0.5 <0.5	75	
PFHpA PFOA	<0.5 <0.5	42	
PFNA	<0.5	48	
PFDA	<0.5	19	ħ
PFOS	41	33	
6:2 FTS	<0.1	78	

Laboratory Reg. No. BLK L873

Client Sample Ref. Lab Blank Matrix Lab Blank Description Lab Blank Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level	Labelled Sur	rogate
	ng/g	recove	ry
PFBA	<2	13	þ
PFPeA PFHxA	<0.5 <0.5	40	
PFHpA PFOA	<0.5 <0.5	26	
PFNA	<0.5	18	þ
PFDA	<0.5	6	þ
PFOS	<1	26	
6:2 FTS	<0.1	62	

 1C
 uadrant Drive, Waiwhetu
 T
 64
 4
 5708800

 P.O. Box 31 242, Lower Hutt 5010
 F
 64
 4
 5708176

 Wellington, New Zealand
 W
 www.asurequal

Wellington, New Zealand

www.asurequality.com

Certificate of Analysis

Date Issued:	28 June 2013
Client:	Cardno LanePiper Building 2 154 Highbury Road Burwood Victoria 3125
Attention:	Marcus Lincoln Smith
AsureQuality Lab. Reference:	134672
Sample Type(s):	Fish Muscle
Analysis:	Perfluorinated Compounds (PFCs)
Method:	In-House LC-MS/MS Method

Results are reported as nanograms per gram (ng/g), on an as received basis to two significant figures. The LOR value is reported to two significant figures. Results have been corrected for recovery.

Unless requested, samples will be disposed of eight weeks from the date of this report.

Comments:

The requirement for dilution has resulted in a higher than normal LOR for PFOS.

Phil Bridgen Senior Scientist AsureQuality Limited

Laboratory Reference: 134672-1

Sample Identification: PFM5B - Fish Muscle

Date Received: 06 Jun 2013		Date Analysed: 17 Jun 2013	
Date Extracted: 14 Jun 2013			
Analyte ¹	$\operatorname{Conc.}^{2}(\operatorname{ng/g})$	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	11	1.0	
Perfluorooctanesulfonic acid (PFOS) ³	5500	400	
Perfluorodecanesulfonic acid (PFDS)	12	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluorohentanoic acid (PFHnA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	2.0	
Perfluorodecanoic acid (PFDA)	7.2	2.0	
Perfluoroundecanoic acid (PFUnA)	18	1.0	Е
Perfluorododecanoic acid (PFDoA)	ND	2.0	
Perfluorotridecanoic acid (PFTrDA)	2.1	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	2.0	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTS)	2.4	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	23	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer.	LOR: Limit of Reporting		
2 Results are reported on an as received basis	ND: Not Detected		
³ The result for PFOS also includes its salts and	E: Estimated value		
perfluorooctanesulfonyl fluoride (PFOSF).			

Lab Analyst: CFH/CA

Data Analyst: CFH

Laboratory Reference: 134672-2

Sample Identification: PFM6B - Fish Muscle

D + E + + 1 + 14 = -2012			Date Analysed: 17 Jun 2013
Date Extracted: 14 Jun 2013			
Analyte ¹	Conc. ² (ng/g)	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	6.5	1.0	
Perfluorooctanesulfonic acid (PFOS) ³	4200	400	
Perfluorodecanesulfonic acid (PFDS)	11	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	2.0	
Perfluorodecanoic acid (PFDA)	5.3	2.0	
Perfluoroundecanoic acid (PFUnA)	14	1.0	
Perfluorododecanoic acid (PFDoA)	ND	2.0	
Perfluorotridecanoic acid (PFTrDA)	1.6	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	2.0	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	2.4	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	20	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer.	LOR: Limit of Reporting	g	
² Results are reported on an as received basis.	ND: Not Detected	-	
³ The result for PFOS also includes its salts and			
perfluorooctanesulfonyl fluoride (PFOSF)			

Lab Analyst: CFH/CA

Data Analyst: CFH

Laboratory Reference: 134672-3

Sample Identification: PFM8B - Fish Muscle

Date Received: 06 Jun 2013		Date Analysed: 17 Jun 2013	
Date Extracted: 14 Jun 2013			
Analyte ¹	Conc. ² (ng/g)	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	15	1.0	
Perfluorooctanesulfonic acid (PFOS) ³	5600	400	
Perfluorodecanesulfonic acid (PFDS)	15	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	2.0	
Perfluorodecanoic acid (PFDA)	6.2	2.0	
Perfluoroundecanoic acid (PFUnA)	20	1.0	
Perfluorododecanoic acid (PFDoA)	ND	2.0	
Perfluorotridecanoic acid (PFTrDA)	2.4	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	2.5	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	3.1	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	26	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer.	LOR: Limit of Reporting	g	
² Results are reported on an as received basis.	ND: Not Detected	-	
³ The result for PFOS also includes its salts and			
perfluorooctanesulfonyl fluoride (PFOSF)			

Lab Analyst: CFH/CA

Data Analyst: CFH

Laboratory Reference: 134672-4

Sample Identification: PFM9B - Fish Muscle

		Date Analysed: 17 Jun 2013	
Date Extracted: 14 Jun 2013			
Analyte ¹	Conc. ² (ng/g)	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	16	1.0	
Perfluorooctanesulfonic acid (PFOS) ³	6800	400	
Perfluorodecanesulfonic acid (PFDS)	15	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	2.0	
Perfluorodecanoic acid (PFDA)	7.3	2.0	
Perfluoroundecanoic acid (PFUnA)	23	1.0	
Perfluorododecanoic acid (PFDoA)	ND	2.0	
Perfluorotridecanoic acid (PFTrDA)	2.4	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	2.8	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	2.4	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	30	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer.	LOR: Limit of Reporting	g	
² Results are reported on an as received basis.	ND: Not Detected	-	
³ The result for PFOS also includes its salts and			
perfluorooctanesulfonyl fluoride (PFOSF)			

Lab Analyst: CFH/CA

Data Analyst: CFH

Laboratory Reference: 134672-5

Sample Identification: PFM10B - Fish Muscle

Date Received: 06 Jun 2013Date Analysed: 17 Jun 2013Date Extracted: 14 Jun 2013			d: 17 Jun 2013
Analyte ¹	Conc. ² (ng/g)	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	9.4	1.0	
Perfluorooctanesulfonic acid (PFOS) ³	8800	400	
Perfluorodecanesulfonic acid (PFDS)	22	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	2.0	
Perfluorodecanoic acid (PFDA)	11	2.0	
Perfluoroundecanoic acid (PFUnA)	35	1.0	Е
Perfluorododecanoic acid (PFDoA)	2.4	2.0	
Perfluorotridecanoic acid (PFTrDA)	4.0	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	1.9	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	3.2	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	23	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer.	LOR: Limit of Reporting		
² Results are reported on an as received basis.	ND: Not Detected		
³ The result for PFOS also includes its salts and perfluorooctanesulfonyl fluoride (PFOSF).	E: Estimated value		

Lab Analyst: CFH/CA

Data Analyst: CFH

Laboratory Reference: 134672-6

Sample Identification: PFM11B - Fish Muscle

Date Received: 06 Jun 2013		Date Analysed: 17 Jun 2013	
Date Extracted: 14 Jun 2013			
Analyte ¹	Conc. ² (ng/g)	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	13	1.0	
Perfluorooctanesulfonic acid (PFOS) ³	6600	400	
Perfluorodecanesulfonic acid (PFDS)	20	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	2.0	
Perfluorodecanoic acid (PFDA)	8.1	2.0	
Perfluoroundecanoic acid (PFUnA)	26	1.0	
Perfluorododecanoic acid (PFDoA)	2.4	2.0	
Perfluorotridecanoic acid (PFTrDA)	4.5	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	2.7	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
IH,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	1.3	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	32	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer.	LOR: Limit of Reporting		
² Results are reported on an as received basis.	ND: Not Detected		
³ The result for PFOS also includes its salts and			
perfluorooctanesulfonyl fluoride (PFOSF).			

Lab Analyst: CFH/CA

Data Analyst: CFH

Laboratory Reference: 134672-7

Sample Identification: PFM12B - Fish Muscle

Date Received: 06 Jun 2013		Date Analysed: 17 Jun 2013	
Date Extracted: 14 Jun 2013			
Analyte ¹	$\operatorname{Conc.}^2(\operatorname{ng/g})$	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	15	1.0	
Perfluorooctanesulfonic acid (PFOS) ³	9900	400	
Perfluorodecanesulfonic acid (PFDS)	22	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	2.0	
Perfluorodecanoic acid (PFDA)	13	2.0	
Perfluoroundecanoic acid (PFUnA)	42	1.0	
Perfluorododecanoic acid (PFDoA)	2.7	2.0	
Perfluorotridecanoic acid (PFTrDA)	4.8	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	2.2	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	1.7	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	25	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer.	LOR: Limit of Reporting	r,	
² Results are reported on an as received basis.	ND: Not Detected	-	
³ The result for PFOS also includes its salts and			
perfluorooctanesulfonyl fluoride (PFOSF).			

Lab Analyst: CFH/CA

Data Analyst: CFH

Laboratory Reference: 134672-8

Sample Identification: PFM14B - Fish Muscle

Date Received: 06 Jun 2013		Date Analysed: 17 Jun 2013	
Date Extracted: 14 Jun 2013			
Analyte ¹	$\operatorname{Conc.}^{2}(\operatorname{ng/g})$	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	8.8	1.0	
Perfluorooctanesulfonic acid (PFOS) ³	6200	400	
Perfluorodecanesulfonic acid (PFDS)	15	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	2.0	
Perfluorodecanoic acid (PFDA)	6.3	2.0	
Perfluoroundecanoic acid (PFUnA)	24	1.0	
Perfluorododecanoic acid (PFDoA)	ND	2.0	
Perfluorotridecanoic acid (PFTrDA)	2.8	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	1.7	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	2.3	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	24	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer.	LOR: Limit of Reporting		
² Results are reported on an as received basis.	ND: Not Detected		
³ The result for PFOS also includes its salts and			
perfluorooctanesulfonyl fluoride (PFOSF).			

Lab Analyst: CFH/CA

Data Analyst: CFH

Laboratory Reference: 134672-BL

Sample Identification: Laboratory Blank

Date Received: Not Applicable Date Extracted: 14 Jun 2013		Date Analysed: 17 Jun 2013	
Analyte ¹	Conc. ² (ng/g)	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	ND	1.0	
Perfluorooctanesulfonic acid (PFOS) ³	ND	2.0	
Perfluorodecanesulfonic acid (PFDS)	ND	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	2.0	
Perfluorodecanoic acid (PFDA)	ND	2.0	
Perfluoroundecanoic acid (PFUnA)	ND	1.0	
Perfluorododecanoic acid (PFDoA)	ND	2.0	
Perfluorotridecanoic acid (PFTrDA)	ND	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	ND	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	ND	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	ND	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer	LOR: Limit of Reporting	g	
² The results are calculated using the average weight of samples in this batch	ND: Not Detected		
³ The result for PFOS also includes its salts and			
perfluorooctanesulfonyl fluoride (PFOSF).			

Lab Analyst: CFH/CA

Data Analyst: CFH

National Measurement Institute

CERTIFICATE OF ANALYSIS # DAU13_152			
Client	Cardno Ecology Lab L9. 203 Pacific Highway. St L	Job No.	CARD20/130711
	NSW 2065	Sampled by	Client
		Date Sampled	4-Dec-2012
Contact	Marcus Lincoln-Smith	Date Received	11-Jul-2013
The results relate only to the sample(s) tested.			

Method	AUTL_07	Date Reported	23-Jul-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

aur

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

Sample Details : Job No. CARD20/130711			
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description
N13/017964X	PFM7	Fish muscle	Fish Muscle 4/12/2012
N13/017965X	PFM13	Fish muscle	Fish Muscle 4/12/2012
N13/017966X	PFM15	Fish muscle	Fish Muscle 4/12/2012
N13/017967X	PFM16	Fish muscle	Fish Muscle 4/12/2012
N13/017968X	PFM17	Fish muscle	Fish Muscle 4/12/2012
N13/017969X	PFM18	Fish muscle	Fish Muscle 4/12/2012
N13/017970X	PFM19	Fish muscle	Fish Muscle 4/12/2012
N13/017971X	PFM20	Fish muscle	Fish Muscle 4/12/2012
N13/017972X	PFM21	Fish muscle	Fish Muscle 4/12/2012
BLK I 884	Lah Blank	Lah Blank	Lah Blank

Project Details

Project Name Project Number Fiskville Study NA49913-034

Key		
Analytes		Surrogate
PFPeA PFHxA	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Surrogate
PFHpA PFOA	Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid
PFNA	Perfluoro-n-nonanoic acid	Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]nonanoic acid
PFDA	Perfluoro-n-decanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid
PFUdA	Perfluoro-n-undecanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]undecanoic acid
PFDoA	Perfluoro-n-dodecanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]dodecanoic acid
PFOS	Perfluoro-n-octanesulfonate	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanesulfonate
6:2 FTS	1H,1H,2H,2H-perfluoro-n-octane sulfonate	1H,1H,2H,2H-perfluoro-n-[1,2- ¹³ C ₂]octane sulfonate
Units & Abbreviations	6	
ng/g < FJ	nanograms per gram level less than limit of reporting (LOR) surrogate recovery outside normal method range (25-1	25%)

Laboratory Reg. No. N13/017964X

Client Sample Ref. PFM7 Matrix Fish muscle Description Fish Muscle 4/12/2012 Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate recovery	
	ng/g		
PFPeA	<0.5		
PFHxA	<0.5	76	
PFHpA	<0.5		
PFOA	<0.5	79	
PFNA	<1	9	þ
PFDA	7.6	58	
PFUdA	26	49	
PFDoA	<2	20	þ
PFOS	7600	18	þ
6:2 FTS	2.6	77	

Laboratory Reg. No. N13/017965X

Client Sample Ref. PFM13 Matrix Fish muscle Description Fish Muscle 4/12/2012 Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate	
	ng/g	recove	ry
PFPeA	<0.5		
PFHxA	<0.5	96	
PFHpA	<0.5		
PFOA	<0.5	96	
PFNA	<1	12	þ
PFDA	5.1	71	
PFUdA	18	50	
PFDoA	<2	18	þ
PFOS	7000	19	þ
6:2 FTS	3.4	69	

Laboratory Reg. No. N13/017966X

Client Sample Ref. PFM15 Matrix Fish muscle Description Fish Muscle 4/12/2012 Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate	
	ng/g	recover	ry
PFPeA	<0.5 <0.5	01	
PFHpA PFOA	<0.5 <0.5 <0.5	85	
PFNA	<1	10	þ
PFDA	4.9	63	
PFUdA	21	45	
PFDoA	<2	16	þ
PFOS	8300	17	þ
6:2 FTS	2.4	70	

Laboratory Reg. No. N13/017967X

Client Sample Ref. PFM16 Matrix Fish muscle Description Fish Muscle 4/12/2012 Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate	
	ng/g	recovery	
PFPeA	<0.5	100	
PFHxA	<0.5	106	
PFHpA	<0.5		
PFOA	<0.5	95	
PFNA	<1	12	þ
PFDA	4.8	72	
PFUdA	24	47	
PFDoA	<2	13	þ
PFOS	6700	21	þ
6:2 FTS	3.4	63	

Laboratory Reg. No. N13/017968X

Client Sample Ref. PFM17 Matrix Fish muscle Description Fish Muscle 4/12/2012 Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate recovery	
	ng/g		
PFPeA	<0.5		
PFHxA	<0.5	80	
PFHpA	<0.5		
PFOA	<0.5	79	
PFNA	<1	10	þ
PFDA	6.2	61	
PFUdA	24	43	
PFDoA	<2	14	þ
PFOS	8000	17	þ
6:2 FTS	4.3	69	

Laboratory Reg. No. N13/017969X

Client Sample Ref. PFM18 Matrix Fish muscle Description Fish Muscle 4/12/2012 Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate recovery	
	ng/g		
PFPeA	<0.5		
PFHxA	<0.5	80	
PFHpA	<0.5		
PFOA	<0.5	73	
PFNA	<1	9	þ
PFDA	6.5	52	
PFUdA	20	37	
PFDoA	<2	12	þ
PFOS	7300	16	þ
6:2 FTS	4.2	63	

Laboratory Reg. No. N13/017970X

Client Sample Ref. PFM19 Matrix Fish muscle Description Fish Muscle 4/12/2012 Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate	
	ng/g	recovery	
PFPeA	<0.5		
PFHxA	<0.5	79	
PFHpA	<0.5		
PFOA	<0.5	67	
PFNA	<2	9	þ
PFDA	5.4	44	
PFUdA	14	26	
PFDoA	<2	8	þ
PFOS	5500	17	þ
6:2 FTS	5.3	66	

Laboratory Reg. No. N13/017971X

Client Sample Ref. PFM20 Matrix Fish muscle Description Fish Muscle 4/12/2012 Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate	
	ng/g	recovery	
PFPeA	<0.5		
PFHxA	<0.5	81	
PFHpA	<0.5		
PFOA	<0.5	82	
PFNA	<1	11	þ
PFDA	4.8	69	
PFUdA	17	44	
PFDoA	<2	20	þ
PFOS	5400	22	þ
6:2 FTS	4.9	70	

Laboratory Reg. No. N13/017972X

Client Sample Ref. PFM21 Matrix Fish muscle Description Fish Muscle 4/12/2012 Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate	
	ng/g	recovery	
PFPeA	<0.5		
PFHxA	<0.5	107	
PFHpA	<0.5		
PFOA	<0.5	100	
PFNA	<1	15	þ
PFDA	4.3	94	
PFUdA	15	69	
PFDoA	<2	31	
PFOS	5800	29	
6:2 FTS	4.4	111	

Laboratory Reg. No. BLK L884

Client Sample Ref. Lab Blank Matrix Lab Blank Description Lab Blank Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate	
	ng/g	recovery	
PFPeA PFHxA	<0.5 <0.5	93	
PFHpA PFOA	<0.5 <0.5	55	
PFNA	<1	28	
PFDA	<0.5	9	þ
PFUdA	<2	4	þ
PFDoA	<2	2	þ
PFOS	<0.5	20	þ
6:2 FTS	<0.5	25	

National Measurement Institute

CERTIFICATE OF ANALYSIS # DAU13_153				
Client	Cardno Ecology Lab	Job No.	CARD20/130711	
	NSW 2065	Sampled by	Client	
		Date Sampled	not specified	
Contact	Marcus Lincoln-Smith	Date Received	18-Dec-2012	
The results relate only to the sample(s) tested.				

Method	AUTL_07	Date Reported	23-Jul-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

aur

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

Sample Details : Job No. CARD20/130711					
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description		
N12/034240X	CEL04	Fish muscle	Repeat of Freshwater. Dec 2012		
N12/034242X	CEL06	Fish muscle	Repeat of Freshwater. Dec 2012		
Project Details					
Project Name	Fiskville Study				
Project Number	NA49913-034				
Kev					
Analytes			Surrogate		
PFPeA	Perfluoro-n-pentanoic acid				
PFHxA	Perfluoro-n-hexanoic acid		Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Surrogate		
PFHpA	Perfluoro-n-heptanoic acid				
PFOA	Perfluoro-n-octanoic acid		Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid		
PFNA	Perfluoro-n-nonanoic acid		Perfluoro-n-[1,2,3,4,5- $^{13}C_5$]nonanoic acid		
PFDA	Perfluoro-n-decanoic acid		Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid		
PFUdA	Perfluoro-n-undecanoic ac	id	Perfluoro-n-[1,2- ¹³ C ₂]undecanoic acid		
PFDoA	Perfluoro-n-dodecanoic ac	id	Perfluoro-n-[1,2- ¹³ C ₂]dodecanoic acid		
PFOS	Perfluoro-n-octanesulfonat	e	Perfluoro-n-[1,2,3,4-13C4]octanesulfonate		
6:2 FTS	1H,1H,2H,2H-perfluoro-n-c	octane sulfonate	1H,1H,2H,2H-perfluoro-n-[1,2- ¹³ C ₂]octane sulfonate		
Units & Abbreviations					
ng/g	nanograms per gram				
<	level less than limit of reporting	(LOR)			
h ¹	surrogate recovery outside norm	nal method range (25-1	25%)		

Laboratory Reg. No. N12/034240X

Client Sample Ref. CEL04 Matrix Fish muscle Description Repeat of Freshwater. Dec 2012 Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate	
	ng/g	recovery	
PFPeA PFHxA	<0.5 <0.5	88	
PFHpA PFOA	<0.5 <0.5	58	
PFNA	<1	10	þ
PFDA	10	20	þ
PFUdA	43	12	þ
PFDoA	3.2	6	þ
PFOS	15000	13	þ
6:2 FTS	4.7	35	

Laboratory Reg. No. N12/034242X

Client Sample Ref. CEL06 Matrix Fish muscle Description Repeat of Freshwater. Dec 2012 Extraction Date 12-Jul-13 Analysis Date 19-Jul-13

	Level	Labelled Surrogate	
	ng/g	recovery	
PFPeA	<0.5	22	
PFHxA	<0.5	86	
PFHpA	<0.5		
PFÓA	<0.5	63	
PFNA	<1	11	þ
PFDA	12	34	
PFUdA	40	20	þ
PFDoA	3.5	8	þ
PFOS	15000	18	þ
6:2 FTS	3.3	41	

National Measurement Institute

CERTIFICATE OF ANALYSIS # DAU13_117				
Client	Cardno Ecology Lab L9, 203 Pacific Highway, St I	Job No.	CARD20/130527	
	NSW 2065	Sampled by	Client	
		Date Sampled	27-Mar-2013	
Contact	Marcus Lincoln-Smith	Date Received	27-May-2013	
The results relate only to the sample(s) tested.				

Method	AUTL_07	Date Reported	21-Jun-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

aun

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

Sample Details : Job No. CARD20/130527					
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description		
N13/014211X	CEL035	Fish muscle	Fish Muscle 27/03/2013		
N13/014212X	CEL037	Fish muscle	Fish Muscle 27/03/2013		
N13/014213X	CEL039	Fish muscle	Fish Muscle 27/03/2013		
N13/014214X	CEL041	Fish muscle	Fish Muscle 27/03/2013		
N13/014209X SPK	Spike	Fish muscle	Spiked sample (21 ng/g, 17 ng/g for 6:2FTS)		
Project Details					
Project Name	Fiskville Study				
Project Number	NA49913-034				
1.					
ney					
Analytes			Surrogate		
Analytes PFBA	Perfluoro-n-butanoic acid		Surrogate Perfluoro-n-[1,2,3,4- ¹³ C ₄]butanoic acid		
Analytes PFBA PFPeA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid	I	Surrogate Perfluoro-n-[1,2,3,4- ¹³ C ₄]butanoic acid		
Analytes PFBA PFPeA PFHxA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acic Perfluoro-n-hexanoic acid	1	SurrogatePerfluoro-n-[1,2,3,4- $^{13}C_4$]butanoic acidPerfluoro-n-[1,2- $^{13}C_2$]hexanoic acid Surrogate		
Analytes PFBA PFPeA PFHxA PFHpA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid	1	Surrogate Perfluoro-n-[1,2,3,4- ¹³ C ₄]butanoic acid Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Surrogate		
Analytes PFBA PFPeA PFHxA PFHpA PFOA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid	 	SurrogatePerfluoro-n- $[1,2,3,4-^{13}C_4]$ butanoic acidPerfluoro-n- $[1,2-^{13}C_2]$ hexanoic acid SurrogatePerfluoro-n- $[1,2,3,4-^{13}C_4]$ octanoic acid		
Analytes PFBA PFPeA PFHxA PFHpA PFOA PFNA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid	1	SurrogatePerfluoro-n-[1,2,3,4- $^{13}C_4$]butanoic acidPerfluoro-n-[1,2- $^{13}C_2$]hexanoic acid SurrogatePerfluoro-n-[1,2,3,4- $^{13}C_4$]octanoic acidPerfluoro-n-[1,2,3,4,5- $^{13}C_5$]nonanoic acid		
Analytes PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid		SurrogatePerfluoro-n-[1,2,3,4- $^{13}C_4$]butanoic acidPerfluoro-n-[1,2- $^{13}C_2$]hexanoic acid SurrogatePerfluoro-n-[1,2,3,4- $^{13}C_4$]octanoic acidPerfluoro-n-[1,2,3,4,5- $^{13}C_5$]nonanoic acidPerfluoro-n-[1,2- $^{13}C_2$]decanoic acid		
Analytes PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFOS	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-octanesulfona	I I	SurrogatePerfluoro-n-[1,2,3,4-13C4]butanoic acidPerfluoro-n-[1,2-13C2]hexanoic acid SurrogatePerfluoro-n-[1,2,3,4-13C4]octanoic acidPerfluoro-n-[1,2,3,4,5-13C5]nonanoic acidPerfluoro-n-[1,2-13C2]decanoic acidPerfluoro-n-[1,2,3,4-13C4]octanesulfonate		
Analytes PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFDS 6:2 FTS	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-octanesulfona 1H,1H,2H,2H-perfluoro-n-	I I te octane sulfonate	SurrogatePerfluoro-n-[1,2,3,4- $^{13}C_4$]butanoic acidPerfluoro-n-[1,2- $^{13}C_2$]hexanoic acid SurrogatePerfluoro-n-[1,2,3,4- $^{13}C_4$]octanoic acidPerfluoro-n-[1,2,3,4,5- $^{13}C_5$]nonanoic acidPerfluoro-n-[1,2- $^{13}C_2$]decanoic acidPerfluoro-n-[1,2,3,4- $^{13}C_4$]octanesulfonate1H,1H,2H,2H-perfluoro-n-[1,2- $^{13}C_2$]octane sulfonate		
Analytes PFBA PFPeA PFHxA PFHpA PFOA PFDA PFDA PFOS 6:2 FTS Units & Abbreviations	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-octanesulfona 1H,1H,2H,2H-perfluoro-n-o	I I te octane sulfonate	SurrogatePerfluoro-n-[1,2,3,4-13C4]butanoic acidPerfluoro-n-[1,2-13C2]hexanoic acid SurrogatePerfluoro-n-[1,2,3,4-13C4]octanoic acidPerfluoro-n-[1,2,3,4,5-13C5]nonanoic acidPerfluoro-n-[1,2-13C2]decanoic acidPerfluoro-n-[1,2,3,4-13C4]octanesulfonate1H,1H,2H,2H-perfluoro-n-[1,2-13C2]octane sulfonate		
Analytes PFBA PFPeA PFHpA PFOA PFOA PFDA PFOS 6:2 FTS Units & Abbreviations ng/g	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-octanesulfona 1H,1H,2H,2H-perfluoro-n-o	I I te octane sulfonate	SurrogatePerfluoro-n-[1,2,3,4- $^{13}C_4$]butanoic acidPerfluoro-n-[1,2- $^{13}C_2$]hexanoic acid SurrogatePerfluoro-n-[1,2,3,4- $^{13}C_4$]octanoic acidPerfluoro-n-[1,2,3,4,5- $^{13}C_5$]nonanoic acidPerfluoro-n-[1,2- $^{13}C_2$]decanoic acidPerfluoro-n-[1,2,3,4- $^{13}C_4$]octanesulfonate1H,1H,2H,2H-perfluoro-n-[1,2- $^{13}C_2$]octane sulfonate		
Analytes PFBA PFPeA PFHxA PFHpA PFOA PFDA PFDS 6:2 FTS Units & Abbreviations ng/g <	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-octanesulfona 1H,1H,2H,2H-perfluoro-n-d nanograms per gram level less than limit of reporting	te octane sulfonate	SurrogatePerfluoro-n-[1,2,3,4- $^{13}C_4$]butanoic acidPerfluoro-n-[1,2- $^{13}C_2$]hexanoic acid SurrogatePerfluoro-n-[1,2,3,4- $^{13}C_4$]octanoic acidPerfluoro-n-[1,2,3,4,5- $^{13}C_5$]nonanoic acidPerfluoro-n-[1,2,3,4,5- $^{13}C_2$]decanoic acidPerfluoro-n-[1,2,3,4- $^{13}C_4$]octanesulfonate1H,1H,2H,2H-perfluoro-n-[1,2- $^{13}C_2$]octane sulfonate		

Laboratory Reg. No. N13/014211X

Client Sample Ref. CEL035 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level ng/g	Labelled Surrogate recovery	
PFBA	<2	23	þ
PFPeA PFHxA	<0.5 <0.5	57	
PFHpA PFOA	<0.5 <0.5	39	
PFNA	<0.5	29	
PFDA	<0.5	10	þ
PFOS	<1	16	þ
6:2 FTS	<0.1	61	

Laboratory Reg. No. N13/014212X

Client Sample Ref. CEL037 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level ng/g	Labelled Surrogate recovery	
PFBA	<2	24	Þ
PFPeA PFHxA	<0.5 <0.5	66	
PFHpA PFOA	<0.5 <0.5	51	
PFNA	<0.5	47	
PFDA	<0.5	26	
PFOS	<1	30	
6:2 FTS	<0.1	75	

Laboratory Reg. No. N13/014213X

Client Sample Ref. CEL039 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level ng/g	Labelled Surrogate recovery	
PFBA	<2	22	þ
PFPeA PFHxA	<0.5 <0.5	63	
PFHpA PFOA	<0.5 <0.5	41	
PFNA	<0.5	42	
PFDA	<0.5	17	þ
PFOS	<1	23	þ
6:2 FTS	<0.1	72	

Laboratory Reg. No. N13/014214X

Client Sample Ref. CEL041 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level	Labelled Surrogate	
	ng/g	Tecover	У
PFBA	<2	24	þ
PFPeA	<0.5		
PFHxA	<0.5	67	
PFHpA	<0.5		
PFOA	<0.5	49	
PFNA	<0.5	44	
PFDA	<0.5	21	þ
PFOS	<1	30	
6:2 FTS	<0.1	56	

Laboratory Reg. No. N13/014209X SPK

Client Sample Ref. Spike Matrix Fish muscle Description Spiked sample (21 ng/g, 17 ng/g for 6:2FTS) Extraction Date 3-Jun-13 Analysis Date 14-Jun-13

	Level	Labelled Surrogate	
	ng/g	recove	ry
PFBA	29	17	þ
PFPeA	31		
PFHxA	32	45	
PFHpA	41		
PFOA	27	35	
PFNA	29	6	þ
PFDA	39	17	þ
PFOS	7140	11	þ
6:2 FTS	22	50	

National Measurement Institute

CERTIFICATE OF ANALYSIS # DAU13_118			
Client	Cardno Ecology Lab L9, 203 Pacific Highway, St L	Job No.	CARD20/130527
	NSW 2065	Sampled by	Client
		Date Sampled	27-Mar-2013
Contact	Marcus Lincoln-Smith	Date Received	27-May-2013
The results relate only to the sample(s) tested.			

Method	AUTL_07	Date Reported	19-Jun-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

aun

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

Sample Details : Job No. CARD20/130527			
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description
N13/014215X	CEL043	Fish muscle	Fish Muscle 27/03/2013
N13/014216X	CEL045	Fish muscle	Fish Muscle 27/03/2013
N13/014217X	CEL047	Fish muscle	Fish Muscle 27/03/2013
N13/014218X	CEL049	Fish muscle	Fish Muscle 27/03/2013
N13/014219X	CEL064	Fish muscle	Fish Muscle 27/03/2013
N13/014220X	CEL072	Fish muscle	Fish Muscle 27/03/2013
N13/014221X	CEL076	Fish muscle	Fish Muscle 27/03/2013
N13/014222X	CEL053	Fish muscle	Fish Muscle 27/03/2013
N13/014223X	CEL055	Fish muscle	Fish Muscle 27/03/2013
BLK	I ab Blank	Lab Blank	Lab Blank

Project Details

Project Name Project Number Fiskville Study NA49913-034

Key		
Analytes		Surrogate
PFBA	Perfluoro-n-butanoic acid	Perfluoro-n-[1,2,3,4- ¹³ C ₄]butanoic acid
PFPeA	Perfluoro-n-pentanoic acid	
PFHxA	Perfluoro-n-hexanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Surrogate
PFHpA	Perfluoro-n-heptanoic acid	
PFOA	Perfluoro-n-octanoic acid	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid
PFNA	Perfluoro-n-nonanoic acid	Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]nonanoic acid
PFDA	Perfluoro-n-decanoic acid	Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid
PFOS	Perfluoro-n-octanesulfonate	Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanesulfonate
6:2 FTS	1H,1H,2H,2H-perfluoro-n-octane sulfonate	1H,1H,2H,2H-perfluoro-n-[1,2- ¹³ C ₂]octane sulfonate
Units & Abbreviations	\$	
ng/g	nanograms per gram	
<	level less than limit of reporting (LOR)	
₽ 	surrogate recovery outside normal method range (25-1	25%)

Laboratory Reg. No. N13/014215X

Client Sample Ref. CEL043 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level ng/g	Labelled Surrogate recovery	
PFBA	<2	17	
PFPeA PFHxA	<0.5 <0.5	49	
PFHpA PFOA	<0.5 <0.5	34	
PFNA	<0.2	27	
PFDA	<0.5	9	þ
PFOS	<1	18	þ
6:2 FTS	<0.1	39	

Laboratory Reg. No. N13/014216X

Client Sample Ref. CEL045 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level ng/g	Labelled Surrogate recovery	
PFBA	<2	17	
PFPeA PFHxA	<0.5 <0.5	48	
PFHpA PFOA	<0.5 <0.5	37	
PFNA	<0.2	32	
PFDA	<0.5	12	þ
PFOS	<1	22	þ
6:2 FTS	<0.1	38	

Laboratory Reg. No. N13/014217X

Client Sample Ref. CEL047 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level ng/g	Labelled Surrogate recovery	
PFBA	<2	17	þ
PFPeA PFHxA	<0.5 <0.5	42	
PFHpA PFOA	<0.5 <0.5	27	
PFNA	<0.2	22	þ
PFDA	<0.5	8	þ
PFOS	2.1	14	þ
6:2 FTS	<0.1	39	

Laboratory Reg. No. N13/014218X

Client Sample Ref. CEL049 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level ng/g	Labelled Surrogate recovery	
PFBA	<2	18	þ
PFPeA PFHxA	<0.5 <0.5	44	
PFHpA PFOA	<0.5 <0.5	39	
PFNA	<0.2	40	
PFDA	<0.5	19	þ
PFOS	1.1	24	þ
6:2 FTS	<0.1	90	

Laboratory Reg. No. N13/014219X

Client Sample Ref. CEL064 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level ng/g	Labelled Surrogate recovery	
PFBA	<2	19	þ
PFPeA PFHxA	<0.5 <0.5	46	
PFHpA PFOA	<0.5 <0.5	31	
PFNA	<0.2	25	
PFDA	<0.5	7	þ
PFOS	<1	13	þ
6:2 FTS	<0.1	28	

Laboratory Reg. No. N13/014220X

Client Sample Ref. CEL072 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level na/a	Labelled Surrogate recoverv	
PFBA	<2	18	þ
PFPeA PFHxA	<0.5 <0.5	45	
PFHpA PFOA	<0.5 <0.5	38	
PFNA	<0.2	39	
PFDA	<0.5	17	þ
PFOS	<1	25	
6:2 FTS	<0.1	56	

Laboratory Reg. No. N13/014221X

Client Sample Ref. CEL076 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level	Labelled Surrogate	
	ng/g	Tecover	у
PFBA	<2	19	þ
PFPeA	<0.5		
PFHxA	<0.5	50	
	-0.0		
PFHpA	<0.5		
PFOA	<0.5	36	
DENIA	-0.0	07	
PFNA	<0.2	37	
PFDA	<0.5	18	þ
PEOS	-1	25	
F103		25	
6:2 FTS	<0.1	65	

Laboratory Reg. No. N13/014222X

Client Sample Ref. CEL053 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level ng/g	Labelled Surrogate recoverv	
PFBA	<2	16	F
PFPeA PFHxA	<0.5 <0.5	46	
PFHpA PFOA	<0.5 <0.5	36	
PFNA	<0.2	30	
PFDA	<0.5	14	þ
PFOS	2.3	20	þ
6:2 FTS	<0.1	37	

Laboratory Reg. No. N13/014223X

Client Sample Ref. CEL055 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level ng/g	Labelled Surrogate recovery	
PFBA	<2	20	Þ
PFPeA PFHxA	<0.5 <0.5	45	
PFHpA PFOA	<0.5 <0.5	25	
PFNA	<0.2	19	þ
PFDA	<0.5	6	þ
PFOS	2.0	9	þ
6:2 FTS	<0.1	48	

Laboratory Reg. No. BLK

Client Sample Ref. Lab Blank Matrix Lab Blank Description Lab Blank Extraction Date 14-May-13 Analysis Date 22-May-13

	Level	Labelled Sur	rogate
	ng/g	recove	ry
PFBA	<2	17	þ
PFPeA PFHxA	<0.5 <0.5	45	
PFHpA PFOA	<0.5 <0.5	26	
PFNA	<0.2	15	þ
PFDA	<0.5	4	þ
PFOS	<1	7	þ
6:2 FTS	<0.1	21	þ

National Measurement Institute

CERTIFICATE OF ANALYSIS # DAU13_119			
Client	Cardno Ecology Lab	Job No.	CARD20/130527
	NSW 2065	Sampled by	Client
		Date Sampled	27/28-Mar-2013
Contact	Marcus Lincoln-Smith	Date Received	27-May-2013
The results relate only to the sample(s) tested.			

Method	AUTL_07	Date Reported	19-Jun-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

aun

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit
Sample Details : Job No. CARD20/130527						
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description			
N13/014224X	CEL057	Fish muscle	Fish Muscle 27/03/2013			
N13/014225X	CEL094	Fish muscle	Fish Muscle 28/03/2013			
N13/014226X	CEL096	Fish muscle	Fish Muscle 28/03/2013			
N13/014219X SPK	Spike	Fish muscle	Spiked sample (21 ng/g, 17 ng/g for 6:2FTS)			
Project Details						
Project Name	Fiskville Study					
Project Number	NA49913-034					
Vav						
ney						
Analytes			Surrogate			
PFDA	Perfluoro-n-butanoic acid		Perfluoro-n-[1,2,3,4-~C ₄]butanoic acid			
PFPeA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid	I	Perfluoro-n-[1,2,3,4- °C ₄]butanoic acid			
PFPeA PFHxA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid	I	Perfluoro-n-[1,2,3,4- $^{13}C_4$]butanoic acid Perfluoro-n-[1,2- $^{13}C_2$]hexanoic acid Surrogate			
PFPA PFPeA PFHxA PFHpA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid	I I	Perfluoro-n-[1,2,3,4- $^{13}C_4$]butanoic acid Perfluoro-n-[1,2- $^{13}C_2$]hexanoic acid Surrogate			
PFBA PFPeA PFHxA PFHpA PFOA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid	I	Perfluoro-n-[1,2,3,4- $^{13}C_4$]butanoic acid Perfluoro-n-[1,2- $^{13}C_2$]hexanoic acid Surrogate Perfluoro-n-[1,2,3,4- $^{13}C_4$]octanoic acid			
PFBA PFPeA PFHxA PFHpA PFOA PFNA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid	1	Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]butanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]hexanoic acid Surrogate Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanoic acid Perfluoro-n-[1,2,3,4,5- ${}^{13}C_5$]nonanoic acid			
PFDA PFPeA PFHxA PFHpA PFOA PFNA PFDA	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid		Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]butanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]hexanoic acid Surrogate Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanoic acid Perfluoro-n-[1,2,3,4,5- ${}^{13}C_5$]nonanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]decanoic acid			
PFDA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFOS	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-octanesulfonat	I I	Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]butanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]hexanoic acid Surrogate Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanoic acid Perfluoro-n-[1,2,3,4,5- ${}^{13}C_5$]nonanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]decanoic acid Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanesulfonate			
PFDA PFHxA PFHpA PFOA PFNA PFDA PFOS 6:2 FTS	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-octanesulfonat 1H,1H,2H,2H-perfluoro-n-o	I I te octane sulfonate	Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]butanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]hexanoic acid Surrogate Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanoic acid Perfluoro-n-[1,2,3,4,5- ${}^{13}C_5$]nonanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]decanoic acid Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanesulfonate 1H,1H,2H,2H-perfluoro-n-[1,2- ${}^{13}C_2$]octane sulfonate			
PFDA PFPeA PFHxA PFHpA PFOA PFDA PFDA PFOS 6:2 FTS Units & Abbreviations	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-octanesulfonat 1H,1H,2H,2H-perfluoro-n-octanesulfonat	te octane sulfonate	Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]butanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]hexanoic acid Surrogate Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanoic acid Perfluoro-n-[1,2,3,4,5- ${}^{13}C_5$]nonanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]decanoic acid Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanesulfonate 1H,1H,2H,2H-perfluoro-n-[1,2- ${}^{13}C_2$]octane sulfonate			
PFPA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFOS 6:2 FTS Units & Abbreviations	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-octanesulfonat 1H,1H,2H,2H-perfluoro-n-o	I I te octane sulfonate	Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]butanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]hexanoic acid Surrogate Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanoic acid Perfluoro-n-[1,2,3,4,5- ${}^{13}C_5$]nonanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]decanoic acid Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanesulfonate 1H,1H,2H,2H-perfluoro-n-[1,2- ${}^{13}C_2$]octane sulfonate			
PFDA PFDA PFDA PFOS 6:2 FTS Units & Abbreviations	Perfluoro-n-butanoic acid Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid Perfluoro-n-nonanoic acid Perfluoro-n-decanoic acid Perfluoro-n-octanesulfonat 1H,1H,2H,2H-perfluoro-n-o	I I te octane sulfonate (LOR)	Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]butanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]hexanoic acid Surrogate Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanoic acid Perfluoro-n-[1,2,3,4,5- ${}^{13}C_5$]nonanoic acid Perfluoro-n-[1,2- ${}^{13}C_2$]decanoic acid Perfluoro-n-[1,2,3,4- ${}^{13}C_4$]octanesulfonate 1H,1H,2H,2H-perfluoro-n-[1,2- ${}^{13}C_2$]octane sulfonate			

Laboratory Reg. No. N13/014224X

Client Sample Ref. CEL057 Matrix Fish muscle Description Fish Muscle 27/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level ng/g	Labelled Surrogate recovery	
PFBA	<2	21	þ
PFPeA PFHxA	<0.5 <0.5	45	
PFHpA PFOA	<0.5 <0.5	38	
PFNA	<0.2	38	
PFDA	<0.5	15	þ
PFOS	2.6	21	þ
6:2 FTS	<0.1	89	

Laboratory Reg. No. N13/014225X

Client Sample Ref. CEL094 Matrix Fish muscle Description Fish Muscle 28/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level na/a	Labelled Surrogate recovery	
PFBA	<2	19	· 문
PFPeA PFHxA	<0.5 <0.5	45	
PFHpA PFOA	<0.5 <0.5	34	
PFNA	<0.2	29	
PFDA	<0.5	11	þ
PFOS	5.9	14	þ
6:2 FTS	<0.1	80	

Laboratory Reg. No. N13/014226X

Client Sample Ref. CEL096 Matrix Fish muscle Description Fish Muscle 28/03/2013 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level ng/g	Labelled Surrogate recovery	
PFBA	<2	16	þ
PFPeA PFHxA	<0.5 <0.5	43	
PFHpA PFOA	<0.5 <0.5	30	
PFNA	<0.2	20	þ
PFDA	<0.5	6	þ
PFOS	2.2	8	þ
6:2 FTS	<0.1	45	

Laboratory Reg. No. N13/014219X SPK

Client Sample Ref. Spike Matrix Fish muscle Description Spiked sample (21 ng/g, 17 ng/g for 6:2FTS) Extraction Date 14-May-13 Analysis Date 22-May-13

	Level	Labelled Surroga	
	ng/g	recovery	
PFBA	28	15	þ
PFPeA	32		
PFHxA	34	36	
PFHpA	40		
PFOA	25	29	
PFNA	24	25	
PFDA	30	10	þ
PFOS	28	15	þ
6:2 FTS	18	32	

Appendix F 38 Pages

Rabbit Sampling and QA/QC

HUMAN HEALTH RISK ASSESSMENT - DOWNSTREAM USERS

4549 GEELONG-BALLAN RD, FISKVILLE VICTORIA

APPENDIX F

RABBIT DATA COLLECTION

Table of Contents

1	INTF	RODUCTION	2
	1.1	Objective	2
	1.2	Sampling Event and Sample Locations	2
2	RAB	BIT SAMPLING	3
	2.1	Sample Strategy	3
	2.2	Laboratory Analysis	4
3	QUA	LITY ASSURANCE AND QUALITY CONTROL REVIEW	4
	3.1	Intra-Laboratory Analysis - NMI	4
	3.2	Spiked Recovery - NMI	5
	3.3	Inter-Laboratory Analysis – NMI and AQ	6
	3.4	Laboratory Blank	7
	3.5	Sample Vial – Rinsate	7
	3.6	Summary of Rabbit Muscle Results	7
4	ATT	ACHMENTS	7
	Attac	hment A	7
	Attac	chment B	7

Text Tables

Table 1-1: Sample Location ID and Georeferenced Positions	3
Table 2-1: Rabbit Sample Weight Summary	3
Table 3-1: %RPD Calculation for Intra-laboratory Assessment – NMI (Units ng/g)	4
Table 3-2: Spiked Recovery Calculation – NMI (Units ng/g)	5
Table 3-3: Intra-Laboratory Sample Identification	6
Table 3-4: %RPD summary for NMI and QA Inter-laboratory Assessment (ng/g)	6
Table 3-6: Laboratory Internal Blank Analysis	7
Table 3-7: Summary of Rabbit Analysis (Units ng/g)	7

Figure

Figure 1-	Rabbit Sample Locations)
1 1901 0 1		۰.

APPENDIX F - RABBIT DATA COLLECTION

1 INTRODUCTION

This summary is intended to provide a description of the rabbit sampling conducted by Cardno Ecology Lab, Sydney NSW (Cardno Eco) at CFA Fiskville Training College, Fiskville Vic (the "Site"). The field work was conducted as per proposal reference 212163.18Proposal01.2 (dated 18 April 2013) under the instructions of Cardno Eco. This summary does not have nor provides any discussions with regards to results or corresponding criteria for the rabbit data as these are addressed in the main body of the report.

1.1 Objective

The collection of rabbits and the analysis for the presence of Perfluoro Compounds (PFCs) in muscle tissue was in order to assess the livestock pathway as part of the Human Health Risk Assessment of the Fiskville Community.

1.2 Sampling Event and Sample Locations

The field event was conducted on 4 May 2013. A total of 10 rabbits were culled by a professional shooter as per the Department of Primary Industries (DPI) guidelines¹. The approximate locations for the rabbits collected are shown in Figure 1-1. The corresponding sample identification number and approximate georeferenced locations are provided in Table 1-1.

Figure 1-1: Rabbit Sample Locations

¹ Department of Primary Industries RAB009 Ground Shooting of Rabbits, date if issue 1 October 2004.

Sample ID	Easting ¹ (m)	Northing (m)			
065-RA1	254708	5825458			
066-RA2	254686	5825572			
067-RA3	254593	5825592			
068-RA4	254708	5825513			
069-RA5&6	254897	5825530			
070-RA7	254789	5825554			
071-RA8	254701	5825697			
074-RA9	254705	5825533			
073-RA10	254694	5825515			
Notes: 1. UTM Zone 55 (MGA94) and all decimal units rounded to metre. The GPS system reports an error or ± 5 m.					

Table 1-1: Sample Location ID and Georeferenced Positions

The rabbits were all collected in the training area. A search of other areas around the site was conducted including around Lake Fiskville; however, rabbits were not encountered there. It is not clear why the rabbits were located in the training area except that Cardno Eco noted that:

- There appeared to be a lack of feed for rabbits in the vicinity of Lake Fiskville;
- The terrain in the training area is suitable for rabbits as it contains embankments, greenery (e.g. plants) and moist soils; and
- The terrain around the lake contains dry hard soils and minimal embankments. This is not ideal for rabbits to burrow.

2 RABBIT SAMPLING

2.1 Sample Strategy

The scope and method of the sampling event was prepared by Cardno Eco. The samples were collected on-site, placed on ice and transported to Sydney, NSW. The dissection and biometric measurements were conducted on the 7 May 2013. Samples were weighed, labelled and frozen. A summary of muscle samples collated by Cardno Eco is provided in Table 2-1.

Sample number	Sample Total number Weight (g)		Sample 2 Weight (g)	
RA1	1,335.2	60.4	60.1	
RA2	1,404.3	45.6	33.8	
RA3	1,557.5	49.4	48.2	
RA4	1,500.7	59.1	49.5	
RA5	1,666.2	59.2	50.1	
RA6	1,727.0	55.8	52.0	
RA7	1,425.4	45.8	45.4	

Table 2-1: Rabbit Sample Weight Summary

Sample number	Total Weight (g)	Sample 1 Weight (g)	Sample 2 Weight (g)	
RA8	1,743.5	53.1	57.0	
RA9	1,969.1	63.0	64.5	
RA10	1,418.1	39.0	38.5	

Two muscle tissue samples was taken from each specimen as shown in Table 2-1 (e.g. Sample 1 and Sample 2), in order to conduct a laboratory analysis at different laboratories (inter-laboratory) discussed in Section 2.2.

2.2 Laboratory Analysis

The rabbit samples were analysed by two laboratories as follows:

- 1. National Measurement Institute (NMI), Sydney NSW, was the primary laboratory; and
- 2. Asure Quality (AQ), Wellington NZ, was the secondary laboratory for Quality Control (QC).

The analytical suite was for the Contaminant of Potential Concern (CoPC) taking into account the extended Perfluoro Compounds (PFCs) that are present in firefighting foams or breakdown products. The main PFCs analysed by both laboratories and included in this review were: PFPeA, PFHxS, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFDS, PFUdA, PFDoA, PFOS, 6:2 FtS and 8:2 FtS.

An initial muscle analysis was conducted by NMI on 4 samples RA1-1, RA2-1, RA5-1 and RA8-1, 13 May 2013. The second batch analysis, which included the inter-laboratory analysis was conducted

Copies of the corresponding laboratory reports and sample receipt records are included in Attachment A. The Quality Assurance and Quality Control (QA/QC) for the rabbit analysis program is discussed in Section 3. Tabulated data for all laboratory results is provided in Attachment B.

3 QUALITY ASSURANCE AND QUALITY CONTROL REVIEW

3.1 Intra-Laboratory Analysis - NMI

Two samples, RA6-1 and RA8-1 were selected by NMI to assess the intra-laboratory reproducibility of the analysis. The duplicate samples are analysed concurrently with the parent sample. The Relative Percentage Difference (RPD) calculated from the parent samples (i.e. SS69 and SS78 respectively) are provided in Table 3-1.

Table 3-1: %RPD Calculation for Intra-laboratory Assessment – NMI (Units ng/g)

ID	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS	6:2 FTS
RA6-1	0.83	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	220	<0.5
RA6-1D ¹	0.46	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	220	<0.5
%RPD	<u>57.4</u>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.0</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.0</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.0</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.0</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.0</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.0</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.0</td><td><lor< td=""></lor<></td></lor<>	0.0	<lor< td=""></lor<>
RA8-1	2.2	0.58	<0.5	<0.5	<0.5	0.93	<1	<0.5	380	<0.5

Human Health Risk Assessment - Downstream Users 4549 Geelong-Ballan Rd, Fiskville Victoria Ashurst

ID	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS	6:2 FTS
RA8-1D ¹	3.2	0.88	<0.5	<0.5	<0.5	1.2	<1	<0.5	510	<0.5
%RPD	ARPD -37.0 -41.1 <lor -25.4="" -29.2="" -37.0<="" <lor="" td=""></lor>									
Notes: 1. RA6-1D	and RA81-	D refers to "[Duplicate" sa	mple						

The intra-laboratory assessment showed acceptable reproducibility with only one sample exceeding %RPD of 50% (i.e. Sample RA6-1D for PFPeA).

3.2 Spiked Recovery - NMI

NMI conducted a sample spiked assessment for two samples as follows:

- 1. Sample RA8-1S (Certificate No. CARD20/130513) was spiked with an internal standard with concentration of 17 ng/g for PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFDA, PFDoA and PFOS. A concentration of 14 ng/g was used for 6:2 FtS; and
- 2. Sample RA6-1S (Certificate No. CARD20/130614) was spiked with an internal standard with concentration of 19 ng/g for PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUdA, PFDoA and PFOS. A concentration of 15 ng/g was used for 6:2 FtS.

Table 3-2 provides a summary of the spiked sample calculations as comparison with the primary and duplicate samples. Overall, the spiked analysis showed good reproducibility within the two primary and duplicate samples for the corresponding batches. However, the first batch (Certificate No. CARD20/130513) for sample RA8-1 the spiked analysis reported above 110% form most analytes with PFOS and 6:2 FtS reporting 101% and 112% for the duplicate sample respectively. The second batch (Certificate No. CARD20/130614) reported lower spiked results for most analytes with the exception of PFOS and 6:2 FtS reporting 100% and 118% respectively for primary and duplicate samples.

ID	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS	6:2 FTS
RA6-1	0.83	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	220	<0.5
RA6-1D	0.46	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	220	<0.5
RA6-1S ²	16	15	17	15	16	16	15	10	240	18
Primary ³	81%	78%	88%	78%	83%	83%	77%	52%	100%	118%
Duplicate ⁴	82%	78%	88%	78%	83%	83%	77%	52%	100%	118%
RA8-1	2.2	0.58	<0.5	<0.5	<0.5	0.93	<1	<0.5	380	<0.5
RA8-1D	3.2	0.88	<0.5	<0.5	<0.5	1.2	<1	<0.5	510	<0.5
RA8-1S ²	24	25	23	24	24	25	26	26	530	16
Primary ³	125%	142%	133%	139%	139%	139%	149%	151%	134%	112%
Duplicate ⁴	119%	140%	133%	139%	139%	137%	149%	151%	101%	112%

Table 3-2: Spiked Recovery Calculation – NMI (Units ng/g)

Notes:

1. RA6-1D and RA81-D refers to "Duplicate" sample.

2. RA6-1S and RA8-1S refer to Spiked sample.

3. Primary – refers to the surrogate recovery per centum comparing the Parent sample RA6-1 or RA8-1 with the Spiked sample RA6-1S or RA8-1S.

4. Duplicate - refers to the surrogate recovery per centum comparing the Duplicate sample RA6-1D or RA8-1D with the Spiked sample RA6-1S or RA8-1S

The first batch could have overestimated the concentration for some analytes with the average spiked concentrations reported at 136%, while the second batch may have underestimated the concentration for some analytes with the average spiked concentrations reported at 84%.

The compounds which reported concentrations above the laboratory limit or reporting (LOR) were PFPeA, PFHxA, PFDA and PFOS.

3.3 Inter-Laboratory Analysis – NMI and AQ

Cardno Eco submitted three tissue samples to NMI and AQ as part of an inter-laboratory assessment. The corresponding samples were taken from the same specimen and labelled Sample 1 and Sample 2 as shown in Table 3-3.

Sample ID	Certificate Batch No.	Laboratory
RA4-1	CARD20/130614	NMI
RA4-2	134925	AQ
RA6-1	CARD20/130614	NMI
RA6-2	134925	AQ
RA9-1	CARD20/130614	NMI
RA9-2	134925	AQ

Table 3-3: Intra-Laboratory Sample Identification

Table 3-4: %RPD summary for NMI and QA Inter-laboratory Assessment (ng/g)

Sample ID	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFDoA	PFOS	6:2 FTS
RA4-1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	150	<0.5
RA4-2	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0	140	<1.0
%RPD	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<>	6.9	<lor< td=""></lor<>
<u>RA6-1</u>	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	220	<0.5
RA6-2	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0	190	<1.0
%RPD	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.6</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.6</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.6</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>14.6</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>14.6</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>14.6</td><td><lor< td=""></lor<></td></lor<>	14.6	<lor< td=""></lor<>
RA9-1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	150	<0.5
RA9-2	<1.0	<1.0	<2.0	<1.0	<2.0	<2.0	140	<1.0
%RPD	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>6.9</td><td><lor< td=""></lor<></td></lor<>	6.9	<lor< td=""></lor<>

The %RPD for PFOS shows an acceptable correlation between the two laboratories (i.e. less than 15%). The remainder of the analytes reported results below the laboratory LOR or no pair coupled available for a %RPD calculation (e.g. PFHxA, PFDS and 8:2 FtS reported by AQ and not included in the NMI suite). The data is considered acceptable since the results for PFOS has a %RPD less that 20%.

3.4 Laboratory Blank

Three internal laboratory blank analyses was conducted, corresponding one blank per batch and summarized in Table 3-6.

Laboratory	Reference No.	Certificate No	Comments
	BLK L869	CARD20/130513	
INIVII	BLK L879	CARD20/130614	All analytes reported below the laboratory LOR
AQ	134925-BL	134925	~~~···································

Table 3-5: Laboratory Internal Blank Analysis

3.5 Sample Vial – Rinsate

Cardno Eco submitted one sample container with de-ionized water as part of quality control. The de-ionized water was analysed for the CoPC to assess potential contamination due to sample jars. All analytes reported below the laboratory LOR.

3.6 Summary of Rabbit Muscle Results

A summary of the rabbit results is provided in Table 3-7, with analytes reporting greater than 47% detection rate highlighted with bold numbers.

Table 3-6: Summary of Rabbit Analysis (Units ng/g)

	PFPeA	PFHxS	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFDS	PFUdA	PFDoA	PFOS	6:2 FTS	8:2 FtS
Minimum	0.46	32	0.58	<0.5	<0.5	<0.5	0.89	1.6	<1	0.6	44	<0.5	8.6
Maximum	3.7	68	0.95	<0.5	<0.5	<0.5	1.2	2.7	<1	0.6	600	<0.5	8.6
Total ¹	16	4	20	20	20	20	20	4	16	20	20	20	4
Detects ³	7	3	4	0	0	0	3	2	0	1	15	0	1
%detects ⁴	47	75	27	0	0	0	20	50	0	7	100	0	25
Notes:													

Total number of analysis, including: Blanks, Spikes and Duplicates. 2.

Sample analysis reported less than laboratory LOR.

Does not include spiked samples. 3.

Total number of reporting above the laboratory LOR - it does not include blanks or spiked sample results. 4

4 ATTACHMENTS

Attachment A

Laboratory Reports and Chain of Custody

Attachment B

Table B1 – QA/QC Review for Rabbit Muscle Laboratory Data

Cardno Lane Piper March 2014

Company): Car	AIN OF CUS	TODY FORM	LE SAL				Dive 10	16/10	
	dno Ecology Lab	<u>n</u>	ROJECT NAME: An	alysis of freshwate	r biota.	SEND TO:		MM	
-67 	203 Pacific Highway,	St Leonards	our Purchase Order	Number: TBA	07	NMI (Nation	al Measurement Inst	titute)	
S :	w, zoo	7	our Job Number: NA	49913-034		Tuo Delhi Roa	ad, North Ryde NSW 21	113	
Wa	02 9496 7888 (0413622086 F	tesults due date (as a	greed with NMI):	1.81	E-mail: cust	9449 0111		
n email: Ma	ircus.LincolnSmith@cardno	o.com.au				NMI Contact Pe	ornerservice@measure	ment gov.au	
LE NUMBER NLY - please do n this column)	Your Sample ID / Description / Number	Collection Information (Date & Time)	Sample type	PFAS including PFOS, PFOS & 6:2 FTS				COMMENTS	
THE REPORT OF THE PARTY OF THE	RA1-1	May-13	Rabbit Muscle	×					-
12591	RA2-1	May-13	Rabbit Muscle	×					-
3/012592	RA5-1	May-13	Rabbit Muscle	×					-
012593	RA8-1	May-13	Rabbit Muscle	×					
1									
							1 3 MAT 20	2	
				Received at NMI laborate	or by:		9	J. O. C.	
ished by:	Sean Smith			Print Name:		1			
ume: Time: ure:	13 / 5	112 :	hrs	Date & Time: Signature:	1 1	 PAGE No: 1	of 1 PAC	SES	

National Measurement Institute

	CERTIFICATE OF ANALYSIS # DAU13_089								
Client	Cardno Ecology Lab	Job No.	CARD20/130513						
	L9, 203 Pacific Highway, St Leonards								
	NSW 2065 Sampled by Client								
	Date Sampled not specified								
Contact	Marcus Lincoln-Smith	Date Received	13-May-2013						
	The ve		ala/a) taatad						
	The re	suits relate only to the samp	Die(S) lested.						
Method	AUTL_07	Date Reported	24-May-2013						

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

Haur

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

	Sample De	tails : Job No. (CARD20/130513
Laboratory Reg. No. N13/012591X N13/012592X N13/012593X N13/012594X N13/012594DUP N13/012594SPK BLK L869	Client Sample Ref. RA1-1 RA2-1 RA5-1 RA8-1 Duplicate Spike Lab Blank	Matrix Rabbit muscle Rabbit muscle Rabbit muscle Rabbit muscle Rabbit muscle Rabbit muscle Lab Blank	Description Rabbit Muscle May-13 Rabbit Muscle May-13 Rabbit Muscle May-13 Rabbit Muscle May-13 Duplicate Sample Spiked sample (17 ng/g, 14 ng/g for 6:2FTS) Lab Blank
Project Details			
Project Name Project Number	Fiskville Study NA49913-034		
Key			
Analytes			Surrogate
PFPeA PFHxA	Perfluoro-n-pentanoic acid Perfluoro-n-hexanoic acid		Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Surrogate
PFHpA PFOA	Perfluoro-n-heptanoic acid Perfluoro-n-octanoic acid		Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid
PFNA	Perfluoro-n-nonanoic acid		Perfluoro-n-[1,2,3,4,5- $^{13}C_5$]nonanoic acid
PFDA	Perfluoro-n-decanoic acid		Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid
PFUdA	Perfluoro-n-undecanoic ac	id	Perfluoro-n-[1,2- ¹³ C ₂]undecanoic acid
PFDoA	Perfluoro-n-dodecanoic ac	id	Perfluoro-n-[1,2- ¹³ C ₂]dodecanoic acid
PFOS	Perfluoro-n-octanesulfonat	e	Perfluoro-n-[1,2,3,4-13C4]octanesulfonate
6:2 FTS	1H,1H,2H,2H-perfluoro-n-c	octane sulfonate	1H,1H,2H,2H-perfluoro-n-[1,2- ¹³ C ₂]octane sulfonate
Units & Abbreviations			
ng/g < 行	nanograms per gram level less than limit of reporting (surrogate recovery outside norm	(LOR) nal method range (25-1	25%)

Laboratory Reg. No. N13/012591X

Client Sample Ref. RA1-1 Matrix Rabbit muscle Description Rabbit Muscle May-13 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level	Labelled Surrogate
	ng/g	recovery
PFPeA	<0.5	
PFHxA	<0.5	49
PFHpA	<0.5	
PFOA	<0.5	63
PFNA	<0.5	68
PFDA	<0.5	54
PFUdA	<1	64
PFDoA	<0.5	62
PFOS	44	51
6:2 FTS	<0.5	80

Laboratory Reg. No. N13/012592X

Client Sample Ref. RA2-1 Matrix Rabbit muscle Description Rabbit Muscle May-13 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level	Labelled Surre	ogate
	ng/g	recovery	,
PFPeA	<0.5		
PFHxA	<0.5	64	
PFHpA	<0.5		
PFOA	<0.5	79	
PFNA	<0.5	63	
PFDA	<0.5	74	
PFUdA	<1	82	
PFDoA	<0.5	79	
PFOS	130	47	
6:2 FTS	<0.5	68	

Laboratory Reg. No. N13/012593X

Client Sample Ref. RA5-1 Matrix Rabbit muscle Description Rabbit Muscle May-13 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level	Labelled Surrogate
	ng/g	recovery
PFPeA	2.4	
PFHxA	1.0	51
PFHpA	<0.5	
PFOA	<0.5	66
PFNA	<0.5	39
PFDA	0.89	42
PFUdA	<1	60
PFDoA	0.60	45
PFOS	350	32
6:2 FTS	<0.5	94

Laboratory Reg. No. N13/012594X

Client Sample Ref. RA8-1 Matrix Rabbit muscle Description Rabbit Muscle May-13 Extraction Date 14-May-13 Analysis Date 22-May-13

	Level	Labelled Surrogate
	ng/g	recovery
PFPeA	2.2	
PFHxA	0.58	61
PFHpA	<0.5	
PFOA	<0.5	68
PFNA	<0.5	34
PFDA	0.93	53
PFUdA	<1	71
PFDoA	<0.5	71
PFOS	380	27
6:2 FTS	<0.5	54

Laboratory Reg. No. N13/012594DUP

Client Sample Ref. Duplicate Matrix Rabbit muscle Description Duplicate Sample Extraction Date 14-May-13 Analysis Date 22-May-13

	Level	Labelled Surrogate
	ng/g	recovery
PFPeA PFHxA	3.2 0.88	60
PFHpA PFOA	<0.5 <0.5	74
PFNA	<0.5	42
PFDA	1.2	68
PFUdA	<1	73
PFDoA	<0.5	64
PFOS	510	30
6:2 FTS	<0.5	69

Laboratory Reg. No. N13/012594SPK

Client Sample Ref. Spike Matrix Rabbit muscle Description Spiked sample (17 ng/g, 14 ng/g for 6:2FTS) Extraction Date 14-May-13 Analysis Date 22-May-13

	Level	Labelled Surrogate
	ng/g	recovery
PFPeA	24	
PFHxA	25	57
PFHpA	23	
PFOA	24	64
PFNA	24	35
PFDA	25	52
PFUdA	26	60
PFDoA	26	56
PFOS	530	28
6:2 FTS	16	72

Laboratory Reg. No. BLK L869

Client Sample Ref. Lab Blank Matrix Lab Blank Description Lab Blank Extraction Date 14-May-13 Analysis Date 22-May-13

	Level	Labelled Surrogate
	ng/g	recovery
PFPeA PFHxA	<0.5 <0.5	51
PFHpA PFOA	<0.5 <0.5	69
PFNA	<0.5	65
PFDA	<0.5	57
PFUdA	<1	58
PFDoA	<0.5	51
PFOS	<0.5	42
6:2 FTS	<0.5	69

NMI CHAIN OF CUSTODY FORM by (Company): Cardno Ecology Lab PROJECT NAME: Analysis of freshwater biola by (Company): Cardno Ecology Lab PROJECT NAME: Analysis of freshwater biola ess: L9, 203 Pacific Highway, St Leonards NMI Quote Number: GS1300419A CARD20 ess: L9, 203 Pacific Highway, St Leonards NMI Quote Number: GS1300419A CARD20 act: L9, 203 Pacific Highway, St Leonards NMI Quote Number: GS1300419A CARD20 act: L9, 203 Pacific Highway, St Leonards NMI Quote Number: GS1300419A CARD20 act: L9, 203 Pacific Highway, St Leonards NMI Quote Number: TBA act: Marcus LincolnSmith Your Job Number: NA0913-034 act: Marcus LincolnSmith® cardro com au Your Job Number: Nale (his also of fresh preve, with NMI): if person email: Marcus LincolnSmith® cardro com au Sample type Sample type Misson Lv - Piese do Pescription / Number Collection Information Sample type	rsenic										_
(Company): Cardno Ecology Lab PROJECT NAME: Analysis of freshwater blota I: L9, 203 Pacific Highway, St Leonards NMI Quote Number: GS130419A_CARD20 I: L9, 203 Pacific Highway, St Leonards NMI Quote Number: GS130419A_CARD20 I: L9, 203 Pacific Highway, St Leonards NMI Quote Number: GS130419A_CARD20 I: NSW, 2065 Your Purchase Order Number: HBA I: Marcus LincolnSmith Your Job Number: NA49913-034 I: Marcus LincolnSmithAcardro.com.au Results due date (as agreed with NMI): I: Marcus LincolnSmithAcardro.com.au Results due date (as agreed with NMI): PFIDA PROK [Init allso Collection Information Sample type I: Marcus LincolnSmithAcardro.com.au Sample type I: Provide & Time) Sample type	sines								•	-17/1JNN	
 L9, 203 Pacific Highway, St Leonards NMI Quote Number: GS13/0419A_CARD20 NSW, 2065 Your Purchase Order Number: TBA NSW, 2065 Your Purchase Order Number: TBA Your Job Number: NA49913-034 Your Job Number: NA49913-034 Pipto I (finis also of 13622086 Results due date (as agreed with NMI): Marcus LincoinSmith@cardno.com.au Pipto RFBA, PFWA, P	rsenic						SEND TO				
NSW, 2065 Your Purchase Order Number: TBA tt Marcus LincoinSmith Your Job Number: NA49913-034 tt Marcus LincoinSmith Your Job Number: NA49913-034 person email: Marcus LincoinSmith@cardro com au Results due date (as agreed with NMI): . PFBA, PFPA, PFNA AMPLE NUMBER Your Sample ID / . Presed Collection Information Sample Vour Sample ID / . Description / Number Collection Information							VMI (Nati	onal Measu	Irement Institu	ite)	
It: Marcus LincoInSmith Your Job Number: NA49913-034 02 9496 7888 0413622086 Results due date (as agreed with NMI): Marcus LincoinSmith)@cardro.com.au Person email: Marcus LincoinSmith)@cardro.com.au Results due date (as agreed with NMI): Marcus LincoinSmith)@cardro.com.au SAMPLE NUMBER Your Sample ID / Description / Number Collection Information Sample type Collection Information	rsenic						05 Delhi I	Road, North	Ryde NSW 211	e	
02 9496 7888 0413622086 Results due date (as agreed with NMI): person email: Marcus LincoinSmith@cardno.com au Results due date (as agreed with NMI): person email: Marcus LincoinSmith@cardno.com au NPFOA provide PFEA, PF	raenic						hone:	02 9449 011	-		_
Person email: Marcus LincoinSmith@cardro.com.au Reference Marcus LincoinSmith@cardro.com.au SAMPLE NUMBER Your Sample ID / Collection Information Collection Information SE ONLY - Please do Description / Number Collection Information Collection Information Sample type	rsenic						E-mail:	customersen	vice@measurem	nent.gov.au	
SAMPLE NUMBER SAMPLE NUMBER Your Sample ID / Collection Information SE ONLY - Please do Description / Number (Date & Time) Collection Information Secretion Information (Date & Time) Collection Information Collection Collection Collection Information Collection Col	raenic						MI Conta	ct Person: (Bavin Stevenson		
PCF: PFOS.	A	muimbeO	Соррег	реәт	Mercury	Nickel	ouiZ			COMMENTS	
13/01.596.3. RA3-1 7/05/2013 Rabbit Muscle X X	×	×	××	×	×	×	×				
3/015964 Rabbit Muscle X	×	×	×	×	×	×	×				_
(015965 RA6-1 7/05/2013 Rabbit Muscle X X	×	×	× ×	×	×	×	×				_
015966 RA7-1 7/05/2013 Rabbit Muscle X X	×	×	×	×	×	×	×				_
015967 Rabbit Muscle X X	×	×	×	×	×	×	×				
7015968 RA10-1 7/05/2013 Rabbit Muscle X X	×	×	× ×	×	×	×	×				_
							2	10	IVEL		
								UCA 1	V 2013		-
							5	610			_
								111	16.00	0	
											_
ed by: Sean Smith Received at NMI laboratory b									:	i ci ci	-
e 14. 26 / 13 i hrs Date & Time:	1	-				hrs	Ĩ	AGE No: 1	of 1	PAGES	_
Signature		Ē		0			E	ultiple pages, (ensure ALL pages	are stapled together	_

National Measurement Institute

	CERTIFICATE OF ANALYSIS # DAU13_145				
Client	Cardno Ecology Lab	Job No.	CARD20/130614		
	NSW 2065	Sampled by	Client		
		Date Sampled	7-May-2013		
Contact	Marcus Lincoln-Smith	Date Received	14-Jun-2013		
	The res	ults relate only to the sam	ple(s) tested.		

Method	AUTL_07	Date Reported	17-Jul-2013

Details The method is for determination of Perfluoroalkyl substances (PFASs) in biota samples by High Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MSMS). All results are corrected for labelled surrogates and are reported on a fresh weight basis.

Prior to extraction the sample is spiked with a range of isotopically labelled surrogate standards. Extraction is by organic solvent, with purification using activated silica gel. An aliquot of extract is injected onto the UPLC and detected using mass spectrometry.

Authorisation

aun

Gavin Stevenson Manager Dioxin Analysis Unit

Dr Alan Yates Senior Analyst Dioxin Analysis Unit

Sample Details : Job No. CARD20/130614			
Laboratory Reg. No.	Client Sample Ref.	Matrix	Description
N13/015963X	RA3-1	Rabbit muscle	Rabbit Muscle 7-May-13
N13/015964X	RA4-1	Rabbit muscle	Rabbit Muscle 7-May-13
N13/015965X	RA6-1	Rabbit muscle	Rabbit Muscle 7-May-13
N13/015966X	RA7-1	Rabbit muscle	Rabbit Muscle 7-May-13
N13/015967X	RA9-1	Rabbit muscle	Rabbit Muscle 7-May-13
N13/015968X	RA10-1	Rabbit muscle	Rabbit Muscle 7-May-13
Sample Jar L8/9	Container Blank	Sample Jar	Sample Jar
N13/015965 DUP L879	Duplicate	Rabbit muscle	Duplicate Sample
N13/015965 SPK L8/9	Spike	Rapplit muscle	Spiked sample (19 ng/g, 15 ng/g for 6:2F1S)
DLK L079		Lan Dialik	
Project Details			
Project Name	Fiskville Study		
Project Number	NA49913-034		
Key			
Analytes			Surrogate
PFPeA	Perfluoro-n-pentanoic acid		10
PFHxA	Perfluoro-n-hexanoic acid		Perfluoro-n-[1,2- ¹³ C ₂]hexanoic acid Surrogate
PFHpA	Perfluoro-n-heptanoic acid		
PFOA	Perfluoro-n-octanoic acid		Perfluoro-n-[1,2,3,4- ¹³ C ₄]octanoic acid
PFNA	Perfluoro-n-nonanoic acid		Perfluoro-n-[1,2,3,4,5- ¹³ C ₅]nonanoic acid
PFDA	Perfluoro-n-decanoic acid		Perfluoro-n-[1,2- ¹³ C ₂]decanoic acid
PFUdA	Perfluoro-n-undecanoic ac	id	Perfluoro-n-[1,2- ¹³ C ₂]undecanoic acid
PFDoA	Perfluoro-n-dodecanoic ac	id	Perfluoro-n-[1,2- ¹³ C ₂]dodecanoic acid
PFOS	Perfluoro-n-octanesulfonat	te	Perfluoro-n-[1,2,3,4-13C4]octanesulfonate
6:2 FTS	1H,1H,2H,2H-perfluoro-n-	octane sulfonate	1H,1H,2H,2H-perfluoro-n-[1,2- ¹³ C ₂]octane sulfonate
Units & Abbreviations			
ng/g	nanograms per gram		
<	level less than limit of reporting	(LOR)	
þ	surrogate recovery outside norm	nal method range (25-12	25%)

Laboratory Reg. No. N13/015963X

Client Sample Ref. RA3-1 Matrix Rabbit muscle Description Rabbit Muscle 7-May-13 Extraction Date 21-Jun-13 Analysis Date 10-Jul-13

	Level	Labelled Surrogate	
	ng/g	recover	ry
PFPeA	<0.5		
PFHxA	<0.5	109	
PFHpA	<0.5		
PFOA	<0.5	109	
PFNA	<0.5	95	
PFDA	<0.5	113	
PFUdA	<1	74	
PFDoA	<0.5	31	
PFOS	110	62	
6:2 FTS	<0.5	127	þ

Laboratory Reg. No. N13/015964X

Client Sample Ref. RA4-1 Matrix Rabbit muscle Description Rabbit Muscle 7-May-13 Extraction Date 21-Jun-13 Analysis Date 10-Jul-13

	Level	Labelled Sur	rogate
	ng/g	recove	ry
PFPeA PFHxA	0.99 <0.5	116	
PFHpA PFOA	<0.5 <0.5	122	
PFNA	<0.5	87	
PFDA	<0.5	130	þ
PFUdA	<1	79	
PFDoA	<0.5	33	
PFOS	150	60	
6:2 FTS	<0.5	133	þ

Laboratory Reg. No. N13/015965X

Client Sample Ref. RA6-1 Matrix Rabbit muscle Description Rabbit Muscle 7-May-13 Extraction Date 21-Jun-13 Analysis Date 10-Jul-13

	Level	Labelled Sur	rogate
	ng/g	recover	ry
PFPeA	0.83		
PFHxA	<0.5	123	
PFHpA	<0.5		
PFOA	<0.5	122	
PFNA	<0.5	72	
PFDA	<0.5	98	
PFUdA	<1	59	
PFDoA	<0.5	17	þ
PFOS	220	45	
6:2 FTS	<0.5	125	

Laboratory Reg. No. N13/015966X

Client Sample Ref. RA7-1 Matrix Rabbit muscle Description Rabbit Muscle 7-May-13 Extraction Date 21-Jun-13 Analysis Date 10-Jul-13

	Level	Labelled Sur	rogate
	ng/g	recover	ry
PFPeA PFHxA	3.7 0.71	119	
PFHpA PFOA	<0.5 <0.5	106	
PFNA	<0.5	40	
PFDA	<0.6	67	
PFUdA	<1	41	
PFDoA	<0.5	12	þ
PFOS	600	26	
6:2 FTS	<0.5	93	

Laboratory Reg. No. N13/015967X

Client Sample Ref. RA9-1 Matrix Rabbit muscle Description Rabbit Muscle 7-May-13 Extraction Date 21-Jun-13 Analysis Date 10-Jul-13

	Level	Labelled Surrogate recovery	
	ng/g		
PFPeA	<0.5		
PFHxA	<0.5	115	
PFHpA	<0.5		
PFOA	<0.5	117	
PFNA	<0.5	85	
PFDA	<0.5	108	
PFUdA	<1	69	
PFDoA	<0.5	27	
PFOS	150	51	
6:2 FTS	<0.5	94	

Laboratory Reg. No. N13/015968X

Client Sample Ref. RA10-1 Matrix Rabbit muscle Description Rabbit Muscle 7-May-13 Extraction Date 21-Jun-13 Analysis Date 10-Jul-13

	Level	Labelled Surrogate recovery	
	ng/g		
PFPeA PFHxA	1.3 <0.5	122	
PFHpA PFOA	<0.5 <0.5	119	
PFNA	<0.5	92	
PFDA	<0.5	113	
PFUdA	<1	60	
PFDoA	<0.5	20	þ
PFOS	110	58	
6:2 FTS	<0.5	112	

Laboratory Reg. No. Sample Jar L879

Client Sample Ref. Container Blank Matrix Sample Jar Description Sample Jar Extraction Date 21-Jun-13 Analysis Date 10-Jul-13

	Level	Labelled Surrogate	
	ng/g	recovery	
PFPeA PFHxA	<0.5 <0.5	96	
PFHpA PFOA	<0.5 <0.5	79	
PFNA	<0.5	82	
PFDA	<0.5	41	
PFUdA	<1	16	þ
PFDoA	<1	4	þ
PFOS	<1	35	
6:2 FTS	<0.5	90	

Laboratory Reg. No. N13/015965 DUP L879

Client Sample Ref. Duplicate Matrix Rabbit muscle Description Duplicate Sample Extraction Date 21-Jun-13 Analysis Date 10-Jul-13

	Level	Labelled Surrogate	
	ng/g	recover	ry
PFPeA PFHxA	0.46 <0.5	135	
PFHpA PFOA	<0.5 <0.5	125	
PFNA	<0.5	91	
PFDA	<0.5	125	
PFUdA	<1	83	
PFDoA	<0.5	28	
PFOS	220	49	
6:2 FTS	<0.5	113	

Laboratory Reg. No. N13/015965 SPK L879

Client Sample Ref. Spike Matrix Rabbit muscle Description Spiked sample (19 ng/g, 15 ng/g for 6:2FTS) Extraction Date 21-Jun-13 Analysis Date 10-Jul-13

	Level	Labelled Surrogate recovery	
	ng/g		
PFPeA	16	116	
PFHxA	15		
PFHpA	17		
PFOA	15	115	
PFNA	16	75	
PFDA	16	110	
PFUdA	15	75	
PFDoA	10	34	
PFOS	240	49	
6:2 FTS	18	119	

Laboratory Reg. No. BLK L879

Client Sample Ref. Lab Blank Matrix Lab Blank Description Lab Blank Extraction Date 21-Jun-13 Analysis Date 10-Jul-13

	Level	Labelled Surrogate recovery															
	ng/g																
PFPeA PFHxA	<0.1 <0.07	99															
PFHpA PFOA	<0.02 <0.1	75															
PFNA	<0.04	49															
PFDA	<0.4	15	þ														
PFUdA	<3	6	þ														
PFDoA	<4	1	þ														
PFOS	<0.5	20	þ														
6:2 FTS	<0.1	59															
Issue Date: July 2010	Received By:	Comments:				RA9-2	RA6-2	RA4-2	Customer ID	E-mail:	Report Results To: (if different from above)	AQ Ref: (AsureQuality us	Page of (If more than one submissio	NEW ZEALAND Tel: 64 4 570 8800 Fax: 64 4 570 8176	1C Quadrant Drive Waiwhetu Lower Hutt	AsureQuality Welling	TO:
--------------------------------------	--	---	---------	---	--	----------------	----------------	----------------	---	-------------------	---	------------------------------	--	---	--	-----------------------------	-------------
	Receipt Date/Time:					Rabbit Muscle	Rabbit Muscle	Rabbit Muscle	Sample De	Fax:		e only 134925	n form used)	ATTENTION:	-	pton Laboratory	SAM
Page 1 of 1 QA Controlled Documen	Courier Number:	الله الله المعالمة المحمد ا المحمد المحمد							escription	Address:		Tel: 02 9496 7888 0413622	Quote Number: 2751	NSW, 2065 Marcus LincolnSmith	Cardno Ecology Lab L9, 203 Pacific Highway,	Customer Name/Addres	PLE SUBMISS
		and the second se			an - anglish kui ang manang da			a starting	Total Number of Components (if applicable)		Send Invoid	086 Fax:	/	Signat	St Greig C	s: Name	ION FC
10115	181 I I I I I I I I I I I I I I I I I I I		Derewet		a second and a second and a second and a second as	PCF: PFOS/PFOA	PCF: PFOS/PFOA	PCF: PFOS/PFOA	Testing Requi	Quar	re To: Custome		0	ure of Submitter:	Sampbell	of Submitter:	RM
The	TET	11 21	ST.	P					rements	antine Sample	er Ref/Order No:	E-mail: Marcus.LincolnS	Date Required		12/06/2013	Date/Time Des	Asure(
Attachment No: SR-018/3		and the second second second second		Ŧ		V 3	-2	1-56042	AQ Ref: (AsureQuality use only)	NZ Drinking Water		mith@cardno.con	By:			patched:	Quality

1C uadrant Drive, Waiwhetu P.O. Box 31 242, Lower Hutt 5010 Wellington, New Zealand T 64 4 5708800
 F 64 4 5708176
 W www.asurequality.com

Certificate of Analysis

Date Issued:	3 July 2013
Client:	Cardno LanePiper Building 2 154 Highbury Road Burwood Victoria 3125
Attention:	Marcus Lincoln Smith
AsureQuality Lab. Reference:	134925
Sample Type(s):	Rabbit Muscle
Analysis:	Perfluorinated Compounds (PFCs)
Method:	In-House LC-MS/MS Method

Results are reported as nanograms per gram (ng/g), on an as received basis to two significant figures. The LOR value is reported to two significant figures. Results have been corrected for recovery.

Unless requested, samples will be disposed of eight weeks from the date of this report.

Comments: None.

Phil Bridgen Senior Scientist AsureQuality Limited

Laboratory Reference: 134925-1

Sample Identification: RA4-2 Rabbit Muscle

Date Received: 14 Jun 2013		Date Analyse	ed: 17 Jun 2013
Date Extracted: 17 Jun 2013			
Analyte ¹	Conc. ² (ng/g)	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	68	4.0	
Perfluorooctanesulfonic acid (PFOS) ³	140	8.0	
Perfluorodecanesulfonic acid (PFDS)	ND	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	1.0	
Perfluorodecanoic acid (PFDA)	ND	2.0	
Perfluoroundecanoic acid (PFUnA)	ND	1.0	
Perfluorododecanoic acid (PFDoA)	ND	2.0	
Perfluorotridecanoic acid (PFTrDA)	ND	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	ND	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	ND	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	ND	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer.	LOR: Limit of Reporting	g	
² Results are reported on an as received basis.	ND: Not Detected	-	
³ The result for PFOS also includes its salts and			
perfluorooctanesulfonyl fluoride (PFOSF).			

Lab Analyst: CFH/CA

Data Analyst: CFH/PB

Laboratory Reference: 134925-2

Sample Identification: RA6-2 Rabbit Muscle

Date Received: 14 Jun 2013		Date Analyse	ed: 17 Jun 2013
Date Extracted: 17 Jun 2013			
Analyte ¹	Conc. ² (ng/g)	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	32	4.0	
Perfluorooctanesulfonic acid (PFOS) ³	190	8.0	
Perfluorodecanesulfonic acid (PFDS)	1.6	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	1.0	
Perfluorodecanoic acid (PFDA)	ND	2.0	
Perfluoroundecanoic acid (PFUnA)	ND	1.0	
Perfluorododecanoic acid (PFDoA)	ND	2.0	
Perfluorotridecanoic acid (PFTrDA)	ND	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	ND	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	ND	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	8.6	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer.	LOR: Limit of Reporting		
² Results are reported on an as received basis.	ND: Not Detected		
³ The result for PFOS also includes its salts and			
perfluorooctanesulfonyl fluoride (PFOSF).			

Lab Analyst: CFH/CA

Data Analyst: CFH/PB

Laboratory Reference: 134925-3

Sample Identification: RA9-2 - Rabbit Muscle

Date Received: 14 Jun 2013		Date Analyse	ed: 17 Jun 2013
Date Extracted: 17 Jun 2013			
Analyte ¹	Conc. ² (ng/g)	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	40	4.0	
Perfluorooctanesulfonic acid (PFOS) ³	140	8.0	
Perfluorodecanesulfonic acid (PFDS)	2.7	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	1.0	
Perfluorodecanoic acid (PFDA)	ND	2.0	
Perfluoroundecanoic acid (PFUnA)	ND	1.0	
Perfluorododecanoic acid (PFDoA)	ND	2.0	
Perfluorotridecanoic acid (PFTrDA)	ND	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	ND	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	ND	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	ND	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer.	LOR: Limit of Reporting	5	
² Results are reported on an as received basis.	ND: Not Detected	-	
³ The result for PFOS also includes its salts and			
perfluorooctanesulfonyl fluoride (PFOSF).			

Lab Analyst: CFH/CA

Data Analyst: CFH/PB

Laboratory Reference: 134925-BL

Sample Identification: Laboratory Blank

Date Received: Not Applicable Date Extracted: 17 Jun 2013		Date Analyse	ed: 17 Jun 2013
Analyte ¹	Conc. ² (ng/g)	LOR (ng/g)	Data Qualifiers
Perfluoroalkylsulfonic acids			
Perfluorobutanesulfonic acid (PFBS)	ND	1.0	
Perfluorohexanesulfonic acid (PFHxS)	ND	4.0	
Perfluorooctanesulfonic acid (PFOS) ³	ND	8.0	
Perfluorodecanesulfonic acid (PFDS)	ND	1.0	
Perfluoroalkylcarboxylic acids			
Perfluorohexanoic acid (PFHxA)	ND	1.0	
Perfluoroheptanoic acid (PFHpA)	ND	1.0	
Perfluorooctanoic acid (PFOA)	ND	2.0	
Perfluorononanoic acid (PFNA)	ND	1.0	
Perfluorodecanoic acid (PFDA)	ND	2.0	
Perfluoroundecanoic acid (PFUnA)	ND	1.0	
Perfluorododecanoic acid (PFDoA)	ND	2.0	
Perfluorotridecanoic acid (PFTrDA)	ND	1.0	
Perfluorotetradecanoic acid (PFTeDA)	ND	1.0	
Other PFCs			
Perfluorooctanesulfonamide (PFOSA)	ND	1.0	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND	1.0	
N-methyl-perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND	1.0	
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS)	ND	1.0	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2 FTS)	ND	2.0	
Footnotes:	Abbreviations:		
¹ The analytes listed represent the linear isomer	LOR: Limit of Reporting	g	
² The results are calculated using the average weight of samples in this batch	ND: Not Detected		
3 The result for PFOS also includes its salts and			
perfluorooctanesulfonyl fluoride (PFOSF).			

Lab Analyst: CFH/CA

Data Analyst: CFH/PB

Data
Laboratory
tabbit Muscle
Review for R
QA / QC
Table B1 -

											ng/g wet	weight					
Laboratory Reference Number	CARDNO Ref.	sample Location	Sample Type	sample Matrix	Certificate	PFPeA	PFHxS	PFHXA	PEHpA	PEOA	FNA PF	DA	EDS PFL	IdA PFDo/	A PFOS	6:2 FTS	8:2 FtS
N13/012591X	RA1-1	Fiskville	Rabbit	Muscle	CARD20/130513	<0.5		<0.5	<0.5	<0.5	<0.5 <	0.5	~	1 <0.5	44	<0.5	
N13/012592X	RA2-1	Fiskville	Rabbit	Muscle	CARD20/130513	<0.5		<0.5	<0.5	<0.5	<0.5 <	0.5	v	1 <0.5	130	<0.5	
N13/012593X	RA5-1	Fiskville	Rabbit	Muscle	CARD20/130513	2.4		0.95	<0.5	<0.5	<0.5 0	68	v	1 0.6	350	<0.5	
N13/012594X	RA8-1	Fiskville	Rabbit	Muscle	CARD20/130513	2.2		0.58	<0.5	<0.5	<0.5 0	93	V	1 <0.5	380	<0.5	
N13/012594DUP	RA8-1	Fiskville	Rabbit	Muscle	CARD20/130513	3.2		0.88	<0.5	<0.5	<0.5 1	.2	~	1 <0.5	510	<0.5	
N13/012594SPK 17 ng/g, 14 ng/g for 6:2 FtS	RA8-1	Fiskville	Rabbit	Muscle	CARD20/130513	24		25	23	24	24	55	2	6 26	530	16	
BLK L869					CARD20/130513	<0.5		<0.5	<0.5	<0.5	<0.5 <	0.5	~	1 <0.5	<0.5	<0.5	
N13/015963X	RA3-1	Fiskville	Rabbit	Muscle	CARD20/130614	<0.5		<0.5	<0.5	<0.5	<0.5 <	0.5	~	1 <0.5	110	<0.5	
N13/015964X	RA4-1	Fiskville	Rabbit	Muscle	CARD20/130614	0.99		<0.5	<0.5	<0.5	<0.5 <	0.5	V	1 <0.5	150	<0.5	
134925-1 (Asure Quality)	RA4-2	Fiskville	Rabbit	Muscle	134925		68	<1.0	<1.0	<2.0	<1.0 <	2.0 <	1.0	<2.0	140	<1.0	<2.0
N13/015965X	RA6-1	Fiskville	Rabbit	Muscle	CARD20/130614	0.83		<0.5	<0.5	<0.5	<0.5 <	0.5	~	1 <0.5	220	<0.5	
134925-2 (Asure Quality)	RA6-2	Fiskville	Rabbit	Muscle	134925		32	<1.0	<1.0	<2.0	<1.0 <	2.0	9.1	<2.0	190	<1.0	8.6
N13/015966X	RA7-1	Fiskville	Rabbit	Muscle	CARD20/130614	3.7		0.71	<0.5	<0.5	<0.5 <	0.6	V	1 <0.5	600	<0.5	
N13/015967X	RA9-1	Fiskville	Rabbit	Muscle	CARD20/130614	<0.5		<0.5	<0.5	<0.5	<0.5 <	0.5	~	1 <0.5	150	<0.5	
134925-3 (Asure Quality)	RA9-2	Fiskville			134925		40	<1.0	<1.0	<2.0	<1.0 <	2.0	2.7	<2.0	140	<1.0	<2.0
N13/015968X	RA10-1	Fiskville	Rabbit	Muscle	CARD20/130614	1.3		<0.5	<0.5	<0.5	<0.5 <	0.5	V	1 <0.5	110	<0.5	
N13/015965 DUP L879	RA6-1	Fiskville	Rabbit	Muscle	CARD20/130614	0.46		<0.5	<0.5	<0.5	<0.5 <	0.5	~	1 <0.5	220	<0.5	
N13/015965 SPK L879 19 ng/g, 15 ng/g for 6:2 FtS	RA6-1	Fiskville	Rabbit	Muscle	CARD20/130614	16		15	17	15	16	۲e	1	5 10	240	18	
BLK L879					CARD20/130614	<0.1		<0.07	<0.02	<0.1 <	0.04 <	0.4	~	3 <4	<0.5	<0.1	
134925-BL					134925		<1.0	<0.1	<0.1	<2.0	<1.0 <	2.0 <	1.0	<2.0	<8.0	<1.0	<2.0
Sample Jar L8799 (Rinsate)			Rinsate	Water	CARD20/130614	<0.5		<0.5	<0.5	<0.5	<0.5 <	0.5	~	1 <1	<1	<0.5	
Number of Samples (total)	15																
Total Number of Analysis (Inc. Blank, Spikes and	I Duplicate)					16	4	20	20	20	20	50	4 1	6 20	20	20	4
Number of Blanks - NMI and AQ (Analysis)	m																
Number of Duplicates - NMI (Analysis)	2					PFPeA	PFHxS	PFHXA	PFHpA F	FOA P	FNA PF	Id VO	DS PFL	JdA PFDo.	A PFOS	6:2 FTS	8:2 FtS
	,						•					-	ļ		•		•

Number of Samples (total)	15														
Total Number of Analysis (Inc. Blank, Spikes and D	uplicate)		16	4	20	20	20	20	20	4	16	20	20	20	4
Number of Blanks - NMI and AQ (Analysis)	3														
Number of Duplicates - NMI (Analysis)	2		PFPeA	PFHxS	PFHXA	PFHpA	PFOA	PFNA F	FDA P	FDS P	FUdA	PFDoA	PFOS	6:2 FTS	8:2 FtS
Number of Interlaboratory (Analysis)	3	Analysis less than LOQ (Not inc. blanks)	4	0	11	15	15	15	12	2	11	14	0	15	с
Number of Spikes (Analysis)	2	Number of Detects (Not inc. spikes)	7	с	4	0	0	0	e	2	0	1	15	0	1
QA/QC Ratio	> 1:5	Sample Percentage detects (Total) (Not including blank, spikes)	47%	75%	27%	%0	%0	%0	20%	50%	%0	7%	100%	%0	25%

							S	urrogate	recovery	%		
PFUdA	PFDoA	PFOS	6:2 FTS	PFF	ţx Ą	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS	6:2 FTS
				4	61	63	68	54	64	62	51	80
				9	54	79	63	74	82	62	47	68
				2	51	66	39	42	60	45	32	94
<lor< td=""><td><lor< td=""><td>-29.2</td><td>1</td><td>9</td><td>51</td><td>68</td><td>34</td><td>53</td><td>71</td><td>71</td><td>27</td><td>54</td></lor<></td></lor<>	<lor< td=""><td>-29.2</td><td>1</td><td>9</td><td>51</td><td>68</td><td>34</td><td>53</td><td>71</td><td>71</td><td>27</td><td>54</td></lor<>	-29.2	1	9	51	68	34	53	71	71	27	54
149%	151%	134%	112%	9	0	74	42	68	73	64	30	69
149%	151%	101%	112%	ß	22	64	35	52	60	56	28	72
				S	1	69	65	57	58	51	42	69
				10	60	109	95	113	74	31	62	127
	<lor< td=""><td>6.9</td><td><lor< td=""><td>1</td><td>16</td><td>122</td><td>87</td><td>130</td><td>79</td><td>33</td><td>60</td><td>133</td></lor<></td></lor<>	6.9	<lor< td=""><td>1</td><td>16</td><td>122</td><td>87</td><td>130</td><td>79</td><td>33</td><td>60</td><td>133</td></lor<>	1	16	122	87	130	79	33	60	133
				1	15	115	118	134		92	104	75
	<lor< td=""><td>14.6</td><td><lor< td=""><td>1</td><td>23</td><td>122</td><td>72</td><td>86</td><td>59</td><td>17</td><td>45</td><td>125</td></lor<></td></lor<>	14.6	<lor< td=""><td>1</td><td>23</td><td>122</td><td>72</td><td>86</td><td>59</td><td>17</td><td>45</td><td>125</td></lor<>	1	23	122	72	86	59	17	45	125
<lor< td=""><td><lor< td=""><td>0.0</td><td><lor< td=""><td>1</td><td>13</td><td>116</td><td>113</td><td>116</td><td></td><td>84</td><td>78</td><td>70</td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.0</td><td><lor< td=""><td>1</td><td>13</td><td>116</td><td>113</td><td>116</td><td></td><td>84</td><td>78</td><td>70</td></lor<></td></lor<>	0.0	<lor< td=""><td>1</td><td>13</td><td>116</td><td>113</td><td>116</td><td></td><td>84</td><td>78</td><td>70</td></lor<>	1	13	116	113	116		84	78	70
				1	19	106	40	67	41	12	26	93
	<lor< td=""><td>6.9</td><td><lor< td=""><td>1</td><td>15</td><td>117</td><td>85</td><td>108</td><td>69</td><td>27</td><td>51</td><td>94</td></lor<></td></lor<>	6.9	<lor< td=""><td>1</td><td>15</td><td>117</td><td>85</td><td>108</td><td>69</td><td>27</td><td>51</td><td>94</td></lor<>	1	15	117	85	108	69	27	51	94
				1(60	110	113	112		104	103	68
				1	22	119	92	113	60	20	58	112
77%	52%	100%	118%	11	35	125	91	125	83	28	49	113
77%	52%	100%	118%	1	16	115	75	110	75	34	49	119
				6	66	75	49	15	6	1	20	59
				6	96	79	82	41	16	4	35	90

PFPeA PFHxS PFHxA PFHpA PFOA PFNA PFDA PFDS

Blanks Sum

CARDNO Ref.

Laboratory Reference Number

N13/012591X N13/012592X -25.4 139% 137%

<LOR 139%

<LOR 139%

<LOR 133%

-41.1 142% 140%

-37.0 125% 119%

% RPD Primary Duplicate

RA8-1 & 1

RA1-1 RA2-1 RA5-1 RA8-1 RA8-1 RA8-1

> N13/012593X N13/012594X N13/012594DUP N13/0125945PK 17 ng/g, 14 ng/g for 6:2 FtS

<LOR

<LOR <LOR

<LOR

<LOR

% RPD

N13/015964X 134925-1 (Asure Quality) N13/015965X

V13/015963X

3LK L869

134925-2 (Asure Quality) N13/015966X .34925-3 (Asure Quality)

113/015967X

<LOR

<LOR <LOR <LOR <LOR <LOR <LOR</p><LOR <LOR <LOR</p>

<LOR <LOR

57.4

% RPD % RPD <LOR

<LOR

<LOR

<LOR

<LOR

% RPD

RA3-1 RA4-1 RA4-1 RA4-2 RA4-2 RA6-1 RA6-1 RA6-1 RA9-1 RA9-1 RA9-1 RA9-1 RA6-1 RA6-1 RA6-1

 78%
 83%
 83%

 78%
 83%
 83%

88% 88%

78% 78%

81% 82%

Primary Duplicate

N13/015968X N13/015965 DUP L879 N13/015965 SPK L879 19 ng/g, 15 ng/g for 6:2 FtS BLK L879

l34925-BL

<LOR <LOR

%RPD and Spike Recovery

ampie Jar L8799 (Kinsate)		<luk< th=""></luk<>
Jumber of Samples (total)	15	_
otal Number of Analysis (Inc. Blank, Spikes and I	uplicate)	
Jumber of Blanks - NMI and AQ (Analysis)	ę	
Jumber of Duplicates - NMI (Analysis)	2	
Jumber of Interlaboratory (Analysis)	£	
Jumber of Spikes (Analysis)	2	
QA/QC Ratio	> 1:5	

	PFHXA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFOS	6:2 FTS
Minimum	49	63	34	15	9	1	20	54
Maximum	135	125	118	134	83	104	104	133

Surrogate Recovery Summary

2	
÷	
0	
2	
Ð	
00	
σ	
Δ.	

C Cardno

Appendix G 69 Pages

Health Effects Assessment: Consumption of Fish

ABN: 55 158 303 167 PO Box 316 Darling South, VIC 3145 Tel: 03 9569 3918/ 03 9572 1448 Fax: 03 9563 5330

Health impact assessment from consumption of fish from Lake Fiskville

Prepared by: Roger Drew, PhD, DABT Tarah Hagen, MSc, ToxConsult Pty Ltd.

Prepared for: Rob Jamieson Ashurst

> ToxConsult document ToxCR061113-RF2 1st April 2014

Roger Drew, PhD, DABT (Diplomate American Board of Toxicology)

Tarah Hage

Tarah Hagen, MSc (Environmental Toxicology)

Document history

Report No.	Date issued	Prepared by	Reviewed by	Document/Revision type
ToxCR061113-Rd1	23/01/2014	R. Drew	T. Hagen	Original draft for comment
ToxCR061113-RF1	10/03/2014	R. Drew	T. Hagen	Final report
ToxCR061113-RF2	01/04/2014	R. Drew	T. Hagen	Second final report amending three typographical faults identified by peer reviewers.

Distribution of Copies

Report No.	Issued to	Sent by	Mode of issue
ToxCR061113-Rd1	R Jamieson, Ashurst	R Drew	Word document with comments in margins
ToxCR061113-RF1	R Jamieson, Ashurst Prof. B. Priestly	R.Drew	Secure PDF
ToxCR061113-RF1	R Jamieson, Ashurst	R.Drew	Secure PDF

Disclaimer

This report was prepared by ToxConsult Pty Ltd as an account of work for Ashurst (the 'Client'). This report should be read, and used in its entirety. The material in it reflects ToxConsult's best judgement in the light of the information available to it at the time of preparation. However, as ToxConsult cannot control the conditions under which this report may be used, ToxConsult will not be responsible for damages of any nature resulting from use of or reliance upon this report. ToxConsult's responsibility for the information herein is subject to the terms of engagement with the client. Information provided by the client has been used in good faith; ToxConsult has not, and was not required to, verify its veracity.

Copyright and any other Intellectual Property associated with this report belongs to ToxConsult Pty Ltd and may not be reproduced in any form without the written consent of ToxConsult. The Client, and only the client, is granted an exclusive licence for the use of the report for the purposes described in the report.

About ToxConsult Pty Ltd

About the authors:

Dr Drew

Dr Roger Drew is one of the principal consultants of ToxConsult Pty Ltd. He has primary degrees in biochemistry and pharmacology and postgraduate degrees in toxicology. Postdoctoral training was undertaken at the National Institutes of Health, National Cancer Institute in the USA. He has more than 30 years of toxicological and risk assessment experience in academia, industry and consulting. He has provided advice to a range of industries and Government authorities and has significantly participated in developing risk assessment practice in Australia. Dr Drew is one of just a few toxicologists in Australia certified by the American Board of Toxicology.

Dr Drew is also Adjunct Associate Professor in the Department of Epidemiology and Preventive Medicine, Monash University and teaches various aspects of toxicology and risk assessment to undergraduate and postgraduate students at local Universities. He is a member of several professional toxicology societies and is a recognised national and international expert in toxicology and risk assessment. He is currently on the editorial board of the international scientific journal "Regulatory Toxicology and Pharmacology".

Ms Hagen

Tarah Hagen is a director and senior consultant at ToxConsult Pty Ltd providing ecotoxicology and risk assessment services to a broad range of industries and government bodies. She has a Masters degree in Environmental Toxicology and Pollution Monitoring, an honours degree in ecotoxicology, and a degree in Applied Science (Biological Sciences).

Executive Summary

As a result of past training practices at Fiskville, the water and sediment of Lake Fiskville has high concentrations of perfluorochemicals (PFCs). From their extensive use in consumer products these chemicals are also ubiquitous in the general and human environment. The biota in Lake Fiskville has assimilated PFCs present in lake water and/or sediment to a much larger extent than expected from background exposure.

In particular redfin fish from the lake have very high concentrations of perfluorooctane sulphonate (PFOS) in their flesh. This is also the PFC which is at the highest concentration in water and sediment and is the PFC of concern within the lake and biota. Concentrations of PFOS in redfin were higher than those in fish considered by overseas agencies as being unfit for consumption. As soon as it became apparent to CFA management that employees were catching and consuming fish or eels from the Lake staff were advised verbally and by newsletter not to fish the lake, and prominent signs were erected at the lake to that effect. Further notices were placed in local newspapers to advise the local community.

Significant uncertainties regarding the extent and frequency that fish or eel were consumed, and lack of PFOS data in eels, precluded assessing health risk from eating fish using a traditional tolerable daily intake (TDI) approach. Because the toxicological effects of PFOS are directly related to serum concentrations, and the sensitive effects in monkeys are changes in blood biomarkers that are routinely evaluated by medical doctors for health status, persons who had eaten fish in the past were invited to voluntarily participate in a health surveillance program. This was also open to persons who may not have eaten fish but were nonetheless concerned they may have been exposed to PFCs while working at Fiskville. This 'fish consumption' health surveillance program was an extension of the health status surveillance package already in place for CFA PAD workers. Additional to the existing medical surveillance of medication examination and measurement of routine blood parameters was quantitation of heavy metals in blood and PFC concentrations in serum. Participants were asked if their de-identified results could be made available, via the CFA medical officer, to the consulting toxicologist and thence to the CFA in the form of this report. Participation in the 'fish consumption' health surveillance program was not contingent upon agreement to share de-identified information, however all participants agreed their data could be made available.

Serum PFC measurements were undertaken by a commercial laboratory that included appropriate blanks, PFC spikes and duplicate analysis of samples chosen randomly. While internal standard recoveries for some samples were lower than the range regarded as ideal by the laboratory, the data are considered reliable for assessment of potential health risk.

To preserve anonymity, PFC serum concentrations are discussed in a general sense in this report.

Twelve of the 22 participants in the 'fish consumption' health surveillance program indicated that they had eaten fish or eel from the Lake in the past. For no person in the surveillance program were there changes in blood clinical chemistry parameters that could be attributed to PFOS. While recognising the very small sample size limits confidence in the data interpretation, regression analysis of *a priori* individual blood parameters with serum PFOS levels for either the entire cohort or just those that ate fish indicated no associations. Nevertheless there were a number of individuals in both the fish eating and non-fish eating groups that had blood parameter measurements outside the population reference range. The medical officer attributed all these to life style factors (e.g. alcohol consumption), body mass index, existing disease, and/or medication (including non-compliance). Where appropriate the medical officer referred people to their own medical practitioner.

Of the 10 PFCs looked for in human serum (chosen for their presence in Lake water or fish) only two were present at measurable concentrations in the serum of program participants. These were PFOS and perfluorooctanoic acid (PFOA). All PFOA measurements were approximately an order of magnitude less than the expected background concentrations for this compound. This indicates fish consumption has not contributed to human PFOA serum concentrations; not unexpected since redfin did not have measurable concentrations of PFOA in their flesh. PFOA was therefore not considered further in the risk assessment.

Many animal studies have shown toxicological effects of PFOS are directly related to serum concentrations. The potential health impact of serum PFOS concentrations measured in participants of the health surveillance program has been assessed in a number of ways.

- Comparison with 'background' serum concentrations.
 - A review of many publications reporting PFOS serum concentration in general communities showed the majority of adults would be expected to have a concentration <0.1 mg/L.
- Comparison with a human serum level considered to be without effects in humans. Three different methods were used to establish a serum no observed effect level (serum NOEL) of 2 mg/L. These were:
 - o Dose response analysis of a number of occupational epidemiology studies,
 - \circ $\;$ Derivation from monkey and rat serum NOELs using standard uncertainty factors, and
 - Conversion of the TDI set by the European Food Safety Authority into an equivalent steady state serum concentration.

 Calculation of margin of exposure (MOE) is a standard risk characterisation method widely used by Australian authorities. However instead of using experimental doses applied to animals and an uncertain estimated human intake in the calculation, the animal serum NOEL from toxicological studies and serum concentrations measured in program participants were used. While an acceptable MOE based on external dose is 100, that based on serum concentrations is 25. MOEs for four different endpoints (low birth weight, blood biomarkers, liver toxicity, and hepatic adenomas) were estimated.

Four persons had serum PFOS concentrations above that identified as the higher end of the normal range expected from background (i.e. resulting from day to day living). All were below the serum NOEL, indicating low risk for adverse health effects. Available information on fishing frequency by some participants in the program suggests serum PFOS concentrations in persons who may not have been included in the cohort were unlikely to be materially different from those measured in the surveillance program.

The Margin of Exposure (MOE) estimations calculated using current measured serum PFOS concentrations and serum NOELs identified in animal toxicity experiments also indicated very low risk for adverse health effects.

When current serum concentrations were extrapolated back to theoretical levels that may have existed 5 or 10 years previously, and assuming no further fish consumption, both comparison with the human serum NOEL and the calculated MOEs indicate adverse health effects were unlikely to have arisen due to these hypothetical serum PFOS concentrations.

Overall, it is concluded existing serum PFOS concentrations, or past theoretical concentrations, are unlikely to give rise to adverse health effects.

Contents

Executive Summary	4
Contents	7
1. Introduction	8
 PFC concentration in water and fish	9 9 9 14
 Health surveillance program. Overview. Data interpretation	15 15 16 21 21 23 24
 4. Risk characterisation	24 24 26
5. Conclusions	29
6. Uncertainty analysis	30
References	33
Appendix A: Glossary	43
 Appendix B: Determination of serum PFC concentrations for risk characterisation. B.1 Background human PFC serum concentrations B.2 Human no effect serum concentration (PFOS) B2.1 Occupational epidemiology studies. B2.2 Animal serum PFOS no observed effect level (NOEL) B2.3 Conversion of TDI to serum concentration. B.3 Studies supporting margin of exposure calculations. 	45 45 48 48 51 56 57
Appendix C: Program surveillance tests	59
Appendix D: Regression analysis of blood parameters with PFOS levels	61
Appendix E: Letter to CFA CEO	65
Appendix F: International fish advisories	67

1. Introduction

The 'Joy' report (IFI 2012) made a number of recommendations concerning examining potential environmental contamination that may have arisen as a result of historical fire fighting training at the CFA Fiskville training ground. During these investigations it was discovered the sediment and water of Lake Fiskville had become contaminated with perfluorinated chemicals (PFCs). Consultation with a few long term CFA Fiskville employees revealed the Lake had in the past been stocked with Redfin Perch and some employees, over a number of years, had occasionally caught and eaten fish from the Lake.

An initial analysis of a few fish for PFCs showed they, and other organisms in the Lake, had accumulated some of the PFCs found in the water and sediment. In particular perfluorooctane sulphonate (PFOS) was present in very high concentrations in muscle and liver of Redfin. Staff were instructed not to fish the Lake and 'no fishing' signs were erected.

The initial analysis of Redfin was on just four fish, which were the largest of those caught in the sampling program undertaken. Based on recollections of a long term CFA employee for fishing frequency, the numbers of fish caught and the concentration of PFOS in muscle of these four fish, a preliminary informal risk assessment was undertaken to determine potential impact to persons who may have eaten fish from the Lake. The assessment utilised human toxicokinetic information from the scientific literature to predict potential PFOS serum concentrations. It canvassed a range of fish consumption patterns constructed around the anecdotal fishing information provided by the long term employee. The modelling of some of the assumed high consumption patterns suggested high PFOS serum concentrations may occur. At this time the Victorian Department of Health were advised of the situation and of the follow up work that was planned to address significant uncertainties in the modelling of the preliminary assessment.

Major uncertainties in the initial assessment were PFOS concentration data being limited to analysis of just four fish, and no real knowledge of how much fish a person ate or when. The former was addressed by analysis of additional Redfin flesh (in total 21) and the latter by extending the existing CFA personnel health surveillance program to include persons who may have eaten fish. Analysis of blood serum PFCs was added to the existing program for these persons.

This brief report is an updated health risk assessment (HRA) for persons who have eaten fish from Lake Fiskville. However, unlike the preliminary risk assessment it does not rely on toxicokinetic modelling of potential PFOS serum concentrations. The modelling is now redundant. The

assumptions and uncertainties inherent in such modelling are replaced by measured serum concentrations.

Cardno Lane Piper (CLP) has produced a series of reports that document the site investigation and chemical concentrations in various media at Fiskville. To enable this report to be read as a standalone document, relevant analytical data have been extracted from the CLP reports to provide contextual information. Nevertheless the reader is encouraged to consult the cited CLP reports for the complete analytical data and how it was gathered and quality assessed.

2. PFC concentration in water and fish

Detailed information on the concentrations of PFCs in Lake Fiskville and organisms in the Lake and the recycled water dams at Fiskville can be found in the Cardno Lane Piper reports entitled "*Surface Water and Sediment Contamination Assessment*" (CLP 2013c) and "*Ecological Assessment*" (CLP 2013b). For completeness and ease of reading a summary of the relevant data is provided herein.

2.1 PFCs in Lake Fiskville

Table 2.1 summarises the PFC concentrations in Lake Fiskville. There were measureable concentrations of eight PFCs in the water column and three in sediment. Of these PFOS has the highest concentration. A glossary of PFC nomenclature and abbreviations can be found in Appendix A.

2.2 PFCs in fish

The analysis of PFCs in biological matrices is not straightforward. In particular for PFOS there is potential, but inconsistent interference by unknown substances¹. In addition, the literature (van Leeuwen et al. 2006, Malinsky 2009) indicates there can be marked variability within and between laboratories. The inclusion of stable isotope internal standards largely, but not completely, overcomes these issues (van Leeuwen et al. 2009). The analytical program for Redfin muscle analysis was cautiously designed by Cardno Lane Piper to include tissue duplicates, laboratory duplicates, split muscle samples for inter-laboratory comparison, and replicates. While there were instances of poor recovery of internal standard and poor replicates, Cardno Lane Piper undertook a careful quality

¹ Personal communication with National Measurement Institute, Sydney and AsureQuality analytical services, New Zealand.

control examination of the data (CLP 2013a)² and concluded the analyses were accurate and could be relied upon.

Table 2.2 summarises the PFC concentrations in a range of organisms sampled from Lake Fiskville in December 2012. The information in the table is derived from CLP (2013d, e)³. In all organisms it is apparent that PFOS bioaccumulates to a much greater extent (by 3 – 4 orders of magnitude) than do other PFCs. This is consistent with the scientific literature (Conder et al. 2008, de Silva et al. 2011, Giesy et al. 2010, Haukås et al. 2007, Houde et al. 2011, Martin et al. 2003a, b, 2004; Morikawa et al. 2006), and that different organisms bioconcentrate PFOS to different degrees. Redfin are at the top of the aquatic food chain in Lake Fiskville and therefore biomagnify PFOS the greatest (McDowell 1996, as cited in CLP 2013b; NSW DPI 2014; Waterwatch Vic undated, Humphries and Walker 2013). While it may appear Mosquito fish and yabby have taken up a range of PFCs dissimilar to those in Redfin muscle this is probably because the former animals were analysed whole (i.e. included internal organs). Redfin liver contained the same PFCs as Mosquito fish and yabby (CLP 2013b); the redfin liver data is not replicated in this report because it is a tissue not eaten by humans.

² The information contained in CLP (2013a) is also available in CLP (2014a, b).

³ The information contained in CLP (2013d) is also available in CLP (2014a, b).

PFC	Sediment (ng/g)	Water (ng/mL)
PFBA	-	-
PFPeA	-	-
PFBS	ND	1.4 ^b
PFHxS	12.6 ^b	4.4 ^b
PFOS	225 ^a (57 – 785)	13.3 ^a (8 8 – 17 7)
PFDS	ND	ND
PFHxA	ND	4.8 ^b
PFHpA	ND	0.7 ^b
PFOA	ND ^c	0.58 ^a (0.48 – 0.76)
PFNA	ND	0.04 ^b
PFDA	ND	ND
PFUdA	ND	ND
PFDoA	ND	ND
PFTrDA	ND	ND
PFOSA	ND	ND
NEtFOSA	ND	ND
NEtFOSAA	-	-
NMeFOSA	ND	ND
NMeFOSAA	-	-
NEtFOSE	ND	ND
NMeFOSE	ND	ND
4:2 FtS	-	-
6:2 FtS	12.8 ^a (<5 – 24)	5 ^a (3.5 – 7.4)
8:2 FtS		-

Table 2.1: PFCs in sediment and water of Lake Fiskville.

ND = not detected;

- = not in analytical suite.

^a The data are the average (range in brackets) PFC concentration measured in August 2012 at various locations/depths in the lake. It should be noted that for PFCs other than PFOS, PFOA and 6:2FtS only one sample of water and sediment (LFWE2.0/06082012 or LFSE0.1/02082012) was analysed for the complete suite of PFCs. Information in the table has been compiled from data in CLP (2013c) and ALS analysis certificates (EM1208900,

EM1208979, EM1209107) provided by CLP for the water and sediment sample that underwent full PFC analysis. b

Data are the average of the primary sample and its laboratory duplicate.

^c For PFOA in sediment 4 of 5 measurements were below the LoR (0.0005 mg/kg), one measurement was marginally above the LoR (0.0007 mg/kg).

	Organism				
PFC conc (ng/g)	Redfin muscle n=21 ^b	Mosquito fish whole n= 3	Yabby whole n=4	Freshwater shrimp whole n=1	Macrophyte ^d n=3
PFBA	ND	-	-	-	-
PFPeA	ND	ND	6 (3.4 – 11)	2.1	3.3 (<2 – 6.2)
PFOS	9,906 (4,200- 23,500) ^c	38,667 (30,000–50,000)	2,540 (560 – 5,000)	260	1,040 (440 – 1,440)
PFHxA	ND	ND	2.8 (1.2 – 6.9)	2.1	4.8 (3.2 – 5.7)
PFHpA	ND	2 (<2 – 2.5)	2.6 (<2 - 4.4)	ND	ND
PFOA	ND	3.3 (2.3 – 4.5)	20.5 (18.2 – 23.2)	ND	1.7 (<2 – 3.2)
PFNA	ND	4.7 (2.3 – 6.4)	7.6 (4.5 – 10.8)	2.3	ND
PFDA	8.1 (4.3 – 13)	9.2 (6.3 – 12.3)	7.4 (2.4 – 15.1)	2.2	ND
PFUdA	28 (14 – 45.8)	33.6 (25 – 40.2)	26.6 (5.8 – 51.6)	2.5	2 (<2 – 2.6)
PFDoA	1.9 (<2 – 3.5)	3.4 (2.6 – 3.7)	14.8 (<2 – 40.1)	ND	ND
6:2 FtS	3.6 (1.3 – 5.3)	-	-	-	-
PFBS ^e	ND	-	-	-	-
PFHxS ^e	11.8 (6.5 – 16)	-	-	-	-
PFDS ^e	16.5 (11 – 22)	-	-	-	-
PFTrDA [°]	3.1 (1.6 – 4.8)	-	-	-	-
PFTeDA ^e	ND	-	-	-	-
PFOSA®	2.2 (1.7 – 2.8)	-	-	-	-
NEtFOSAA ^e	ND	-	-	-	-
NMeFOSAA ^e	ND	-	-	-	-
8:2 FtS ^e	25.4 (20 – 32)	-	-	-	-

Table 2.2: PFC concentrations in organisms sampled from Lake Fiskville ^a

n = number of specimens; - = not analysed; ND = Not Detected. Values are mean concentrations with the range provided in parenthesis.

^a This table is compiled from a Cardno Lane Piper (CLP 2013d) file note⁴ and spread sheet (CLP 2013e) as supplied in email from Ashurst 15/08/2013 for sampling undertaken in December 2012 at Lake Fiskville. Measurements reported as less than the detection limit were assumed to be at half the detection limit for calculation of an average. Depending on the PFC, batch run or organism type, limits of detection were 0.5, 1, 2 or 5 ng/g.

Note the units (ng/g) are as reported by the analytical laboratory, elsewhere in this report they have been converted to (mg/kg) for ease of comparison with other information.

^b Redfin data is for 21 specimens, but the calculated mean value includes laboratory duplicate and replicate samples for a maximum total of 34 results for PFOS, PFOA and some other PFC's. In addition not all fish were analysed for all PFCs, so there may also be less than 21 values for calculating an average, see also Footnote 'e'.

⁴ The information in CLP (2013d) is also available in CLP (2014a, b).

^c There were two fish with PFOS concentrations of about 23,000 ng/g that were analysed in the initial batch of 4 fish from Lake Fiskville, these were the largest of the redfin that were caught. These two fish were stored frozen and reanalysed by the same laboratory (NMI) some months later and returned concentrations of 15,000 ng/g; PFOS is very stable and freezing and thawing is not expected to result in degradation of PFOS, it may however change the matrix of the fish such that less interfering substances are co-extracted with PFOS. Recent developments for analysing PFCs in fish include a freezing step to enhance protein precipitation after tissue has been homogenised with extraction solvent (Malinsky 2009, Malinsky et al. 2011). In calculating the average all data has been used. The average without the additional analysis of the two fish is 8,260 ng/g. Additional information on the impact of the replicates of these fish is depicted in Figure 2.1.

^d A macrophyte is an aquatic plant (*Potamogeton sp.* is a species of pondweed).

^e These PFCs were only reported by AsureQuality in eight redfin samples used for inter-laboratory comparison. Averages for other PFCs include the results from both NMI (the primary analytical laboratory) and AsureQuality, with the exception of PFBA and PFPeA. The latter PFCs were only reported by NMI.

From the analysis of PFCs in water of Lake Fiskville and associated biota it is patent that PFOS is the PFC of potential concern. In comparison to concentrations of PFOS in Lake Fiskville and biota, the measured levels of other PFCs were not significant. Importantly PFOA was not detected in Redfin muscle.

Information obtained in consultation with CFA Fiskville personnel indicated anglers kept all redfin that were caught at the Lake, regardless of size. An examination of PFOS concentration in Redfin muscle with fish size shows only a weak correlation (Figure 2.1). This is consistent with other investigations which have found PFOS concentrations in fish muscle within or between species were not positively correlated with fish age or size (Becker et al. 2010, De Silva et al. 2011, Exponent 2011, Hoff et al. 2003, Martin et al. 2004, MPCA 2010, Murakami et al. 2011).

The concentration of PFOS in Redfin muscle, across a wide range of fish sizes (approximately 40 – 800g), is about 5,000 – 13,000 ng/g fish ⁵. These fish concentrations are approximately ten times higher than levels at which a number of international authorities have made recommendations the fish should not to be eaten (Dutch VWA 2008, German FIRA 2006, Alabama DoPH undated, Minnesota MDH 2008, Ontario MoE 2013). Fish advisories set by various authorities use quite conservative assumptions about lifetime patterns of exposure. Consuming fish with higher concentrations occasionally, or for a short period, does not automatically mean unacceptable health risk for the person, or that adverse health effects will occur. The fish advisories are discussed in more detail in Appendix F.

The availability of serum PFOS concentrations in persons who have acknowledged eating fish from Lake Fiskville negates the need to undertake a 'traditional' risk assessment based on PFOS fish concentrations and assumptions about how much fish, or eel, were caught and eaten. If such an assessment were to be done, it is the average PFOS concentration in the consumed flesh that is most

⁵ This range excludes the two fish that initially analysed at approximately 23,000 ng/g but on re-analysis returned 15,000 ng/g.

appropriate to use for exposure estimations. However it is inappropriate⁶ to use a tolerable daily intake (TDI) for risk characterisation when exposure is known to be infrequent and potentially for just a few years (i.e. a small fraction of a lifetime).

Figure 2.1: Correlation of PFOS concentration in Redfin muscle with fish size.

The red data points are for two fish originally returning PFOS concentrations of 22,800 and 22,650 ng/g. Reanalysis of these tissue samples sometime later gave results of 15,000 ng/g for each. Since there is uncertainty regarding these data they have not been included in the regression analysis.

The equation of the line is y = 4.4693x + 5441.2; $R^2 = 0.273$. Thus there is no positive association between PFOS concentrations in redfin muscle and the size of the fish. This is consistent with literature information. If the red data points are included in the regression analysis, the equation is y = 10.821x + 3734.4; $R^2 = 0.351$.

2.3 Other substances in fish

In addition to PFCs, the initial four Redfin were also analysed for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc).

⁶ It is inappropriate to use the common risk characterisation method in these circumstances because the TDI is established on the assumption the food commodity is eaten every day for a lifetime (70 yrs). In the situation at Fiskville fish were eaten infrequently for relatively few years; averaging the total intake of PFOS over a life time dilutes the potential risk. For substances with long half-lives it is possible the total intake over a short period may increase body burden (measured as serum concentration) to levels potentially associated with changes in biomarkers of certain common diseases. This may not be recognised if intake was averaged over a life time in order to match the TDI. In addition marked uncertainty with regard to estimating intake of PFOS by persons at Fiskville via their historical fish consumption renders comparison with the TDI spurious.

Concentrations of arsenic, cadmium, chromium, lead and nickel in Redfin muscle were less than or marginally greater than the limit of reporting (0.01 or 0.05 mg/kg wet weight). Concentrations of copper (0.09 – 0.25 mg/kg ww) and zinc (3.4 – 4.3 mg/kg ww) were well within background concentrations in fish (Arellano et al. 1999, Zeynali et al. 2009, Jones et al. 2000) and below maximum residue limits (MRLs) for human consumption (APVMA 2013, EFSA 2012a).

Mercury in Redfin muscle ranged from 0.42 - 0.59 mg/kg wet weight (mean 0.48 mg/kg ww). The mean concentration in the four fish was just below the MRL of 0.5 mg/kg (FSANZ 2013). None of the participants in surveillance program had elevated blood mercury concentrations that were associated with eating fish from Lake Fiskville (Section 3.3).

3. Health surveillance program

3.1 Overview

For some time CFA have had a health surveillance program in place for its personnel. This was extended on a voluntary basis to all persons and their families who had eaten fish from Lake Fiskville, or had concerns about other possible exposure to PFCs at Fiskville. Entry into the program was not restricted to CFA personnel. Fiskville staff were informed verbally and by newsletter of the program, and advertisements were run in the local newspaper. People who thought they knew someone who might have eaten fish from Lake Fiskville were encouraged to inform them of the program, or give CFA hygiene staff their name so they may be contacted. Where possible these persons were contacted by telephone.

In addition to obtaining a blood sample for analysis of PFCs, all persons had additional blood taken for measurement of heavy metals and, as per the existing program, for haematology parameters and clinical chemistry screening that included tests for liver, kidney and thyroid function ⁷. A detailed list of

⁷ The blood sampling program was coordinated by the Organisational Health & Wellbeing department of the CFA. Blood was obtained by a trained phlebotomist from a pathology laboratory engaged by the medical officer. The pathology laboratory also prepared serum and organised sample shipment to the laboratory measuring PFCs. Blood chemistry parameters and heavy metals were done using standard techniques employed by the pathology laboratory with results reported against the population reference range used by the laboratory.

Serum PFC analysis was undertaken by the National Measurement Institute (NMI). The method of determination was by High Performance Liquid Chromatography tandem Mass Spectrometry (HPLC-MS-MS). Prior to extraction the sample was spiked with a range of isotopically labelled surrogate standards followed by solid phase extraction. An aliquot of extract was injected onto the HPLC and separated PFCs detected and quantitated using mass spectrometry. Results were corrected for recovery of labelled surrogates. Included in batch analysis runs were calf serum matrix blanks that had, or had not, been spiked with known amounts of PFCs.

tests and the suite of PFCs looked for in serum is in Appendix C. Furthermore individuals had their medical history obtained and a general medical examination by the contracted medical officer. At the examination the medical officer made enquiries regarding medications they may be taking and when and how much fish they may have eaten from Lake Fiskville.

All persons entering the program were adults and agreed to have the results of their tests made anonymously available for evaluation. However as explained to all participants this was not a condition of entry into the program. Only the medical officer was aware of the identity of the people in the program, he presented the de-identified data to the consulting toxicologist, who with the medical officer interpreted the information.

3.2 Data interpretation

Information from the general medical screening part of the health surveillance program was evaluated as is usually done by medical practitioners. That is, an individual's blood parameters were interpreted against population reference ranges in conjunction with their medical history and condition, the concomitant medical examination, and the medical expertise of the medical officer.

An important consideration is that clear adverse effects of PFOS have only been documented in animal studies and the effects are directly related to PFOS serum concentrations in the animals. When interpreting serum PFOS concentrations in the Fiskville cohort it also needs to be remembered that the measurement represents an aggregation of several modes of potential exposure. These include background exposure, possible past consumption of fish, and perhaps also historical exposure to firefighting foams that contained PFOS. Included in the cohort were some of the PAD operators.

To interpret the PFCs measured in the serum of program participants, two 'indicator' serum concentrations were constructed as comparators (see Appendix B for details). These comparison serum concentrations are:

1. **Background serum levels** usually present in adult populations (Appendix B.1). The PFCs are ubiquitous in the human environment and are found in serum as a result of day-to-day living. The majority of people are expected to have background serum concentrations of:

PFOS is the PFC of concern. Recovery of PFOS from spiked samples ranged from 6 - 124%. Although some recoveries (5 of 22 samples i.e. 23%) were below the ideal range (25 - 125%) of the laboratory, the laboratory considered PFOS to be suitably quantitated due to the inclusion of internal standards in the analysis. Relative Percentage Difference (RPD) of duplicate analysis (n = 2 of 22 analyses) for PFOS was 4 and 10%, this is considered to be acceptable.

- PFOS <0.1 mg/L, and
- o PFOA <0.05 mg/L
- 2. A serum concentration that is without adverse effects, i.e. a serum no observed effect level (NOEL). Several lines of evidence are presented in Appendix B.2 that indicate a serum PFOS concentration of 2 mg/L (2,000 ng/mL)⁸ is a level at which, with current knowledge, it can be confidently stated no effects are likely to be observed in adult individuals. The evidence supporting this serum NOEL comes from:
 - a) Epidemiology studies in workers making or handling PFOS who individually have serum concentrations up to 13 mg/L (i.e. about 2 – 4 orders of magnitude higher than the mean levels for non-occupationally exposed populations).
 - b) NOELs observed in monkey and rat experiments where the animals have purposefully been administered high doses of PFOS. The very high serum concentrations produced allows determination of the potential effects of PFOS, the dose response, and the NOEL for the effects. These animal serum NOELs when converted to an equivalent human serum NOEL using the standard default uncertainty (safety) factors for deriving toxicity reference values from animal information give values of 3.3 – 4.4 mg/L. The process is briefly described below and in detail in Appendix B2.2.

In a six month monkey study the most sensitive effects were decreased serum cholesterol, decreased high density lipoprotein (HDL) and slightly decreased circulating total triiodothyronine (T_3) (Seacat et al. 2002, EFSA 2008). The lower 95% confidence limit on the benchmark dose (as serum concentration) is 35 mg/L (MDH 2008), this was divided by 2.5 to account for differences in toxicodynamics⁹ between monkey and human and 3.2 for toxicodynamic differences between humans as per the recommendations of enHealth (2012) and WHO (2004, 2010) to yield a human serum NOEL of 4.4 mg/L.

⁸ Cross sectional epidemiology studies in communities affected by PFOA in drinking water have shown weak positive associations of relatively low PFOA serum concentrations (measured or predicted) with increased serum cholesterol and fatty acids in adults, kidney and testicular cancer and hypothyroidism in children. No such associations have been observed for PFOS. While PFOS and PFOA share a number of common toxicological properties there are also significant differences (primarily in tumourigenicity and reproductive/developmental toxicity, the latter being the most sensitive effect as determined from toxicological studies). Furthermore PFOA is not a substance of concern at Fiskville. It is therefore inadvisable to extrapolate toxicological or health information for PFOA either to PFOS or to the circumstances of PFC exposure at Fiskville.

⁹ The lower bound benchmark dose, as a serum concentration, (BMDL) is an outcome of mathematical modelling of the dose response (using either experimental serum concentrations or doses which are subsequently converted to serum concentrations). The BMDL is used in deriving guidelines and standards in a

From a variety of rodent studies the most sensitive effects of reduced pup weight at birth, neonatal weight gain and survival are found in rat two generation reproduction and developmental studies (Lau et al. 2003, Thibodeaux et al. 2003a, b; 3M Company 2003, Luebker et al. 2005a, b; Lau et al. 2007). The serum PFOS BMDL₅ (lower bound benchmark dose for 5% effect) for decreased neonatal weight gain was 26 - 31 mg/L and for reduced survival 83 - 100 mg/L. Applying the same toxicodynamic uncertainty factors to the lower serum concentrations (i.e. to the most sensitive effect) as for the monkey serum BMDL gives an equivalent serum NOEL for humans of 3.3 - 3.9 mg/L.

c) Conversion of the PFOS exposure guideline (the tolerable daily intake, TDI) established by the European Food Standards Authority (EFSA 2008) to a serum concentration using human toxicokinetic information (Appendix B2.3). The TDI is an intake in units of µg PFOS/kg body weight /day that is considered not to cause adverse effects to people exposed every day over their lifetime. The serum concentration associated with the TDI therefore represents a steady state concentration. Given that the half-life of PFOS in humans is 5.4 years (EFSA 2008), steady state serum concentrations will be achieved after approximately 20 – 27 years of daily exposure at the TDI (i.e. after 4 – 5 half-lives). Using standard one compartment pharmacokinetic equations for a daily dose at the EFSA TDI of 1.5 µg/kg/d yields a steady state serum concentration of 2 mg/L.

In summary, the interpretation of PFOS and PFOA measured in serum of persons at Fiskville has been achieved by:

- 1. Comparison with general population background serum concentrations where the majority of adults are for:
 - PFOS <0.1 mg/L.
 - PFOA <0.05 mg/L.

similar manner as the experimental NOEL but is considered to be a better estimate of the true NOEL than the experimental value (enHealth 2012, EFSA 2009, Gezondheidsraad 2003, US EPA 2012). Because the BMDLs for PFOS are expressed as serum concentrations that elicit the effect, the toxicokinetic processes that influence the serum concentrations associated with any given daily dose of PFOS are inherently incorporated into the assessment process. Thus only potential tissue responsiveness differences (i.e. toxicodynamic differences) need to be accounted for when converting an animal serum NOEL (i.e. the BMDL) to an anticipated human serum NOEL that can be used in risk assessment. This would not be the case if the BMDL's were expressed as an external dose of mg/kg/d instead of an internal dose of mg/L serum. As applied in this risk assessment the NOEL serum concentrations relate to presumed steady state concentrations.

- 2. Comparison with a human NOEL of 2 mg/L for PFOS, derived from:
 - a) Occupational epidemiology studies.
 - b) NOELs in animal toxicology experiments for:
 - Reversible changes in blood cholesterol, lipids and thyroid hormone in monkeys.
 - Decreased neonatal weight gain from rat two generation and developmental studies.
 - c) Conversion of the European Food Standards Authority (EFSA 2008) tolerable daily intake to an achieved steady state serum concentration.

In addition to comparison with the above PFOS 'reference' serum concentrations, margins of exposure (MOE) were calculated (Section 4.2).

The various human and animal data discussed above and in detail in Appendix B are summarised in Figure 3.1.

Figure 3.1: Summary of serum concentration (dose) - response for critical effects of PFOS in animals and humans. Also shown are adult background serum concentrations and the serum NOEL of 2 mg/L for humans. The latter is derived from occupational epidemiology studies, animal toxicology investigations, and the steady state serum concentration associated with the tolerable daily intake set by the European Food Standards Authority.

3.3 Health surveillance results

3.3.1 General considerations

In order to preserve the privacy of persons who participated in the health surveillance program only broad précises of the data are provided in this report.

Twenty two persons availed themselves of the surveillance program; just over half indicated they had eaten fish or eel from Lake Fiskville in the past. In terms of environmental epidemiology studies this is a very small number of persons potentially exposed to PFOS through eating fish. Accordingly it is difficult to draw general conclusions from the data. Much caution should be used when weighing up the information provided in this section.

Table 3.1 summarises some of the features of the people who joined the program. PFOS serum concentrations are discussed in Section 3.3.2.

There were slightly more males and females in the group that ate fish from Lake Fiskville as in the group that did not eat fish. The age range in each group is about the same¹⁰.

However, for the people who had their body mass index (BMI) recorded, there were apparent differences in the BMI between the two groups (Figure 3.2). Overall only 2 people in the entire cohort had a BMI considered to be healthy¹¹, one fish eater and one non-fish eater. In the group that ate fish from Lake Fiskville, 42% had BMI's considered to be in the obese range compared to 29% in the non-fish eating group. Importantly, BMI was not correlated with PFOS serum concentrations for either the whole cohort or just the fish eater group¹² who do have higher serum PFOS levels (Table 3.1, Section 3.3.2, Figure 3.3).

Given the small group sizes no importance can be placed on the apparent differences in BMI between the two groups; it is likely to be a random finding. However whether a person is overweight or obese has implications for interpreting their individual clinical chemistry data.

• All persons: y = -0.0068x + 30.9, $R^2 = 0.013$.

¹⁰ In the group that indicated they ate fish there was a septuagenarian person who is not a current employee of CFA. The next oldest male in this group is in his early sixties.

¹¹ The following BMI based health categories are for young and middle-aged adults (Vic Govt 2013):

o 18.5 to 24.9 - healthy weight range (22-26 may be acceptable for older Australians).

o 25.0 to 29.9 - overweight.

^{○ &}gt; 30 – obese.

¹² The regression analysis equations for the correlation of BMI and PFOS serum concentration are:

[•] Fish eaters only: y = 0.0138x + 32.8, $R^2 = 0.067$.

Figure 3.2: Body Mass Index (BMI) of persons enrolled in the health surveillance programme.

	Non-fish eaters ^a	Fish eaters ^a
Demographics		
Total persons	10	12
# Females (~age range) ^b	4 (30 - 50 yrs)	5 (35 – 60 yrs)
# Males (~age range) ^b	4 (45 - 50 yrs)	7 (50 – 70 yrs)
BMI: % overweight	57	50
BMI: % obese	29	42

Table 3.1:	Summary	of cohort	characteristics.
------------	---------	-----------	------------------

^a The 'fish eater' descriptor refers to whether or not an individual indicated they had eaten at any time, fish, eels or yabbies that were from Lake Fiskville. Personal data, including the age of the person, was inadvertently not collected for all people in each group. Consequently the numbers of males and females do not add up to the total persons.

^b To preserve anonymity the age range has been rounded to the nearest 5 years. .

3.3.2 PFC serum measurements

Of the 10 PFCs looked for in human serum (Appendix C) only two were present at measurable concentrations. These were PFOS and PFOA.

PFOA:

All PFOA measurements were approximately an order of magnitude less than the expected background concentrations of <0.05 mg/L (Section 3.2 and Appendix B.1) arising from day to day living. The data indicate fish consumption has not contributed to human PFOA serum concentrations. This is not unexpected since redfin (the fish being consumed) did not have measurable concentrations of PFOA in their flesh (Table 2.2).

PFOS:

A summary of the serum PFOS concentrations is at Table 3.2. Perhaps not surprisingly the average PFOS serum concentration in the group that self-reported to have eaten fish was higher than in the non-fish eating group, but not statistically significant¹³. Four persons had concentrations higher than the expected background concentration of <0.1 mg/L. The implications of the PFOS measurements are discussed in the risk characterisation section (Section 4).

	Non-fish eaters ^a	Fish eaters ^a
Serum PFOS (mg/L) ^b		
Average	0.016	0.085
Range ^c	<0.005 - 0.07	0.002 - 0.4
# persons > background ^d	0	4

Table 3.2: Summary of PFOS serum concentrations

^a The 'fish eater' descriptor refers to whether or not an individual indicated they had eaten at any time, fish, eels or yabbies taken from Lake Fiskville.

^b Of the suite of PFCs looked for in serum, only PFOS and PFOA were measureable. PFOA concentrations were all below background, consequently only PFOS serum concentrations are reported in this table. The PFC analysis method and QA/QC data are described in a footnote to Section 3.3.1. PFC concentrations are reported by the laboratory as ng/mL but for consistency within this report have been converted to mg/L.

^c To preserve anonymity the values provided have been rounded to one or two significant figures. Due to matrix effects the analytical limit of reporting (LOR) differs slightly between samples. For the entire cohort the LOR's were 0.002 – 0.01 mg PFOS/L serum.

^d Background PFOS serum concentrations are expected to be <0.1 mg/L (Section 3.2 & Appendix B.1).

¹³ An unpaired t-test of unequal variances showed mean PFOS concentrations in fish eaters is not statistically different from that in non-fish eaters.

3.3.3 Blood chemistry results

Individual blood chemistry information was assessed by the medical officer who personally discussed them, together with the PFOS results with the person involved.

There were a number of persons, in both the fish eating and non-fish eating groups, that had some clinical chemistry parameters outside of the normal range that signalled increased risk of disease. There were also persons whose blood parameters were abnormal as a result of life style factors, existing disease, or medication. Where necessary the medical officer wrote a referral for the person to follow up with their own general practitioner.

For no individual were blood parameters related to their serum PFOS concentrations.

In addition regression analysis of blood parameters for the whole cohort, or for just the fish eaters, showed no trend association of any parameter with PFOS concentrations (Appendix D).

4. Risk characterisation

4.1 Comparison with referent serum concentrations

The two comparator serum concentrations used for risk characterisation in this report are 0.1 mg/L (a concentration which the majority of people are expected to be below if they are only exposed to background sources) and 2 mg/L (a concentration deemed to be without adverse clinical effects) (Section 3.2 and Appendix B).

As discussed in Section 3.3.2, all except four persons had PFOS concentrations less than 0.1 mg/L. Those who returned levels above the background concentration of 0.1 mg/L were at least 5 times less than the serum NOEL of 2 mg/L (Figure 4.1).

Unfortunately information is poor on how much fish or eel was eaten and how long ago. Consequently, due to the considerable uncertainty, it is not proper to construct exposure scenarios and attempt to predict by toxicokinetic modelling serum PFOS concentrations that may have arisen from eating fish. It is however germane to consider that sometime in the past an individual may have had higher serum PFOS concentrations than has been currently measured. However, there is no indication in the consumption information provided by the four persons who have higher than background PFOS levels that they ate more fish, or more frequently, in the past 5 - 10 years than in recent years. The difference between the current serum concentrations

Figure 4.1: Comparison of measured serum PFOS concentrations with critical levels in animals and humans. See Figure 3.1 for explanation of abbreviations.

and the serum NOEL and the calculated MOE's (see Section 4.2) are sufficient to cater for this uncertainty. For example, if it is speculated that a person was once a consumer of fish from the Lake but stopped 5 - 6 years ago, then based on the highest current serum concentration measured in the surveillance program cohort that person's PFOS level 5 - 6 years ago would still be less than half ¹⁴ the serum NOEL. Similarly if a person stopped consuming fish from the Lake about 11 years ago their serum PFOS at that time, in order to give rise to the highest current serum concentration, would have been approximately 70% of the serum NOEL.

Based on these considerations there is low likelihood of adverse health effects having arisen, or arising from PFOS concentrations in these persons.

A letter from the consulting medical officer and toxicologist has been written to the CFA Chief Executive Officer expressing this opinion (Appendix E).

4.2 Margin of Exposure calculations

An additional technique commonly used for judging the potential health impact of chemical exposure is to calculate a margin of exposure (MOE) against NOELs derived from well conducted animal experiments (enHealth 2012, EFSA 2012b, WHO 2004, 2010). These studies are described in Appendices B2.2 and B.3. In Australia, public health risks that may arise from use of agricultural chemicals, veterinary chemicals applied to food producing animals, or from non-occupational exposure to industrial chemicals are deemed to be acceptable if the MOE, based on exposure dose, is equal to, or greater than 100 (APVMA 2006, NICNAS 2007). This MOE is informally based on the 10 x 10 fold safety factor¹⁵ widely used to account for uncertainty in intra- and inter-species differences in the effects of chemicals. It addresses toxicokinetic and toxicodynamic differences between animals and between humans. However since 'exposures' in the surveillance program are measured as serum concentration rather than the external applied dose, toxicokinetic variability between animals and humans is inherently assimilated into the MOE calculation when using serum concentrations. Hence the usual acceptable MOE of 100 needs to be adjusted to account for the inherent inclusion of toxicokinetic species differences in calculating the MOE. This is particularly the

¹⁴ The half-life of PFOS in humans is approximately 5.4 years (EFSA 2008). This is the time for the serum concentration to decrease by half. If the highest current PFOS serum concentration is 5 times less than the serum NOEL for humans (i.e. about 0.35 mg/L), then 5.4 years ago in the absence of further exposure the concentration would be around 0.7 mg/L (i.e. less than half the human serum NOEL). Eleven years ago the serum concentrations in this hypothetical person may have been 1.4 mg/L (70% of the serum NOEL of 2 mg/L).

¹⁵ The 10 x 10 safety factors (also called uncertainty factors) are firstly for interspecies differences (between animal and human) in toxicodynamics (tissue responsiveness) and toxicokinetics (chemical metabolism) respectively, these are 2.5 x 4 respectively, and secondly for interindividual differences between humans in toxicodynamics (3.2) and toxicokinetics (3.2) (enHealth 2012).

case for compounds such as PFOS which aren't metabolised and whose distribution in the body is confined to extracellular water (i.e. primarily serum) and effects are directly related to serum concentrations. Thus an acceptable MOE based on serum measurement in humans and serum NOEL in animals would be 25 (100 \div 4) ¹⁶.

In this HRA, MOE's for a number of toxicological end points identified in animal studies have been calculated. Developmental effects in rodents are the most sensitive ones observed in animal studies (Appendix B) and patently this endpoint is only germane for females of reproductive age. These persons are also therefore the most sensitive sub-population. Thus:

For males and females \geq 45 years MOEs are calculated with:

- Serum NOELs (35 mg/L) from monkey experiments for the same blood parameters as evaluated in the health surveillance program (Seacat et al. 2002).
- Serum NOELs for sensitive effects in chronic toxicity studies.
 - 60 mg/L for production of liver adenomas in a two year bioassay (Butenhoff et al. 2012b, Thomford 2002, 3M Company 2003).
 - 45 mg/L for liver toxicity in a two year bioassay (Butenhoff et al. 2012b, Thomford 2002, 3M Company 2003).

For females ≤ 45 years (i.e. considered to be of reproductive age [DFG 2005, 2013]) MOEs are calculated

- As above, plus
 - 26 mg/L in maternal serum for decreased weight gain in offspring in two generation and/or developmental rodent studies (Luebker et al. 2005a, 2005b) (Appendix B).

In order that potential reproductive risk (low birth weight) is addressed to the extent possible, females of reproductive age (\leq 45 years old) have been assessed as a separate group. There are currently only 3 persons in this category, but based on the current ages of females in the cohort, five and ten years ago there were potentially 6 and 8 females in the cohort who were \leq 45 years old. Assuming these persons were eating fish from the Lake up to that time but stopped 5 or 10 years ago their serum PFOS concentrations would have to have been higher to account for the current measured concentrations. Using an approximation of the current maximum serum PFOS concentration that is

¹⁶ In this calculation the divisor of 4 is the toxicokinetic uncertainty factor used in risk assessments and public health guideline setting that addresses toxicokinetic differences between animals and humans (i.e. the interspecies uncertainty factor, AK_{UF}) (enHealth 2012, WHO 2005). That is the toxicokinetic differences between humans (3.16), toxicodynamic differences between animals and humans (2.5) and toxicodynamic differences between humans have been retained (3.16) in the MOE for a total of 25.

higher than actual for females, serum concentrations for hypothetical females eating fish 5 or 10 years ago have been estimated (Table 4.1).

All MOEs, except one, are larger than the acceptable MOE of 25 (Table 4.1). This indicates low potential for health effects, either now or in the past. The MOE that is lower than the acceptable value is for a theoretical female of reproductive capacity who, ten years ago, may have had serum concentrations markedly higher than the current maximum female concentration. Given that this MOE of 22 is only marginally less than acceptable, and the approximations that have been made in the MOE calculations, this MOE of 22 is not an indication of unacceptable risk at that time.

Table 4.1: Margin of Exposures (MOEs) for current and assumed past serum PFOS concentrations ^a

			MOEs (Calculated against serum NOELs from animal studies)			
			Animal	serum NO	EL (Critical ef	fect)
Person category ^b	Approx max human serum conc (mg/L) ^c		26 mg/L (Developmental -rodent)	35 mg/L (Serum biomarkers - monkey)	45 mg/L (Chronic liver tox - rat)	60 mg/L (Liver adenomas – rat bioassay)
Male or	Current	~ 0.35 ^c	N/A ^f	100	128	171
Female	5 yr ago	~ 0.7 ^d	N/A ^f	50	64	86
(>45 yrs)	10 yr ago	~ 1.4 ^d	N/A ^f	25	32	43
	Current n = 3 ≤ 45 yrs old,	All have <<0.1 mg/L.	>>100	>>100	>>100	>>100
Female ^b (≤ 45 yrs)	5 yr ago n = 6 ≤ 45 yrs old,	Current max for this group is ~ 0.3 mg/L so 5 yr ago ~ 0.6 mg/L ^d	43	58	75	100
	10 yr ago n = 8 ≤ 45 yrs old, n = 8	10 yr ago ~ 1.2 mg/L ^d	22 ^e	29	38	50

^a MOEs are calculated against a number of serum No Observed Effect Levels (NOEL) for a range of effects observed in animal toxicity studies (Appendix B.3). The acceptable MOE is ≥25 (see text).

^b Females in the cohort who are currently of reproductive age (≤ 45 yrs old), or were so 5 or 10 years ago, are assessed against animal serum NOELs for reproductive effects (low birth weight of offspring) in addition to the other toxicological endpoints for males and non-reproductive capacity females. Using a high approximation of the uppermost current serum PFOS concentration in females, serum concentrations 5 or 10 years ago have been estimated using a serum half-life for PFOS of 5.4 years (EFSA 2008).

^c To preserve anonymity the serum concentrations in this table are not actual measured values. They are higher than those actually measured.

- ^d These concentrations are estimated from the appropriate approximate maximum concentration assuming a serum PFOS half-life of 5.4 years. Because the exposure patterns are not known they do not relate to a particular individual but rather are hypothetical concentrations, but nonetheless grounded in current PFOS serum measurements.
- ^e This MOE is marginally lower than the critical MOE for low risk of 25. Given the approximations in the MOE calculations this does not represent an unacceptable risk of low birth weight ten years ago.
- ^t Because the reproductive effect of concern is low birth weight, mediated by maternal serum PFOS concentrations it is not applicable (N/A) to calculate MOEs for males or females of non-reproductive capacity using an animal serum NOEL for this endpoint.

5. Conclusions

Serum PFC measurements were undertaken by a commercial laboratory that included appropriate blanks, PFC spikes and duplicate analysis of samples chosen randomly. While internal standard recoveries for some samples were lower than the range regarded as ideal by the laboratory, the data are still considered reliable for assessment of potential risk.

Twelve of the 22 participants in the 'fish consumption' health surveillance program indicated that they had eaten fish or eel from the Lake in the past. For no person in the surveillance program were there changes in blood clinical chemistry parameters that could be attributed to PFOS. While recognising the very small sample size limits confidence in the data interpretation, regression analysis of *a priori* individual blood parameters with serum PFOS levels for either the entire cohort or just those that ate fish indicated no associations. Nevertheless there were a number of individuals in both the fish eating and non-fish eating groups that had blood parameter measurements outside the population reference range. All these were attributed to life style factors (e.g. alcohol consumption), body mass index, existing disease, and/or medication (including non-compliance). Where appropriate the medical officer referred people to their own medical practitioner for follow up.

Of the 10 PFCs looked for in human serum (chosen for their presence in Lake water or fish) only two were present at measurable concentrations in the serum of program participants. These were PFOS and PFOA. All PFOA measurements were approximately an order of magnitude less than the expected background concentrations for this compound. This indicates fish consumption has not contributed to human PFOA serum concentrations; not unexpected since redfin did not have measurable concentrations of PFOA in their flesh. PFOA was therefore not considered further in the risk assessment.

The potential health impact of measured serum PFOS concentrations has been assessed using two comparator serum concentrations. The first being a background concentration where it is expected the majority of the population will be below. The second is a serum concentration at which no effects in humans are expected, termed the serum NOEL.

Four persons had serum PFOS concentrations above that identified as the higher end of the normal range expected from background (i.e. resulting from day to day living). All were below the serum NOEL indicating low risk for adverse health effects. Available information on fishing frequency suggests exposure patterns were unlikely to have been materially different in the past and so serum PFOS concentrations were also unlikely to be markedly different from those measured in the surveillance program.

The Margin of Exposure (MOE) estimations calculated using current measured serum PFOS concentrations and serum NOELs for sensitive toxicological endpoints identified from animal toxicity experiments also indicated very low risk for adverse health effects.

When current serum concentrations were extrapolated back to theoretical levels that may have existed 5 or 10 years previously, and assuming no further fish consumption, both comparison with the human serum NOEL and the calculated MOEs indicate adverse health effects were unlikely to have arisen due to the hypothetical serum PFOS concentrations.

Overall, it is concluded existing serum PFOS concentrations or past theoretical concentrations are unlikely to give rise to adverse health effects.

6. Uncertainty analysis

As with all human health risk assessments (HHRAs) there are uncertainties in this assessment that potentially affect the conclusions. They have been addressed either by conservative assumptions or inclusion of hypothetical exposure scenarios.

Exposure:

The major uncertainty in HHRAs usually resides with exposure estimations. In this HHRA much of the exposure ambiguity associated with determination of external dose is negated by use of serum PFOS concentrations as a measure of internal dose. The residual exposure uncertainty lies with the analytical measurement of PFCs in human serum. Since appropriate spiked matrix samples, blanks and duplicates were included in the analytical regime which all returned consistent, expected results uncertainty in the determination of current PFOS serum concentrations is considered to be minimal.

Current measurement of PFOS serum concentrations provides information allowing assessment of health impacts at the time of measurement and, because of the long serum half in humans, also in the recent past. However there is uncertainty regarding past PFOS serum concentrations. This has been

addressed by assuming no PFOS contaminated fish consumption for the past 5 or 10 years and extrapolating the maximum measured current PFOS serum concentration back to those times. While this theoretical past serum concentration may be under or over estimated it is our opinion it is more likely an overestimate of past serum levels.

Toxicological reference values and risk characterisation:

HHRAs often use toxicological reference values (e.g. TDI or RfD) established by competent authorities for judging the impact of the calculated external exposures. Since the exposure metric is serum concentration rather than dose such guidance values are inappropriate. The risk characterisation has been carefully undertaken using:

- Two comparator serum concentrations developed for this assessment, and
- with MOE calculations.

The latter not being reliant on assumptions made in the development of the comparator serum concentrations.

- The first PFOS serum comparator is a maximum PFOS serum concentration that might arise due to PFOS exposure in the general human environment (i.e. background exposures). More than 40 peer reviewed papers reporting blood/serum PFOS concentrations from around the world were included in this assessment. Care was taken not to include occupational exposures, populations near PFC manufacturing/handling facilities, or communities affected by PFC ground water contamination. We have a high degree of confidence that the majority (~95%) of people should have background PFOS serum concentrations <0.1 mg/L.
- The second PFOS serum comparator was the establishment of a serum concentration that would be expected to be without adverse health effects. To reduce the uncertainty in setting the human serum NOEL, three independent methods were employed (described in Appendix B). These were:
 - o a NOEL from occupational epidemiology studies,
 - application of standard techniques for setting toxicological reference values using sensitive effects observed in monkeys and rats, and
 - using human toxicokinetic data to convert the TDI set by the European Food Safety Authority to an equivalent steady state serum concentration.

We have a high degree of confidence in the robustness of the human NOEL (2 mg/L) used in this assessment.

Cohort sample size:

The number of people entering the PFOS health surveillance program was small (22 individuals), with just over half of these reporting they had eaten fish from Lake Fiskville. Consequently there is uncertainty in making group deductions about the relationship between serum PFOS concentrations and any particular health parameter measured in the program. Nevertheless correlations have been constructed that show no association between the health parameters and serum PFOS for the group. Due to the small sample size these need to be interpreted with caution.

Possible risk to an individual was done according to standard medical practice using the expertise of the medical officer and the consultant toxicologist. While this advice is subject to the usual uncertainties associated with medical diagnosis it has been professionally provided and we are confident it has been appropriate for the circumstance of the individual(s).

References

For data:

CLP (2013a). QA / QC Review – All Lab data (Fish), Cardno Lane Piper 212163.10File Note04.0.doc. Dated 7 August 2013. Data also available in CLP 2014a, b.

CLP (2013b). Ecological Assessment, Fiskville Training Grounds, Victoria, Country Fire Authority Aquatic. September, 2013. Prepared for Ashurst. Job Reference NA49913034. Cardno Lane Piper.

CLP (2013c). Surface Water and Sediment Contamination Assessment. CFA Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. October 2013. Prepared for Ashurst. October 2013. Doc Ref: 212163.9Report01.3. Cardno Lane Piper.

CLP (2013d). QA / QC Review of NMI Lab Results, Cardno Lane Piper 212163.10FileNote01.2.doc. Dated 3 June 2013. Data also available in CLP 2014a, b.

CLP (2013e). Excel spreadsheet entitled "Cardno results summary." Contains PFC data for organisms collected from various locations. Cardno Lane Piper. Received via e-mail from Ashurst on 15/08/2013.

CLP (2014a). Human health risk assessment – Fiskville community. CFA Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. Cardno Lane Piper. Prepared for Ashurst. March 2014.

CLP (2014b). Human health risk assessment – Downstream users. CFA Fiskville Training College, 4549 Geelong – Ballan Road, Fiskville, Victoria. Prepared for Ashurst. March 2014.

IFI (2012). Fiskville. Understanding the Past to Inform the Future. Report to the Independent Fiskville Investigation. June 2012. Independent Fiskville Investigation, Robert Joy, Investigation Chair.

From the scientific literature:

(This list includes references for the appendices in this report)

3M Company (1999a). Letter (dated May 26, 1999) re: TSCA 8(e) Supplemental Notice: Sulfonatebased and carboxylic-based fluorochemicals - Docket Nos. 8EHQ-1180-373; 8EHQ-1180-374; 8EHQ-0381-0394; 8EHQ-0699-373. As cited in US EPA 2005.

3M Company (1999b). The Science of Organic Fluorochemistry" and "Perfluorooctane sulfonate: current summary of human sera, health, and toxicology data.". February 5, 1999. 8EHQ-0299-373. As cited in US EPA 2005.

3M Company (2003). Environmental and health assessment of perfluorooctane sulfonic acid and its salts. Prepared by 3M in consultation with Jack Moore, Joseph Rodricks, and William Warren-Hicks. http://multimedia.3m.com/mws/mediawebserver?9999993gslo9u1A9N1A990kktLX Z-.

3M Report (1999). "The science of organic fluorochemistry" and "Perfluorooctane sulfonate: current summary of human sera, health and toxicology data". Dated February 5, 1999 (8EHQ-0299-373). As cited in OECD 2002.

Alabama DoPH (undated). Perfluoralkyl sulfonate (PFOS) and fish consumption advisory fact sheet. Alabama Department of Public Health, Epidemiology Division. [Accessed 13/09/2013]. <u>http://www.adph.org/epi/assets/PFOS_Flyer.pdf</u>.

Alexander, B. H., Olsen, G. W., Burris, J. M., Mandel, J. H. and Mandel, J. S. (2003). Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occupational and Environmental Medicine. 60: 722-729.

Alexander, B. H. and Olsen, G. W. (2007). Bladder cancer in perfluorooctanesulfonyl fluoride manufacturing workers. Annals of Epidemiology. 17: 471-478.

APVMA (2006). Ag MORAG Part 6 - Occupational health and safety (OHS). Australian Pesticides and Veterinary Medicines Authority.

http://www.apvma.gov.au/morag_ag/vol_3/part_06_ohs.php#riskassessment1.

APVMA (2013). Agricultural and veterinary chemicals code instrument No. 4 (MRL Standard) 2012. Australian Pesticides and Veterinary Medicines Authority. Amended on 6 November 2013. Federal Register of Legislative Instruments F2013C00902. http://www.comlaw.gov.au/Details/F2013C00902/Download.

Apelberg, B. J., Witter, F. R., Herbstman, J. B., Calafat, A. M., Halden, R. U., Needham, L. L. and Goldman, L. R. (2007b). Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environmental Health Perspectives. 115: 1670-1676.

Arellano, J. M., Ortiz, J. B., Da Silva, D. C., Gonzalez de Canales, M. L., Sarasquete, C. and Blasco, J. (1999). Levels of copper, zinc, manganese and iron in two fish species from salt marshes of Cadiz Bay (southwest Iberian Peninsula). Bol. Inst. Esp. Oceanogr. 15: 485-488.

Becker, A., Gerstmann, S. and Frank, H. (2010). Perfluorooctanoic acid and perfluorooctane sulfonate in two fish species collected from the Roter Main river, Bayreuth, Germany. Bulletin of Environmental Contamination and Toxicology. 84: 132-135.

Beesoon, S., Webster, G. M., Shoeib, M., Harner, T., Benskin, J. P. and Martin, J. W. (2011). Isomer profiles of perfluorochemicals in Matched maternal, cord, and house dust samples: manufacturing sources and transplacental transfer. Environmental Health Perspectives. 119: 1659-1664.

Birkett, D. J. (1999). Pharmacokinetics made easy. Published in Australia by McGraw-Hill Book Company Australia Pty Ltd.

Butenhoff, J. L., Chang, S.-C., Olsen, G. W. and Thomford, P. J. (2012b). Chronic dietary toxicity and carcinogenicity study with potassium perfluorooctanesulfonate in Sprague Dawley rats. Toxicology. 293: 1-15.

Calafat, A. M., Kuklenyik, Z., Caudill, S. P., Reidy, J. A. and Needham, L. L. (2006). Perfluorochemicals in pooled serum samples from United States residents in 2001 and 2002. Environmental Science & Technology. 40: 2128-2134.

Calafat, A. M., Wong, L.-Y., Kuklenyik, Z., Reidy, J. A. and Needham, L. L. (2007). Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000. Environmental Health Perspectives. 115: 1596-1602.

Cariello, N. F., Romach, E. H., Colton, H. M., Ni, H., Yoon, L., Falls, J. G., Casey, W., Creech, D., Anderson, S. P., Benavides, G. R., Hoivik, D. J., Brown, R. and Miller, R. T. (2005). Gene expression profiling of the PPAR-alpha agonist ciprofibrate in the cynomolgus monkey liver. Toxicological Sciences. 88: 250-264.

CDC (2013). Fourth National report on human exposure to environmental chemicals. Updated Tables, March 2013. Department of Health and Human Services, Centers for Disease Control and Prevention. <u>http://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Mar2013.pdf</u>.

Chang, S.-C., Noker, P. E., Gorman, G. S., Gibson, S. J., Hart, J. A., Ehresman, D. J. and Butenhoff, J. L. (2012). Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in rats, mice, and monkeys. Reproductive Toxicology. 33: 428-440.

Conder, J. M., Hoke, R. A., Wolf, W. d., Russell, M. H. and Buck, R. C. (2008). Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environmental Science & Technology. 42: 995-1003.

CoT (2006). COT statement on the tolerable daily intake for perfluorooctane sulfonate. Committe on Toxicity of Chemicals in Food, Consumer Products and the Environment. http://cot.food.gov.uk/pdfs/cotstatementpfos200609.pdf.

De Silva, A. O., Spencer, C., Scott, B. F., Backus, S. and Muir, D. C. G. (2011). Detection of a cyclic perfluorinated acid, perfluoroethylcyclohexane sulfonate, in the Great Lakes of North America. Environmental Science & Technology. 45: 8060-8066.

DFG (2005). Blei und seine anorganischen Verbindungen (einatembare Fraktion). In: Gesundheitsschädliche Arbeitsstoffe. Deutsche Forschungsgemeinschaft (German Research Foundation). Wiley-VCH Verlag GmbH & Co. KGaA. 1-9.

DFG (2010). Perfluoroctansulfonsäure und ihre Salze [MAK Value Documentation in German language, 2011]. In: The MAK-Collection for Occupational Health and Safety. Deutsche µchungsgemeinschaft. Wiley-VCH Verlag GmbH & Co. KGaA. [In German].

DFG (2013). List of Substances (BAT values). In: List of MAK and BAT Values 2013. Deutsche Forschungsgemeinschaft. Wiley-VCH Verlag GmbH & Co. KGaA. 221-233.

Dutch VWA (2008). Advies inzakie PFOS in vis afkomstig uit Rijnland. Voedsel en Waren Autoriteit -Buro Risicobeoordeling. Reference VWA/BuR/2008/40127, 12 November 2008 (in Dutch). As cited in RIVM 2010.

EFSA (2008). Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. Scientific opinion of the Panel on Contaminants in the Foid Chain. European Food Safety Authority. Question No EFSA-Q-2004-163. EFSA Journal 653: 1-131. http://www.efsa.europa.eu/en/efsajournal/doc/653.pdf.

EFSA (2009). Scientific opinion on the use of the benchmark dose approach in risk assessment. (Question No EFSA-Q-2005-232). Adopted on 26 May 2009. European Food Safety Authority. The EFSA Journal. 1150: 1-72. http://www.efsa.europa.eu/en/scdocs/doc/1150.pdf.

EFSA (2012a). Scientific opinion on safety and efficacy of zinc compounds (E6) as feed additive for all animal species: zinc oxide, based on a dossier submitted by Grillo Zinkoxid GmbH/EMFEMA. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), European Food Safety Authority. EFSA Journal 2012; 10(11):2970. http://www.efsa.europa.eu/en/efsajournal/doc/2970.pdf.

EFSA (2012b). FAQ on the margin of exposure approach developed by EFSA. European Food Safety Authority. <u>http://www.efsa.europa.eu/en/faqs/faqmoe.htm</u>.

Elcombe, C. R., Elcombe, B. M., Foster, J. R., Chang, S.-C., Ehresman, D. J. and Butenhoff, J. L. (2012a). Hepatocellular hypertrophy and cell proliferation in Sprague–Dawley rats from dietary

exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPARα and CAR/PXR. Toxicology. 293: 16-29.

Elcombe, C. R., Peffer, R. C., Wolf, D. C., Bailey, J., Bars, R., Bell, D., Cattley, R. C., Ferguson, S. S., Geter, D., Goetz, A., Goodman, J. I., Hester, S., Jacobs, A., Omiecinski, C. J., Schoeny, R., Xie, W. and Lake, B. G. (2013). Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: A case study with phenobarbital as a model constitutive androstane receptor (CAR) activator. Critical Reviews in Toxicology. Early Online: 1-19.

enHealth (2012). Environmental health risk assessment guidelines for assessing human health risks from environmental hazards. Commissioned by the enHealth Council. <u>http://www.health.gov.au/internet/main/publishing.nsf/content/804F8795BABFB1C7CA256F19000454</u> <u>79/\$File/DoHA-EHRA-120910.pdf</u>.

Eriksen, K. T., Sørensen, M., McLaughlin, J. K., Lipworth, L., Tjønneland, A., Overvad, K. and Raaschou-Nielsen, O. (2009). Perfluorooctanoate and perfluorooctanesulfonate plasma levels and risk of cancer in the general Danish population. Journal of the National Cancer Institute. 101: 605-609.

Exponent (2011). Review and evaluation of the 2011 report on Mississippi River pool 2 PFOS assessment of fish and water. Prepared for 3M Company by Exponent, Inc. Doc No. 1107920.000 0101 1011 WS28.

http://solutions.3m.com/3MContentRetrievalAPI/BlobServlet?Imd=1320676074000&locale=en_US&as setType=MMM_Image&assetId=1319209183901&blobAttribute=ImageFile.

FDA (2005). Advisory Committee Briefing Document. Preclinical pharmacology and toxicology summary. Drug: Pargluva. Food and Drug Administration, USA. http://www.fda.gov/ohrms/dockets/ac/05/briefing/2005-4169B2_02_01-FDA-Preclin-Pharm-Tox.pdf.

Fei, C., McLaughlin, J. K., Tarone, R. E. and Olsen, J. (2007). Perfluorinated chemicals and fetal growth: a study within the Danish National birth cohort. Environmental Health Perspectives. 115: 1677-1682.

Fei, C., McLaughlin, J. K., Tarone, R. E. and Olsen, J. (2008a). Fetal growth indicators and perfluorinated chemicals: a study in the Danish National birth cohort. American Journal of Epidemiology. 168: 66-72.

Fei, C., McLaughlin, J. K., Lipworth, L. and Olsen, J. (2009). Maternal levels of perfluorinated chemicals and subfecundity. Human Reproduction. 24: 1200-1205.

Fromme, H., Midasch, O., Twardella, D., Angerer, J., Boehmer, S. and Liebl, B. (2007a). Occurrence of perfluorinated substances in an adult German population in southern Bavaria. International Archives of Occupational and Environmental Health. 80: 313-319.

FSANZ (2011). Survey of chemical migration from food contact packaging materials in Australian food. Food Standards Australia New Zealand. <u>http://www.foodstandards.gov.au/scienceandeducation/monitoringandsurveillance/foodsurveillance/su</u> rveyofchemicalmigr5148.cfm.

FSANZ (2013). Standard 1.4.2 Food Standards as amended, taking into account amendments up to Australia New Zeakand Food Standards Code - Amendment No. 98-2008. Schedule 1: Maximum residue limits. Food Standards Australia New Zealand. http://www.comlaw.gov.au/Details/F2013C00330/Download.

German FIRA (2006). High levels of perfluorinated organic surfactants in fish are likely to be harmful to human health (in German). German Federal Institute for Risk Assessment. Statement No. 21/2006.

http://www.bfr.bund.de/cm/343/hohe gehalte an perfluorierten organischen tensiden in fischen si nd gesundheitlich nicht unbedenklich.pdf.

Gezondheidsraad (2003). Benchmark dose method: Derivation of health-based recommended exposure limits in new perspective. Health Council of The Netherlands. U382/WP/MK/442-L3. March 20, 2003.

Giesy, J. P., Naile, J. E., Khim, J. S., Jones, P. D. and Newsted, J. L. (2010). Aquatic toxicology of perfluorinated chemicals. Reviews of Environmental Contamination and Toxicology. 202: 1-52.

Gilliland, F. D. and Mandel, J. S. (1996). Serum perfluorooctanoic acid and hepatic enzymes, lipoproteins, and cholesterol: A study of occupationally exposed men. American Journal of Industrial Medicine. 29: 560-568.

Grandjean P, Andersen E, Budtz-Jørgensen E, Nielsen, F., Molbak, K., Weihe, P. and Heilmann, C. (2012). Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA. 307: 391-397.

Grice, M. M., Alexander, B. H., Hoffbeck, R. and Kampa, D. M. (2007). Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers. Journal of Occupational and Environmental Medicine. 49: 722-729.

Guruge, K., Taniyasu, S., Yamashita, N., Miyazaki, S., Yamanaka, N., Wijeratna, S. and Seneviratne, H. (2004a). Perfluorinated compounds in human serum and seminal plasma from an urban and rural population in Sri Lanka. Organohalogen Compounds. 66: 3954-3958.

Hamm, M. P., Cherry, N. M., Chan, E., Martin, J. W. and Burstyn, I. (2010). Maternal exposure to perfluorinated acids and fetal growth. Journal of Exposure Science and Environmental Epidemiology. 20: 589-597.

Hansen, K. J., Clemen, L. A., Ellefson, M. E. and Johnson, H. O. (2001). Compound-Specific, Quantitative Characterization of Organic Fluorochemicals in Biological Matrices. Environmental Science & Technology. 35: 766-770.

Harada, K. H., Yang, H.-R., Moon, C.-S., Hung, N. N., Hitomi, T., Inoue, K., Niisoe, T., Watanabe, T., Kamiyama, S., Takenaka, K., Kim, M.-Y., Watanabe, K., Takasuga, T. and Koizumi, A. (2010a). Levels of perfluorooctane sulfonate and perfluorooctanoic acid in female serum samples from Japan in 2008, Korea in 1994–2008 and Vietnam in 2007–2008. Chemosphere. 79: 314-319.

Haukås, M., Berger, U., Hop, H., Gulliksen, B. and Gabrielsen, G. W. (2007). Bioaccumulation of perand polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environmental Pollution. 148: 360-371.

Hoff, P. T., Van de Vijver, K., Van Dongen, W., Esmans, E. L., Blust, R. and De Coen, W. M. (2003). Perfluorooctane sulfonic acid in bib (Trisopterus luscus) and plaice (Pleuronectes platessa) from the Western Scheldt and the Belgian North Sea: Distribution and biochemical effects. Environmental Toxicology and Chemistry. 22: 608-614.

Holmström, K. E., Berglund, M. and Jarnberg, U. (2005). Exposure to perfluorinated acids in 108 Swedish women in relation to methylmercury and fish consumption. Stockholm University and Institute of Environmental Medicine, Sweden. Poster ANA003 "9th International Symposium on Fluorinated Alkyl Organics in the Environment", August 2005, Toronto, Canada. http://www.chem.utoronto.ca/symposium/fluoros/pdfs/ANA003Holmstrom.pdf.

Houde, M., De Silva, A. O., Muir, D. C. G. and Letcher, R. J. (2011). Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environmental Science & Technology. 45: 7962-7973.

Humphries P. and Walker K. (2013). Ecology of Australian freshwater fishes. CSIRO Publishing, Victoria, Australia. pp. 275.

Ingelido, A. M., Marra, V., Abballe, A., Valentini, S., Iacovella, N., Barbieri, P., Porpora, M. G., Domenico, A. d. and Felip, E. D. (2010). Perfluorooctanesulfonate and perfluorooctanoic acid exposures of the Italian general population. Chemosphere. 80: 1125-1130.

Jin, Y., Saito, N., Harada, K. H., Inoue, K. and Koizumi, A. (2007). Historical trends in human serum levels of perfluorooctanoate and perfluorooctane sulfonate in Shenyang, China. The Tohoku Journal of Experimental Medicine. 212: 63-70.

Jones, G. B., Mercurio, P. and Olivier, F. (2000). Zinc in fish, crabs, oysters, and mangrove flora and fauna from Cleveland Bay. Marine Pollution Bulletin. 41: 345-352.

Kane, C. D., Francone, O. L. and Stevens, K. A. (2006). Differential regulation of the cynomolgus, human, and rat acyl-CoA oxidase promoters by PPARα. Gene. 380: 84-94.

Kannan, K., Corsolini, S., Falandysz, J., Fillmann, G., Kumar, K. S., Loganathan, B. G., Mohd, M. A., Olivero, J., Wouwe, N. V., Yang, J. H. and Aldous, K. M. (2004). Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environmental Science & Technology. 38: 4489-4495.

Kärrman, A., Van Bavel, B., Jarnberg, U., Hardell, L. and Lindstrom, G. (2004). Levels of perfluoroalkylated compounds in whole blood from Sweden. Organohalogen Compounds. 66: 4058-4062.

Kärrman, A., Mueller, J. F., van Bavel, B., Harden, F., Toms, L.-M. L. and Lindström, G. (2006). Levels of 12 perfluorinated chemicals in pooled Australian serum, collected 2002–2003, in relation to age, gender, and region. Environmental Science & Technology. 40: 3742-3748.

Kärrman, A., Ericson, I., Bavel, B. v., Darnerud, P. O., Aune, M., Glynn, A., Lignell, S. and Lindström, G. (2007). Exposure of perfluorinated chemicals through lactation: levels of matched human milk and serum and a temporal trend, 1996-2004, in Sweden. Environmental Health Perspectives. 115: 226-230.

Klaunig, J. E., Babich, M. A., Baetcke, K. P., Cook, J. C., Corton, J. C., David, R. M., DeLuca, J. G., Lai, D. Y., McKee, R. H., Peters, J. M., Roberts, R. A. and Fenner-Crisp, P. A. (2003). PPARα agonist-induced rodent tumors: modes of action and human relevance. Critical Reviews in Toxicology. 33: 655-780.

Kvist, L., Giwercman, Y. L., Jönsson, B. A. G., Lindh, C. H., Bonde, J.-P., Toft, G., Strucinski, P., Pedersen, H. S., Zvyezday, V. and Giwercman, A. (2012). Serum levels of perfluorinated compounds and sperm Y:X chromosome ratio in two European populations and in Inuit from Greenland. Reproductive Toxicology. 34: 644-650.

Lau, C., Thibodeaux, J. R., Hanson, R. G., Rogers, J. M., Grey, B. E., Stanton, M. E., Butenhoff, J. L. and Stevenson, L. A. (2003). Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicological Sciences. 74: 382-392.

Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A. and Seed, J. (2007). Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicological Sciences. 99: 366-394.

Lau, C. (2012). Perfluorinated Compounds. In: Molecular, Clinical and Environmental Toxicology. Luch, A. Springer Basel. 47-86.

Luebker, D. J., Case, M. T., York, R. G., Moore, J. A., Hansen, K. J. and Butenhoff, J. L. (2005a). Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology. 215: 126-148.

Luebker, D. J., York, R. G., Hansen, K. J., Moore, J. A. and Butenhoff, J. L. (2005b). Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague–Dawley rats: Dose–response, and biochemical and pharamacokinetic parameters. Toxicology. 215: 149-169.

Malinsky, M. D. (2009). Comparability and standardization of methods for PFC analysis in fish fillets. 3M Environmental Laboratory, Environmental, Health and Safety Operations. <u>http://water.epa.gov/scitech/swguidance/fishshellfish/fishadvisories/upload/day2d.pdf</u>.

Malinsky, M. D., Jacoby, C. B. and Reagen, W. K. (2011). Determination of perfluorinated compounds in fish fillet homogenates: Method validation and application to fillet homogenates from the Mississippi River. Analytica Chimica Acta. 683: 248-257.

Martin, J. W., Mabury, S. A., Solomon, K. R. and Muir, D. C. G. (2003a). Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry. 22: 196-204.

Martin, J. W., Mabury, S. A., Solomon, K. R. and Muir, D. C. G. (2003b). Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry. 22: 189-195.

Martin, J. W., Whittle, D. M., Muir, D. C. G. and Mabury, S. A. (2004). Perfluoroalkyl contaminants in a food web from Lake Ontario. Environmental Science & Technology. 38: 5379-5385.

Midasch, O., Schettgen, T. and Angerer, J. (2006). Pilot study on the perfluorooctanesulfonate and perfluorooctanoate exposure of the German general population. International Journal of Hygiene and Environmental Health. 209: 489-496.

Minnesota MDH (2008). Fish consumption advisory program. Minnesota Department of Health. <u>http://www.health.state.mn.us/divs/eh/fish/eating/mealadvicetables.pdf</u>.

Morikawa, A., Kamei, N., Harada, K., Inoue, K., Yoshinaga, T., Saito, N. and Koizumi, A. (2006). The bioconcentration factor of perfluorooctane sulfonate is significantly larger than that of perfluorooctanoate in wild turtles (Trachemys scripta elegans and Chinemys reevesii): An Ai river ecological study in Japan. Ecotoxicology and Environmental Safety. 65: 14-21.

MPCA (2010). Mississippi River pool 2 intensive study of perfluorochemicals in fish and water: 2009. Minnesota Pollution Control Agency. <u>http://www.pca.state.mn.us/index.php/view-</u> <u>document.html?gid=15527</u>.

Murakami, M., Adachi, N., Saha, M., Morita, C. and Takada, H. (2011). Levels, temporal trends, and tissue distribution of perfluorinated surfactants in freshwater fish from Asian countries. Archives of Environmental Contamination and Toxicology. 61: 631-641.

NICNAS (2007). Full public report. Pullulan. National Industrial Chemicals Notification and Assessment Scheme. May 2007. File No: PLC/693. http://www.nicnas.gov.au/ data/assets/pdf file/0008/10052/PLC693FR.pdf.

Nordström Joensen, U., Bossi, R., Leffers, H., Jensen, A. A., Skakkebæk, N. E. and Jørgensen, N. (2009). Do perfluoroalkyl compounds impair human semen quality? Environmental Health Perspectives. 117: 923-927.

NSW DPI (2014). Redfin perch (*Perca fluviatilis*). NSW Department of Primary Industries, Fishing and Agriculture. [Accessed 27/02/20140]: <u>http://www.dpi.nsw.gov.au/fisheries/pests-diseases/freshwater-pests/species/redfin-perch</u>.

OECD (2002). Hazard assessment of perluorooctane sulfonate (PFOS) and its salts. Organisation for Economic Co-operation and Development. ENV/JM/RD(2002)17/FINAL. http://www.oecd.org/chemicalsafety/assessmentofchemicals/2382880.pdf.

Olsen, G. W., Burris, J. M., Mandel, J. H. and Zobel, L. R. (1999a). Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees. Journal of Occupational and Environmental Medicine. 41: 799-806.

Olsen, G. W., Burris, J. M., Burlew, M. M. and Mandel, J. H. (2000). Plasma cholecystokinin and hepatic enzymes, cholesterol, and lipoproteins in ammonium perfluorooctanoate production workers. Drug and Chemical Toxicology. 23: 603-620.

Olsen, G. W., Burris, J. M., Burlew, M. M. and Mandel, J. H. (2003a). Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctaneate (PFOA) concentrations and medical surveillance examinations. Journal of Occupational and Environmental Medicine. 45: 260-270.

Olsen, G. W., Church, T. R., Miller, J. P., Burris, J. M., Hansen, K. J., Lundberg, J. K., Armitage, J. B., Herron, R. M., Medhdizadehkashi, Z., Nobiletti, J. B., O'Neill, E. M., Mandel, J. H. and Zobel, L. R. (2003b). Perfluorooctanesulfonate and other fluorochemicals in the serum of American red cross adult blood donors. Environmental Health Perspectives. 111: 1892-1901.

Olsen, G. W., Hansen, K. J., Stevenson, L. A., Burris, J. M. and Mandel, J. H. (2003c). Human Donor liver and serum concentrations of perfluorooctanesulfonate and other perfluorochemicals. Environmental Science & Technology. 37: 888-891.

Olsen, G. W., Logan, P. W., Hansen, K. J., Simpson, C. A., Burris, J. M., Burlew, M. M., Vorarath, P. P., Venkateswarlu, P., Schumpert, J. C. and Mandel, J. H. (2003f). An occupational exposure assessment of a perfluorooctanesulfonyl fluoride production site: Biomonitoring. AIHA Journal. 64: 651-659.

Olsen, G. W., Burlew, M. M., Marshall, J. C., Burris, J. M. and Mandel, J. H. (2004c). Analysis of episodes of care in a perfluorooctanesulfonyl fluorise production facility. Journal of Occupational and Environmental Medicine. 46: 837-846.

Olsen, G. and Zobel, L. (2007). Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. International Archives of Occupational and Environmental Health. 81: 231-246.

Olsen, G.W., Burris, J.M., Ehresman, D.J., Froehlich, J.W., Seacat, A.M., Butenhoff, J.L and Zobel, L.R. (2007). Half-life of serum elimination of perfluorooctanesulfonate, perfluorchexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ. Health Perspect. 115: 1298-1305.

Ontario MoE (2013). Guide to eating Ontario sport fish 2013-2014. Ontario Ministry of the Environment. 27th edition, revised.

http://www.ene.gov.on.ca/stdprodconsume/groups/lr/@ene/@resources/documents/resource/std01_0 79301.pdf.

RIVM (2010). Environmental risk limits for PFOS. A proposal for water quality standards in accordance with the Water Framework Directive. Dutch National Institute for Public Health and the Environment. Report 601714013/2010. Written by Moermond CTA, Verbruggen EMJ and Smit CE. http://www.rivm.nl/bibliotheek/rapporten/601714013.pdf.

Rylander, C., Brustad, M., Falk, H. and Sandanger, T. M. (2009). Dietary predictors and plasma concentrations of perfluorinated compounds in a coastal population from Northern Norway. Journal of Environmental and Public Health. http://www.hindawi.com/journals/jeph/2009/268219/.

Rylander, C., Sandanger, T. M., Frøyland, L. and Lund, E. (2010). Dietary patterns and plasma concentrations of perfluorinated compounds in 315 Norwegian women: The NOWAC postgenome study. Environmental Science & Technology. 44: 5225-5232.

Seacat, A. M., Thomford, P. J., Hansen, K. J., Olsen, G. W., Case, M. T. and Butenhoff, J. L. (2002). Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicological Sciences. 68: 249-264.

Seacat, A. M., Thomford, P. J. and Butenhoff, J. L. (2002b). Terminal observations in Sprague-Dawley rats after lifetime dietary exposure to potassium perfluorooctanesfulfonate. Toxicologist 66, 185 (Abstract ID: 906).

Thibodeaux, J. R., Hanson, R. G., Rogers, J. M., Grey, B. E., Barbee, B. D., Richards, J. H., Butenhoff, J. L., Stevenson, L. A. and Lau, C. (2003a). Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: Maternal and prenatal evaluations. Toxicological Sciences. 74: 369-381.

Thibodeaux, J. R., Hanson, R. G., Rogers, J. M., Grey, B. E., Barbee, B. D., Richards, J. H., Butenhoff, J. L., Stevenson, L. A. and Lau, C. (2003b). Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation. Toxicological Sciences. 74: 382-392.

Thomford, P. J. (2002). 104-week dietary chronic toxicity and carcinogenicity study with perfluorooctane sulfonic acid potassium salt (PFOS; T-6295) in rats. 6329-183. Covance Laboratories Inc. As cited in EFSA 2008.

Toms, L.-M. L., Calafat, A. M., Kato, K., Thompson, J., Harden, F., Hobson, P., Sjödin, A. and Mueller, J. F. (2009). Polyfluoroalkyl chemicals in pooled blood serum from infants, children, and adults in Australia. Environmental Science & Technology. 43: 4194-4199.

US EPA (2005). Draft risk assessment on the potential human health effects associated with exposure to perfluorooctanoic acid and its salts. United States Environmental Protection Agency, Office of Pollution Prevention and Toxics. January 4, 2005. DRAFT. http://www.epa.gov/oppt/pfoa/pubs/pfoarisk.pdf.

US EPA (2009). Provisional health advisories for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). United States Environmental Protection Agency. January 8, 2009. http://water.epa.gov/action/advisories/drinking/upload/2009 01 15 criteria drinking pha-PFOA PFOS.pdf.

US EPA (2012). Benchmark dose technical guidance. United States Environmental Protection Agency. EPA/100/R-12/001. June 2012.

http://www.epa.gov/osa/raf/publications/benchmark_dose_guidance.pdf.

van Leeuwen, S. P. J., Kärrman, A., van Bavel, B., de Boer, J. and Lindström, G. (2006). Struggle for quality in determination of perfluorinated contaminants in environmental and human samples. Environmental Science & Technology. 40: 7854-7860.

van Leeuwen, S. P. J., Swart, C. P., van der Veen, I. and de Boer, J. (2009). Significant improvements in the analysis of perfluorinated compounds in water and fish: Results from an interlaboratory method evaluation study. Journal of Chromatography A. 1216: 401-409.

Vassiliadou, I., Costopoulou, D., Ferderigou, A. and Leondiadis, L. (2010). Levels of perfluorooctanesulfonate (PFOS) and perfluorooctaneate (PFOA) in blood samples from different groups of adults living in Greece. Chemosphere. 80: 1199-1206.

Vic Govt (2013). Body mass index (BMI) for adults. Better Health Channel, State Government of Victoria. <u>http://www.betterhealth.vic.gov.au/bhcv2/bhcsite.nsf/pages/bmi</u>.

Washino, N., Saijo, Y., Sasaki, S., Kato, S., Ban, S., Konishi, K., Ito, R., Nakata, A., Iwasaki, Y., Saito, K., Nakazawa, H. and Kishi, R. (2009). Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environmental Health Perspectives. 117: 660-667.

Waterwatch Vic (undated). Redfin perch (*Perca fluviatilis*). Waterwatch and North Central Catchment Management Authority Victoria. [Accessed 27/02/2014]: http://www.vic.waterwatch.org.au/file/inform/Redfin.pdf.

WHO (2004). Harmonization project document No. 1: IPCS risk assessment terminology. World Health Organization. <u>http://www.inchem.org/documents/harmproj/harmproj/harmproj1.pdf</u>.

WHO (2005). Chemical-specific adjustment factors for interspecies differences and human variability: Guidance document for use of data in dose/concentration-response assessment. Harmonization Project Document No 2, World Health Organization. http://www.inchem.org/documents/harmproj/harmproj2.pdf.

WHO (2010). Harmonization Project Document No. 8. WHO human health risk assessment Toolkit: chemical hazards. World Health Organization. <u>http://www.inchem.org/documents/harmproj/harmproj/harmproj8.pdf</u>

Zeynali, F., Tajik, H., Asri-Rezaie, S., Meshkini, S., Fallah, A. A. and Rahnama, M. (2009). Determination of copper, zinc and iron level in edible muscle of three commercial fish species from Iranian coastal waters of the Caspian Sea. Journal of Animal and Veterinary Advances. 8: 1285-1288.

Zhang, T., Wu, Q., Sun, H. W., Zhang, X. Z., Yun, S. H. and Kannan, K. (2010). Perfluorinated compounds in whole blood samples from infants, children, and adults in China. Environmental Science & Technology. 44: 4341-4347.

Appendix A: Glossary

ALP:	Alkaline Phosphatase
ALT:	Alanine Aminotransferase
AST:	Aspartate Aminotransferase
BMDL:	Lower bound Benchmark Dose
BMI:	Body Mass Index
CFA:	Country Fire Authority
EFSA:	European Food Safety Authority
GGT:	Gamma Glutamyl Transferase
HDL:	High Density Lipoprotein
HPLC-MS-MS:	High Performance Liquid Chromatography Tandem Mass Spectrometry
HRA:	Health Risk Assessment
LDL:	Low Density Lipoprotein
MOE:	Margin Of Exposure
NMI:	National Measurement Institute
NOEL:	No Observed Effect Level
PFC:	Perfluorinated Compound
RPD:	Relative Percentage Difference
SS:	Steady State
Т3:	Triiodothyronine
T4:	Thyroxine
TDI:	Tolerable Daily Intake
TG:	Triglycerides
TSH:	Thyroid Stimulating Hormone

PFC Abbreviations

Abbreviation	PFC
PFBA	Perfluorobutanoic acid
PFPeA	Perfluoro-n-pentanoic acid
PFBS	Perfluorobutane sulphonic acid
PFHxS	Perfluorohexanesulphonic acid
PFOS	Perfluorooctane sulphonic acid
PFDS	Perfluorodecane sulphonic acid
PFHxA	Perfluorohexanoic acid
PFHpA	Perfluoroheptanoic acid
PFOA	Perfluorooctanoic acid
PFNA	Perfluorononanoic acid
PFDA	Perfluorodecanoic acid
PFUdA	Perfluoroundecanoic acid
PFDoA	Perfluorododecanoic acid
PFTrDA	Perfluorotridecanoic acid
PFTeDA	Perfluorotetradecanoic acid
PFOSA	Perfluorooctane sulphonamide
NEtFOSA	N-ethyl-perfluorooctane sulphonamide
NEtFOSAA	N-ethyl-perfluorooctanes ulphonamidoacetic acid
NMeFOSA	N-methyl-perfluorooctane sulphonamide
NMeFOSAA	N-methyl-perfluorooctane sulphonamidoacetic acid
NEtFOSE	N-ethyl-perfluorooctane sulphonamidoethanol
NMeFOSE	N-methyl-perfluorooctane sulphonamidoethanol
4:2 FtS	1H,1H,2H,2H-perfluorohexane sulphonic acid
6:2 FtS	1H,1H,2H,2H-perfluorooctane sulphonic acid
8:2 FtS	1H,1H,2H,2H-perfluorodecane sulphonic acid

Appendix B: Determination of serum PFC concentrations for risk characterisation.

B.1 Background human PFC serum concentrations

A wide range of PFCs are found in consumer and industrial products. They are used to treat leathers and paper so they repel water and grease (e.g. grease proof paper, pizza boxes, popcorn, hamburger and chip containers, fruit boxes, etc), water proof shoes and textiles, make breathable water repelling fabrics (e.g. Cortex), apply stain resistance to carpets and furniture (e.g. Scotchguard). They are in a range of cosmetics and personal care products, and in some surface coatings. PFOS has been used in certain firefighting foams. In the environment or in the body many of the PFCs in these products breakdown or are metabolised to PFOS or PFOA. These are both very stable and are persistent in the environment and long lived in the body.

To identify background serum concentrations of PFOS and PFOA a literature search was undertaken for data in populations around the world that were not occupationally exposed, did not live near PFC manufacturing sources, and were not influenced by local contamination of groundwater or soil.

Figures B.1 and B.2 summarise background PFOS and PFOA concentrations in human serum from a large number of studies, the information is consolidated in Table B.1. Individual data for the studies was not available to statistically construct a 'normal' background reference range. However inspection of Figure B.1 compellingly indicates the majority of the general population would be expected to have a PFOS serum concentration less than 0.1 mg/L. This agrees with 3M Company (2003) and Olsen et al (2003b) who statistically calculated 95% of the general population have PFOS serum concentration less than 0.1 mg/L.

Similarly, Figure B.2 indicates the majority of persons would be expected to have less than 0.05 mg/L PFOA in their serum as a result of normal day-to-day living.

	Population means	Range for individuals	Majority of individuals ^b
PFOS	0.005 - 0.05	0 - 0.3	<0.1
PFOA	0.0002 - 0.06	0 - 0.09	<0.05

Table B.1: Summary of background PFC serum concentrations ^a

^a Information in the table is a summary of that visually presented in Figures B.1 and B.2.

^b It is expected from Figures B.1 and B.2 that the majority of individuals would have serum concentrations less than these values. These concentrations are therefore used as the upper end of 'background' serum concentrations for PFOS and PFOA.

B.2 Human no effect serum concentration (PFOS)

B2.1 Occupational epidemiology studies

Workers who handle or make PFCs have much higher serum PFOS concentrations than the general population; they also tend to have higher PFOA levels. In such workers PFOS concentrations may be as high as 12 - 13 mg/L, but the majority are <6 mg/L (Olsen et al. 1999a, 2003a, 2003f) (Figure AB.1). These levels of exposure are primarily confined to three manufacturing plants in the US and Belgium. Over more than a decade several occupational epidemiology studies have been undertaken on this cohort. The studies have primarily focussed on the *a posteriori* toxicological knowledge gained from monkey and rodent studies; the most sensitive effects being decreased cholesterol and circulating thyroid hormones which are totally reversible when serum concentrations decrease (Section B2.2). At higher serum concentrations (BMDL₁₀ 60 mg/L) in 2 year rat experiments liver adenomas are observed (PFOS is not genotoxic) and in developmental and multi-generation studies PFOS causes decreased pup weight and neonatal survival (BMDL₅ pup weight 31 mg/L, BMDL₅ perinatal mortality 83 mg/L) (Butenhoff et al. 2012b, Thomford 2002, 3M Company 2003). Potential effects investigated in the epidemiology studies included thyroid and lipid metabolism disorders, mortality, cancer incidence, liver, cardiovascular and gastrointestinal diseases, and pregnancy outcomes (Alexander et al. 2003; Alexander and Olsen 2007; Olsen 1999a, 2003a, 2004c; Grice et al. 2007).

There were no changes in haematological, lipid, hepatic, thyroid, or urinary parameters consistent with the known toxicological effects of PFOS in cross-sectional or longitudinal analyses of workers who had PFOS serum levels < 2 mg/L. At concentrations higher than 6 mg/L slight positive associations with altered cholesterol, triglyceride and high density lipoprotein have been reported but these are inconsistent with the known biochemistry of PFOS and the effects observed in animals, including monkeys. Consequently these associations should be interpreted with care, they may be random findings, or due to a different variable other than PFOS.

Although an initial study reported an association between PFOS and urinary bladder cancer (Alexander et al. 2003) this was based on just three cases, when the study was expanded with more accurate exposure measures and confounders controlled, no association between PFOS and bladder cancer was apparent ¹⁷ (Alexander and Olsen 2007). No changes in other endpoints investigated have been reported.

¹⁷ A chemical or biological basis for induction of bladder cancer by PFOS is obscure. It does not appear to have the properties of known bladder carcinogens and has not shown any bladder effects in toxicology studies. It is neither genotoxic nor insoluble in urine at room temperature.

The overall size of the occupational cohort is greater than 3,500 however it was smaller subgroups that were investigated in the epidemiology studies, with 100 – 300 persons in any particular exposure strata. As with many cross sectional epidemiology investigations, the individual studies are open to criticism. Some of these are study design, lack of control for certain confounders, participation being

Figure AB.1: Serum PFOS concentration in workers at two manufacturing plants (Decatur, Alabama and Antwerp, Belgium).

Production of perfluorinated sulphonated compounds began in Decatur in 1961 and Antwerp in 1976. PFOS measurements started in the early 1990's when specific analytical techniques became available. The total number of persons who have been exposed and studied in these factories is greater than 3,500. Adverse effects in workers have not been reported at serum concentrations < 2mg/L, this is taken to be a No Observed Effect Level (NOEL) for adults.

The data in the figure has been compiled from the following publications which have studied various sectors of the worker population. The PFOS serum concentrations are the geometric or arithmetic means of the study population, with either the 95% confidence limit (CL) of the mean or the range of serum concentrations when reported.

Gilliland & Mandel (1996), Olsen et al. (1999a, 2000, 2003a, 2003c), Alexander et al. 2003, Alexander & Olsen 2007, Grice et al. 2007, Olsen and Zobel 2007.

voluntary rather than random recruitment, uncertainty in assignment to an exposure group based on job description and years of service with serum PFOS bands allocated by measurement of workers with similar job task profiles. Nevertheless the cohort represents the most highly exposed humans in the world. Overall PFOS serum levels in individual workers are up to 4 orders magnitude greater than the population means of the general public, the lowest occupational sub-cohort is approximately 1 - 2 orders greater. Thus, if humans are susceptible to the adverse effects observed to be induced by high serum PFOS in animals, they would be expected to be detected in this occupational cohort. As per the philosophy of administering high doses of chemical to small groups of animals to identify hazards, the high serum concentrations in workers counters the less than ideal number of subjects in the occupational epidemiology studies.

Conclusion:

From the occupational epidemiology information it is concluded that a serum PFOS concentration of 2 mg/L represents a level at which no effects have been observed in adults. The actual no effect level may be higher than this but there are insufficient numbers of persons with concentrations around this level for implications to be drawn.

B2.2 Animal serum PFOS no observed effect level (NOEL)

The procedures employed in this section of Appendix B for deriving human serum NOELs are part of standard risk assessment methodologies for setting toxicity reference guideline values used by WHO, the EC and recommended in Australia (WHO 2004, 2010; enHealth 2012).

In general, observations from toxicological studies with PFOS include reductions in body-weight and weight gain, increases in liver weight (characterised by increased centrilobular hepatocellular hypertrophy), mild-to-moderate peroxisome proliferation in rats, increased incidence of hepatocellular adenoma¹⁸ in rats, and hypo-cholesterolemia. Effects appear to be related to a threshold body burden and often are associated with a steep dose–response.

The mechanisms of PFOS induced toxicity are not fully understood but may include effects on fatty acid transport and metabolism, membrane function, and/or mitochondrial bioenergetics. Cumulative toxicity, occurring at high serum concentrations, is expressed as metabolic wasting in adult experimental animals, decreased neonatal survival and weight gain in offspring. Sensitive effects are observed in monkey studies which provide serum concentrations for changes in blood biomarkers for potential effects on lipid metabolism and energy production. Developmental and 2-generation reproduction studies in rats deliver benchmark doses (BMD and BMDL) for conversion to serum concentrations for the sensitive effects of neonatal survival and weight gain.

Monkey:

The pivotal study for PFOS is a 28 week oral (0, 0.03, 0.15 & 0.75 mg/kg/d via capsule) study in cynomolgus monkeys (Seacat et al. 2002). A range of blood parameters and serum PFOS concentrations were monitored throughout the study and during a one year recovery period. At serum concentrations not causing overt toxicity (approximately 60 – 100 mg/L) the primary findings are changes in biochemical parameters associated with lipid metabolism. The animals show increased liver weight and decreases in body weight, together with decreased cholesterol and high density lipoprotein (HDL), decreased triglycerides and thyroid hormone (T3) (without marked compensatory increase in TSH). These changes have been shown to be readily and completely reversible within 30 weeks of treatment cessation as serum concentrations decrease.

For each of the doses and sampling times serum PFOS was measured. Dose response modelling gave a BMDL serum concentration of 35 mg/L for no or minimal impact on sensitive effects in the liver

¹⁸ Hepatocellular hypertrophy and liver adenomas induced in rats by PFOS are mediated through the nongenotoxic mechanisms of PPARα and CAR activation and are considered irrelevant modes of action for human risk assessment (Klaunig et al. 2003, Elcombe et al. 2012a, 2013).

(decreased cholesterol) (MDH 2008). The fact that this serum concentration is the low 95th confidence limit estimate means it is conservative and is taken as the no observed effect level (NOEL).

Supporting use of the serum concentration in monkeys as a surrogate for the human internal dose to the target tissue is the liver:serum ratios being similar in monkeys and humans. These ratios are 1.4 and 1.3 respectively (Olsen et al. 2003c, Seacat et al. 2002). There is however undefined uncertainty with regard to the responsiveness of monkey and human liver to the same internal dose (serum concentration) of PFOS. This is despite the majority of hepatic effects being mediated via the PPARα receptor, and humans and monkeys being approximately equally sensitive to its activation by peroxisome proliferators (Cariello et al. 2005, FDA 2005, Kane et al. 2006). To account for human liver possibly being more sensitive than that of monkeys (i.e. for interspecies toxicodynamic differences), the standard default uncertainty factor of 2.5x has been applied to the NOEL of 35 mg/L. In addition the usual default for response variability (toxicodynamic) between humans (3.2x) has been added.

The total uncertainty factor applied to extrapolate the monkey NOEL serum concentration is therefore 8x and the equivalent human serum NOEL derived from the monkey BMDL₁₀ of 35 mg/L is 4.4 mg/L.

Rat:

In rat toxicity studies the most sensitive effect is decreased pup weight gain observed in two generation reproduction experiments (Lau et al. 2012; 3M Company 2003; Luebker 2005a, 2005b; Thomford 2002).

BMDL₅ on pup weight gain is 26 mg/L – 31 mg/L (3M Company 2003) and pup survival 83 mg/L (Lau et al. 2007). The 26 mg/L is derived from data from the two-generation reproduction/developmental study (pup weight gain through lactation) (Luebker et al. 2005a) and the serum PFOS concentration measurements made in a separate toxicokinetic study during pregnancy at the same dose levels (Luebker et al. 2005b). The 31 mg/L is for in reduced pup weight gain during lactation using the mean of gestation day 21 and pre-gestational serum levels in dams (Luebker et al. 2005b).

Lau et al. (2007) is a review of the toxicology of perflouroalkyl acids, primarily PFOS and PFOA. In this review 'no effect' doses [i.e. the BMD and BMDL as reported by Luebker et al. (2005b) and Lau et al. (2003)] were translated into equivalent no effect serum concentrations using linear relationships between dose (mg/kg) and serum concentration (mg/L). Thus Lau et al. (2007) converted the BMD₅ and BMDL₅ of:

1.06 and 0.89 mg/kg/d from Luebker et al. (2005b) into serum concentrations of 67 and 59 mg/L for postnatal survival at lactation day (LD) 5, and

 1.07 and 0.58 mg/kg/d from Lau et al. (2003) for postnatal survival to day 8 were translated into serum concentrations¹⁹ of 25 and 16 mg/L.

Unfortunately Lau et al. (2007) did not fully consider the serum data reported in these studies and the animal serum <u>BMDs derived by this author are not the most appropriate</u> for defining serum concentrations for deriving human equivalent serum NOELs for PFOS. It is also noted that Lau et al. (2007) only considered neonatal survival and not the more sensitive endpoint of decreased birth weight and weight gain. The studies and derivation of suitable human serum NOELS are described below.

The Luebker et al. (2005b) study:

Luebker et al. (2005b) dosed rats at 0.4, 0.8, 1.0, 1.2, 1.6, and 2.0 mg PFOS/kg/d for 42d prior to mating and through to gestation day 20, or LD 4 depending on the study phase. The BMDL₅ based on decreased gestation length, birth weight, pup weight at LD 5, pup weight gain through LD 5, and pup survival through LD 5 were relatively tight at 0.31, 0.39, 0.27, 0.28, and 0.89 mg/kg/day, respectively. There is a steep dose–response relationship that begins to appear between 0.8 and 1.2 mg/kg before becoming statistically significant at 1.6 mg/kg. According to Luebker et al. (2005b) this observation, together with other reports in the literature (Lau et al. 2003; Luebker et al. 2005a), suggests a critical body burden in dams is required to influence viability in neonates. In the Luebker et al. (2005b) study maternal serum concentrations on gestation days 1, 7 and 15 were relatively constant indicating the animals were at steady state after 42 days of dosing prior to mating. However there was a 40 - 60% decrease in maternal serum concentrations at gestation day 21. The decline may have been the result of increased volume expansion and other physiological changes during the last trimester, including changes in serum protein content. Patently, post gestational serum concentrations do not reflect the potential extent of foetal exposure during pregnancy.

Lau et al. (2007) converted the BMD_5 and $BMDL_5$ of 1.06 and 0.89 mg/kg/d as determined by Luebker et al. (2005b) for pup survival at LD 5 into equivalent serum concentrations using the linear association between dose and maternal serum concentration at gestation day 21. As noted above there is a substantial decrease in serum concentrations between the steady state concentrations up to gestation day 15 and concentrations measured on gestation day 21. It would appear that the dose-

¹⁹ Although both Luebker et al. (2005b) and Lau et al. (2003) have modelled similar BMD's from their data (1.06 and 1.07 mg/kg/d respectively), Lau et al. (2007) derived corresponding serum concentrations that are very different from each other, i.e. 59 and 16 mg/L respectively.

serum concentration relationship at steady state is a better indication of foetal exposure. This relationship yields a regression equation of y = 85.656x + 6.8086 (r² = 0.9949)²⁰; and at a BMDL₅ of:

- 0.89 mg/kg/d for pup survival at LD 5, the maternal steady state serum concentration is 83.1 mg/L.
- 0.28 mg/kg/d for pup weight gain through to LD 5, the maternal steady state serum concentration is 30.9 mg/L. Thus pup weight gain is the more sensitive indicator.

The Lau et al. (2003) study:

Lau et al. (2003) treated rats with 1, 2, 3, 5 and 10 mg PFOS/kg/d on gestation days 2 to 21. In this study there was decreased pup survival and in survivors decreased weight gain. While serum and liver concentrations of pups after birth were measured, serum PFOS in the dams was not. There was a decrease in pup survival at and above 2 mg/kg. The BMD₅ and BMDL₅ were 1.07 and 0.58 mg/kg/d for postnatal survival to day 8. Since Lau et al. (2003) did not report maternal serum PFOS concentrations, Lau et al. (2007) used the maternal serum concentrations at gestation day 21 from Thibodeaux et al. (2003a, b) to convert the Lau et al. (2003) BMDs to equivalent serum maternal concentrations. Rats in Lau et al. (2003) and Thibodeaux et al. (2003a, b) were given the same PFOS dose regime.

Thibodeaux et al. (2003a, b) is a developmental investigation in which skeletal variations occurred in the presence of decreased maternal weight gain. The graphical data in Thibodeaux et al. (2003a) indicates the maternal PFOS serum concentrations are steeply rising for most doses at gestation days 7 and 14 when serum was drawn. This indicates serum PFOS concentrations were not at steady state. Indeed the serum concentrations were markedly less than reported in Luebker et al. (2005b) despite the fact the doses were approximately 5 times higher. Nevertheless, as observed in Luebker et al. (2005b) maternal serum concentrations were somewhat lower at gestation day 21 than at day 15, particularly for the top three doses. Although Lau et al. (2003) and Thibodeaux et al. (2003a, b) are reporting different aspects of the same study, because the dose regime was short and there were marked changes in maternal serum PFOS concentrations between days 14 and 21 it is very difficult to determine the serum concentrations that may be associated with the effects observed in Lau et al. (2003).

²⁰ This correlation is stronger than the R² of 0.862 reported by Lau et al. (2005b) using the gestation day 21 serum data of Luebker et al. (2005b). The data for the correlation is provided in table below:

Premating dose (mg/kg/d)	15-d serum concentration (mg/L)
0.1	8.81
0.4	41.4
1.6	156
3.2	275

Conclusions:

For pup survival and weight gain the data of Luebker et al. (2005b) is preferred over Lau et al. (2003) because of the longer dose time (42d vs 19d), lower doses employed, serum concentrations are reported as values that can be used in independent analysis, and the serum and effects data are consistent with the two generation reproduction study (Luebker et al. 2005a). Thus the favoured serum NOELs (as BMDL₅) for rat neonatal survival and decreased neonatal weight gain are 83 and 31 mg/L respectively.

The appropriate BMDLs for deriving a human serum PFOS no observed effect level from 2-generation and developmental studies are:

- 26 31 mg/L for reduced pup weight gain.
- 83 100 mg/L for reduced neonatal survival.

Applying the same uncertainty factors (i.e. 2.5x for interspecies toxicodynamic differences and 3.2x for toxicodynamic variability between humans) to the most sensitive reduced pup weight gain BMDLs of 26 - 31 mg/L as for the monkey serum BMDL gives an equivalent NOEL for humans of 3.25 - 3.9 mg/L.

In summary:

- The equivalent human serum NOEL from the monkey investigation of Seacat et al. (2002) is 4.4.mg/L.
- The human serum LOEL from rat reproduction and developmental studies in which the most sensitive effect was decreased weight gain of neonates is 3.25 3.9 mg/L.

B2.3 Conversion of TDI to serum concentration

Four TDIs for PFOS have been established by international authorities:

- ο The UK Committee on Toxicity (COT 2006): 0.3 µg/kg/d.
- ο The European Food Standards Authority (EFSA 2008): 0.15 μg/kg/d.
- ο The Minnesota Department of Health (MDH 2008): 0.08 μg/kg/d.
- o US Environmental Protection Authority (US EPA 2009): 0.08 μg/kg/d.

They have all based their deliberations on the 26 week oral monkey study by Seacat et al. (2002) described in Appendix B2.2 but have arrived at different TDI values as a result of different methodologies, different uncertainty factors and/or different science policy.

Generally Australian authorities have a preference for World Health Organisation and European deliberations because these tend to match science policy and risk assessment methods used in Australia more closely than those in North America. Thus Food Standards Australia New Zealand (FSANZ 2011) refer to the ESFA TDI when they reported the results of a survey of chemical migration, including PFCs, from food contact packaging materials into Australian food. In this assessment the TDI of 0.15 µg/kg/d from EFSA (2008) has been adopted. Furthermore it is noted that the average of all the above TDIs is 0.15 µg/kg/d.

The TDI is an estimate of the amount of a contaminant or natural toxicant, expressed on a body weight basis that can be ingested daily over a lifetime without appreciable risk. Thus the long term serum concentrations associated with this dose are steady state concentrations.

The standard pharmacokinetic equation (Birkett 1999) used in medicine to calculate steady state blood concentrations is:

 $C_{SS} = (DR \times t_{\frac{1}{2}}) \div (0.693 \times Vd)...$ Equation B1 Where:

 C_{SS} = Steady state serum concentration. DR = Dose Rate. In this case 0.15 µg/kg/d (0.00015 mg/kg/d) $t_{\frac{1}{2}}$ = Serum half-life (1971days, (EFSA 2008, Olsen et al. 2007, DFG 2010). Vd = Apparent volume of distribution is extracellular water (0.2 L/kg bw, [Olsen et al. 2007, DFG 2010, Chang et al. 2012]).

Substituting values into Equation B1 $C_{SS} = (0.00015 \text{ mg/kg/d x 1971d}) \div (0.693 \text{ x } 0.2 \text{ L/kg}) = 2.13 \text{ mg/L}$

Thus the steady state serum concentration of PFOS associated with a TDI of 0.15 μ g/kg/d is 2 mg/L (rounded).

B.3 Studies supporting margin of exposure calculations

The serum NOELs used in the calculation of MOEs in Section 4.2 are:

- 26 mg/L in maternal serum for decreased weight gain in offspring in two generation and/or developmental rodent studies (Luebker 2005a, 2005b).
- 35 mg/L from monkey experiments for the same blood parameters as evaluated in the health surveillance program (Seacat et al. 2002).
- 45 mg/L for liver toxicity in a two year bioassay (Thomford 2002, 3M Company 2003, Butenhoff et al. 2012b).
- 60 mg/L for production of liver adenomas in a two year bioassay (Thomford 2002, 3M Company 2003, Butenhoff et al. 2012b).

The Luebker (2005a, 2005b) and Seacat et al. (2002) studies, with the identification of the serum NOELs, are described in Appendix B2.2.

The two year bioassay supporting serum NOELs for chronic liver toxicity and induction of liver adenomas is described below. The study was sponsored by 3M, conducted at Covance Laboratories Ltd under good laboratory (GLP) standards, with the report authored by Thomford (2002). The laboratory report is not publically available but was submitted to EFSA as part of a data package for the PFOS/PFOA review that was being undertaken. EFSA (2008) describes the essential features of the study. The terminal pathology obtained in the study was reported at a toxicology science conference (Seacat et al. 2002b). The 3M Company (2003), in consultation with independent toxicologists, used data from the study to model serum concentration and effects, with the objective of determining serum PFOS concentrations equivalent in status to the lower confidence limit of a benchmark dose for 5% response for liver toxicity (i.e. a serum BMDL₅) or 10% incidence of liver adenomas (i.e. a serum BMDL₁₀). Sometime after this work was completed, Butenhoff et al. (2012b), with Thomford as co-author, published the study in a peer reviewed journal. The description of the study below is primarily derived from Butenhoff et al. (2012b).

The two-year dietary toxicity and cancer bioassay was conducted with potassium PFOS in male and female Sprague Dawley rats. Dietary concentrations were 0, 0.5, 2, 5, and 20 µg/g (ppm). Included in the study was a recovery group that was fed 20 ppm for the first 52 weeks, after which they were fed control diet through to study termination. Scheduled interim sacrifices occurred on Weeks 4, 14, and 53, with terminal sacrifice between Weeks 103 and 106. The PFOS dietary treatment appeared to be well-tolerated, however there were sporadic decreases in body weight during the treatment period that were not clearly dose related. Interestingly male rats had a statistically significant decreased mortality with significantly increased survival to term at the two highest treatment levels. Decreased

serum total cholesterol, especially in males, and increased serum urea nitrogen were consistent clinical chemistry observations that were clearly related to treatment. The reduced serum total cholesterol, seen at earlier time points, was no longer apparent after 104 weeks of treatment. This may have been due to lower liver PFOS concentrations compared to earlier time points.

The principal non-neoplastic effect included liver hypertrophy, with proliferation of endoplasmic reticulum. The effect was dose related from 5 ppm upward. This was also evident in the 20 ppm recovery group, probably as a result of sufficient PFOS being retained in the liver to stimulate PPAR and CAR receptors. In males there were also increased serum enzymes indicative of liver toxicity. Statistically significant increases in benign hepatocellular adenoma²¹ were observed in surviving males and females of the 20 ppm treatment group. There were no treatment-related findings for thyroid tissue and no evidence of kidney or bladder effects.

Butenhoff et al. (2012b) determined dietary doses corresponding to the estimated $BMDL_{10}$ for liver adenomas was 7.9 ppm for male rats and 8.0 ppm for female rats. Aging of animals, characterised by progressive nephritis, resulted in high variability in PFOS serum and liver concentrations of PFOS beyond week 53, PFOS concentrations were somewhat less at week 105. At week 53 serum concentration data was only obtained for the controls and high dose (20 ppm) group. $BMDL_{10}$ values expressed as serum PFOS concentration after 14 weeks of dosing were 62 µg/mL and 92 µg/mL respectively for male and female.

Butenhoff et al. (2012b) did not determine serum BMDL for liver toxicity, however 3M Company (2003) report a serum $BMDL_5$ of 44 mg/L in male rats for non-neoplastic liver effects, and $BMDL_{10}$ of 62 mg/L for liver tumours. These values have been used in calculation of MOEs for these endpoints.

²¹ Hepatocellular hypertrophy and liver adenomas induced in rats by PFOS are mediated through the nongenotoxic mechanisms of PPARα and CAR activation and are considered irrelevant modes of action for human risk assessment (Klaunig et al. 2003, Elcombe et al. 2012a, 2013).

Appendix C: Program surveillance tests

- 1. Full blood examination:
 - a. Haemoglobin
 - b. Packed cell volume (PCV)
 - c. Red cell count (RCC)
 - d. Mean cell volume (MCV)
 - e. Mean cell haemoglobin (MCH)
 - f. Red cell distribution width (RDW)
 - g. White cell count (WCC)
 - h. Platelets
- 2. Blood lipids:
 - a. Total cholesterol
 - b. Triglyceride
 - c. HDL cholesterol
 - d. LDL cholesterol
- 3. General biochemistry (serum):
 - a. Sodium
 - b. Potassium
 - c. Chloride
 - d. Bicarbonate
 - e. Urea
 - f. Estimated glomerular filtration rate (GFR)
 - g. Creatinine
 - h. Total bilirubin
 - i. Alanine aminotransferase (ALT)
 - j. Aspartate aminotransferase (AST)
 - k. Alkaline phosphatase (ALP)
 - I. Gamma glutamyl transferase (GGT)
 - m. Total protein
 - n. Albumin
 - o. Globulin
 - p. Urate
- 4. Thyroid function (serum):
 - a. Free thyroxine (FT4)
 - b. Thyroid stimulating hormone (TSH)

- c. Free triiodothyronine (FT3)
- 5. Other (serum):
 - a. Glucose
 - b. Creatine kinase (CK)
 - c. Prostate specific antigen (PSA)
- 6. Metals (blood):
 - a. Mercury
 - b. Cadmium
 - c. Lead
 - d. Copper
 - e. Arsenic
- 7. Physical examination:
 - a. Height
 - b. Weight
- 8. PFCs in serum (see Table C.1 for suite of PFCs)

Table C.1: Suite of PFCs that were analysed in serum

PFC	Abbreviation
Perfluoro-n-pentanoic acid	PFPeA
Perfluorohexanoic acid	PFHxA
Perfluoroheptanoic acid	PFHpA
Perfluorooctanoic acid	PFOA
Perfluorononanoic acid	PFNA
Perfluorodecanoic acid	PFDA
Perfluoroundecanoic acid	PFUdA
Perfluorododecanoic acid	PFDoA
Perfluorooctanesulphonic acid	PFOS
1H,1H,2H,2H-perfluorooctanesulphonic acid	6:2 FtS

Appendix D: Regression analysis of blood parameters with PFOS levels.

Cholesterol (♦) & Triglycerides (■)

Lipids

LDL (×) & HDL (▲)

Thyroid function

Free T4 (◆) & Free T3 (■)

TSH ()

Liver function

ALT (🔶) & AST (🗆)

ALP (▲) & GGT (×)

<u>Other</u>

Glucose (>)

Urate (A)

oxConsult

Appendix E: Letter to CFA CEO

ABN: 55 158 303 167 PO Box 316, Darling South, VIC 3145 Tel: 03 9569 3918/03 9572 1448 Fax: 03 9563 5330

Mr Mick Bourke, Country Fire Authority 8 Lakeside Drive, Burwood East, Vic, 3151

> ToxConsult document: ToxCL281013-R 28th October 2013

Re: PFOS blood tests

Dear Mr Bourke,

To date twenty four persons have volunteered to have blood samples taken for measurement of perfluorinated chemicals (PFCs) in their serum. Approximately 50% have indicated that in the past they have eaten fish from Lake Fiskville. Included in the overall group are people who are not involved with training operations at Fiskville, and some who are not employees of CFA. All persons have had additional blood taken for measurement of heavy metals, haematology parameters, and clinical chemistry screening that included tests for liver, kidney and thyroid function. Furthermore all CFA personnel in the group have had a general medical examination given by the CFA medical officer. All persons have agreed to have the results of their tests made anonymously available for evaluation.

Only two of the eight PFCs looked for in serum were measurable. These were PFOA and PFOS. The PFOA concentrations for all individuals were well within what is expected for the general population. The majority of the PFOS measurements were also comfortably within the values for the general population. A few individuals had PFOS concentrations at, or slightly above, the upper edge of the background range. These results are higher than what is expected for the majority (95%) of the general population. Nevertheless they were still markedly less than serum concentrations in factory workers making PFOS, and for whom there are no PFOS associated changes in blood parameters or demonstrable illness.

None of the individuals examined had changes in their blood parameters characteristic of PFOS, or which correlated with their PFOS serum concentration. Some persons had blood parameters

Page 1 of 2

TexCL281013-R

SToxConsult

outside the reference ranges but these were associated with existing health conditions, medication or admitted lifestyle factors.

The CFA medical doctor has discussed the results of their medical examination and testing with each person. Where necessary he has encouraged them to follow up their health condition with their GP and has supplied a facilitating letter.

In conclusion, we do not expect there to be any health implications arising from the concentrations of PFOS measured in the serum of the persons investigated.

Yours faithfully,

Roger Drew, PhD, DABT, Toxicologist & Health Risk Assessor, ToxConsult Pty Ltd.

Adjunct Associate Professor, Department of Epidemiology & Preventative Medicine, Monash University

Dr Michael Sargeant, CFA Medical Officer, Public Health Management Pty Ltd.

Page 2 of 2

ToxCL281013-R

Appendix F: International fish advisories

A number of authorities have provided advice regarding consumption of fish containing PFOS (Dutch VWA 2008, German FIRA 2006, Alabama DoPH undated, Minnesota MDH 2008, Ontario MoE 2013). These fish advisories are not regulatory standards. The technical derivation of many could not be found (Dutch VWA 2008, Alabama DoPH undated, Minnesota MDH 2008, Ontario MoE 2013). However when the basis of the fish advisories was available it is apparent they are very conservative, primarily because large amounts of fish are assumed to be eaten every day of a person's life (this is patently not the case for fish consumed from Lake Fiskville). In addition, despite the fact that fish are by far the greatest contributors to PFOS intake by humans, only a small fraction of the TDI is assigned by some agencies to fish. The resulting fish advisories are precautionary, occasional consumption of fish with higher PFOS concentrations does not necessarily indicate an unacceptable health risk or that adverse health effects are likely.

Information on the derivation of guidance concentrations for PFOS in fish from some countries is below.

Netherlands:

A maximum permissible concentration (MPC) for PFOS in fish has been calculated by RIVM (2010) based on the European Food Safety Authority TDI of 1.5×10^{-4} mg/kg bw/d (EFSA 2008), assuming a body weight of 70 kg, a daily intake of 115 g fish, and a maximum contribution to the TDI from fish of 10%. The math are $(0.1 \times 1.5 \times 10^{-4} \times 70) / 0.115 = 9.1 \times 10^{-3}$ mg/kg = 9.1 µg/kg (9.1 ng/g) fish wet weight.

If more realistic assumptions are made (e.g. 90% of the TDI for fish and 30 g fish eaten on average per day) the resulting MPC is 315 ng/g fish.

RIVM (2010) indicates that after a fire fighting foam incident at Schipol airport in 2008 in which foam containing PFOS was washed into a nearby canal, the Dutch Food and Consumer Product Authority ("Voedsel en Warenautoriteit", VWA) concluded that PFOS concentrations in fish from the canal were high (400-1,500 μ g/kg as compared to 30 μ g/kg in fish caught upstream from the incident location) and consumption was advised against. The advice was for the particular incident and was not underpinned by quantitative considerations of risk to health.

Germany:

In order to evaluate the significance of high PFOS concentrations measured in fish from an aquaculture pond in North Rhine Westphalia, Germany, the German Federal Institute for Risk Assessment (German FIRA 2006) used a TDI of 0.1 µg/kg /day to derive a theoretical tolerable intake of 6 µg PFOS per day for a 60 kg individual.

At an assumed fish consumption rate of 300 g/day, it was determined 100% of the TDI would be exhausted at a PFOS fish concentration of 0.02 μ g/g fish (6 μ g PFOS/day ÷ 300 g fish/day. However FIRA reasoned it was unlikely for a person to continually eat this amount of fish each day for their lifetime. It was therefore concluded that PFOS concentrations under 0.02 μ g/g (i.e. 20 ng/g) in fish are tolerable.

Alabama:

The Alabama Department of Public Health (Alabama DoPH, undated) combined the RfD for PFOS derived by the US EPA (2009) of 0.08 μ g/kg/day with standard information for national body weight and food consumption patterns to determine the following advisories for PFOS in fish:

- No restriction: 0 40 µg/kg
- 1 meal/week: >40 200 µg/kg
- 1 meal/month: >200 800 µg/kg
- Do Not Eat: >800 µg/kg

Details on how the calculations were performed and the values used were not provided.

- However assuming 100% of the RfD was assigned to fish and 70 kg body weight, the amount of fish assumed by Alabama DoPH to be consumed per day can be calculated from the maximum value of the "no restriction" range:
 - ο A TDI of 0.08 μ g/kg/day equates to 5.6 μ g/d PFOS for a 70 kg individual. Therefore 5.6 μ g/d PFOS ÷ 40 μ g PFOS/kg fish = 0.14 kg/d fish (i.e. 140 g/d).

Minnesota:

The Minnesota Department of Health (MDH 2008) have the same PFOS fish advisories as Alabama. The scientific derivation of the Minnesota fish advisories could not be found.

Ontario:

The Ontario Ministry for the Environment (Ontario MoE 2013) provides consumption guidelines for various contaminants in sporting fish. Included is PFOS. Details for the derivation of the guidelines are not provided. However, it is stated that consumption guidelines are based on tolerable daily intakes provided by the Food Directorate of Health Canada. There are five areas in Ontario where consumption of fish is restricted due to concentrations of PFOS they contain. The restrictions are attributed to PFOS released from historic use of firefighting foams.

In Ontario consumption restrictions for PFOS begin at 80 ng/g fish, with complete restriction on consumption advised for levels above 160 ng/g for the sensitive population and 640 ng/g for the general population. The 'sensitive population' is defined by Ontario MoE (2013) to include women of child-bearing age and children less than 15 years. Other agencies do not sub-categorise the population, presumably because the TDI is set to include the sensitive sub-populations.

Details for the derivation of the Ontario PFOS fish guidelines are not provided in Ontario MoE 2013.

Appendix H 23 Pages

Toxicological Profile of PFC

HUMAN HEALTH RISK ASSESSMENT - DOWNSTREAM USERS

4549 GEELONG-BALLAN RD, FISKVILLE VICTORIA

APPENDIX H

APPENDIX H - TOXICITY PROFILES- PERFLOURINATED COMPOUNDS -

HUMAN HEALTH RISK ASSESSMENT - DOWNSTREAM USERS APPENDIX H - APPENDIX H - TOXICITY PROFILES- PERFLOURINATED COMPOUNDS -

Table of Contents

3
4
4
6
7
8
8
8
9
9
9
10
11
11
11
12
13
14
14
16
17

Text Tables

Table 2-1: Classes of Perfluoroalkyls Compounds (PFCs) in the Analytical Suite and their Chemical Makeup.	5
Table 2-2: Perfluoroalkyls compounds (PFCs) included in laboratory analytical suites in the surface water monitoring events conducted at CFA Fiskville Training College.	6
Table 2-3: General Properties of the Surrogates Used to Classes of Represent Perfluoroalky Compound (PFC).	/l 7
Table 5-1: Summary of public health toxicity reference values for PFOS	14
Table 5-2: Summary of public health toxicity reference values for PT OA Table 5-3: Uncertainty Factors used in derivation of the Public Health Toxicity Reference Values for PFOA and PFOS	.15
Table 6-1: Summary of human health criteria for PFC	.16

APPENDIX H - TOXICITY PROFILES- PERFLOURINATED COMPOUNDS -

1 INTRODUCTION

Perfluorinated compounds (PFCs) area class of chemicals that are ubiquitous in the environment as a result of anthropogenic activities. They have been used in a variety of industrial processes and products including carpets, cooking utensils, clothing and non-stick coatings. PFOA and PFOS are PFCs that are known to have been used in alcohol resistant aqueous film forming foams (AR-AFFF). These compounds are predominantly used in "B class foams" formulations as they are able to form a protective film that contain vapours while fighting flammable liquid fires. Other PFCs such as fluorotelomer sulphonic acid (6:2 FTS) have been developed as replacements since restrictions on the use of PFOA and PFOS have been put in place.

PFCs have been identified in water, sediments, plants, foodstuffs and animals (in particular fish). In humans, PFCs have been found predominantly in blood as some are known to bind strongly to plasma proteins. PFOS is known as a 'persistent organic pollutants'. (ATSDR 2009). There are hundreds of chemicals that are classed as PFCs. They can be described simply as those compounds with fluorine atoms bound to carbon atoms typically in chains up to C20 in length.

Little is known about the toxicology of many PFCs. Therefore in toxicological reviews they are usually split into different classes (DME 2012, Perforce 2006, NICNAS 2011). Classes considered in the literature include but may not be limited to:

- Perfluoalkyl sulfonic acids (PFAS),
- Perfluoroalkyl carboxylic acids (PFAA),
- Fluorotelomers,
- Fluoropolymers, and
- Perfluoroalkanamides.

Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are two PFCs that have been studied extensively. They are two of the four "Indicator B6" PFCs that are the most commonly detected PFC in humans (USEPA 2013). The other two PFCs are perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA). The toxicity of these substances and their potential to bioaccumulate in the environment increases with alkyl chain length. There is uncertainty due to insufficient toxicological data for many PFCs therefore Cardno Lane Piper has grouped PFCs by functional group and using the most commonly detected PFC identified in humans as surrogates (see Section 2.1). A toxicology profile for PFCs has been provided by Dr Roger Drew of ToxConsult. This was peer reviewed by Dr Brian Priestly of Priestly Consulting

This is similar in some respects to how NICNAS (2007 and 2009) has placed restrictions on the use of PFAS based on the toxicity of PFOS. According to NICNAS (2007) "*PFOS-based and related PFAS-based chemicals continue to be restricted to only essential uses, for which no suitable and less hazardous alternatives are available*" (*NICNAS 2007*).

Further, many other Perfluorinated Compounds (OPC) degrade to PFAS or PFAA compounds including PFOA and PFOS which are stable and highly resistant to metabolic and environmental degradation.

2 PERFLUOROALKYL COMPOUNDS IN THE ENVIRONMENT

PFCs have been released during manufacturing processes to air, water or soil. They have been measured in urban air up to 0.05 ng/m³ (PFOS) and 0.9 ng/m³ (PFOA) however they are generally present at below 0.001 ng/m³ (ATSDR 2009). The degradation of PFCs is considered slow where they typically remain suspended as particulate matter for a few days before partitioning to water or soil. PFC are known to have been transported over thousands of kilometres from their source and have been identified in water. The background level in water (due to anthropogenic activities) of PFC is considered to be less than 50 ng/L (ATSDR 2009). PFCs generally do not degrade in water, those that do degrade do so to smaller PFCs such as PFOS and PFOA. PFCs also do not degrade in soils where they are potentially carried down in to groundwater.

2.1 Range of Perfluoroalkyl Compounds (PFCs)

PFCs are sometimes referred to as fluorosurfactants. Their molecular structure is consistent with that of typical surfactants (lipophilic hydrocarbon backbone with a polar functional group) however fluorine atoms replace hydrogen atoms on the hydrocarbon backbone. PFCs are synthetic chemicals that typically have two components:

- An alkyl group which consists of a chain of carbon atoms surrounded by fluorine atoms; and
- One of a number of different hydrophilic functional groups such as a carboxylic acid, amide, alcohol or sulphonate group.

The chemical structure of the PFCs gives them the "*unique property of being able to repel oil, grease, and water*" (ATSDR 2009) hence their 'non-stick properties'. The PFCs that are most often discussed in literature reviews on PFCs are those that have a hydrocarbon backbone (chain length) between 4 and 12 carbons long and either a sulfonic acid or a carboxylic acid as the hydrophilic functional group.

Various PFC are used in Class B fire-fighting foam products (referred to as "foams" in this appendix) however they are not typically identified in product material safety datasheets. Foams used on-site are known to comprise of PFAS, PFAA and fluorotelomers (6:2 FTS). A limited number of PFC from other classes (Perfluorooctane sulfonamide, N-alkyl Perfluorooctane sulfonamide and N-alkyl Perfluorooctane sulfonamidoethanol) have also been included in analytical suite however their inclusion is based the analytical suite offered by testing laboratories. Some of these other PFCs have also been detected in water at Fiskville Training College. There are many other PFC from various classes¹ that are not included in the analytical suite.

A list of the various PFCs classes routinely included in laboratory analytical suites and potentially used in AFFF foams is shown in Table 2-1. This list includes the relevant acronym, the number of carbon atoms in the alkyl chain and the relevant hydrophilic functional group.

¹ Perfluoroalkyl sulphinate (PFASi), Fluorotelomer alcohol (FTOH), Fluorotelomer acid (FTA), Fluorotelomer unsaturated acid (FTUA), Perfluoroalkyl phosphonic acid (PFAPA), Perfluoroalkyl phosphinate (PFPi), Perfluoroalkyl phosphate ester (PAP), di-Perfluoroalkyl phosphinate (diPAP) and N-alkyl Perfluoroctane sulfonamidoacetic acid (N-Alkyl FOSAA).

Table 2-1: Classes of Perfluoroalkyls Compounds (PFCs) in the Analytical Suite and their Chemical Makeup

Family Name	Acronym	Carbons in chain	Aliphatic chain	Functional Group
Perfluoroalkyl sulphonic acid	PFAS	4 to 20	CF ₃ (CF ₂) _n ^a	SO₃H
Perfluoroalkyl carboxylic acid	PFAA	4 to 20	CF ₃ (CF ₂) _n ^b	CO ₂ H
Fluorotelomer sulphonic acid	X:2 FTS ^c	4 to 15	$CF_3(CF_2)_n(CH_2)_2$ ^d	SO₃H
Perfluoroalkyl sulfonamide	FOSA		$CF_3(CF_2)_n$	SO ₂ NH ₂
N-alkyl Perfluoroalkyl sulfonamide	N-Alkyl FOSA	Typically 8	$CF_3(CF_2)_n$	SO ₂ NH(Me or Et)
N-alkyl Perfluoroaklyl sulfonamidoethanol	N-Alkyl FOSE	(n = 7)	CF ₃ (CF ₂) _n	SO ₂ N(CH ₂ CH ₂₀ H) (Me or Et)
Notes:				

a. n = 7 for PFOS

b. n =7 for PFOA

c. X in the acronym X:2 FTS equals n+1, e.g. n= 5 for 6:2 FTS.

d. n = 5 for 6:2 FTS.

The approach used in this HHRA is to assess toxicity of the PFCs according to their respective hydrophilic functional groups. PFC were placed in their respective classes due to the large variety of PFCs that may be present as contaminants. Two distinct classes plus a third broad generic class are outlined below including the surrogate assigned to represent each class. The PFC classes are:

- **PFAS**: This PFC class is assessed using PFOS as a surrogate. PFOS was selected by Cardno as the toxicological database for this compound is extensive. PFOS was until recently the main PFC used in fire-fighting foams. It has been detected in water at CFA Fiskville Training Ground.
- **PFAA**: PFOA is the PFC used as a surrogate for this class. PFOA was selected by Cardno for the same reasons outlined above for the PFAS class. PFCs from this class (not including PFOA) are still used as foams in portable fire extinguishers at CFA Fiskville Training Ground.
- **OPC**: All other PFCs not belonging to the other classes (PFAS and PFAA) identified in water at CFA Fiskville Training Ground were assessed using 6:2 FTS as a surrogate. 6:2 FTS is believed to be the main PFC ingredient used in the foams used at CFA Fiskville Training Ground.

The PFCs assessed in this HRA and their respective classes are shown below in Table 2-2.

Perfluorinated Compound (PFC)	Acronym
Perfluoroalkyl sulfonic acids (PFAS)	
Perfluorobutane Sulfonic Acid	PFBS
Perfluorohexane Sulfonic Acid	PFHxS
Perfluoroheptane Sulfonic Acid	PFHpS
Perfluorooctane Sulfonic Acid	PFOS
Perfluorodecane Sulfonic Acid	PFDS
Perfluoroalkanoic acids (PFAA)	
Perfluorobutanoic Acid	PFBA
Perfluoropentanoic Acid	PFPA
Perfluorohexanoic Acid	PFHxA
Perfluoroheptanoic Acid	PFHpA
Perfluorooctanoic Acid	PFOA
Perfluorononanoic Acid	PFNA
Perfluorodecanoic Acid	PFDA
Perfluoroundecanoic Acid	PFUnA
Perfluorododecanoic Acid	PFDoA
Perfluorotridecanoic Acid	PFTrA
Perfluorotetradecanoic Acid	PFTeA
Other fluorinated Compounds (OFC)	
6:2 Fluorotelomer Sulfonate	6:2 FTS
Heptadecafluorooctane sulphonamide	FOSA
N-Methylheptadecafluorooctane sulphonamide	NMeFOSA
N-Ethylheptadecafluorooctane sulphonamide	NEtFOSA
N-Methylheptadecafluorooctane sulphonamidoethanol	NMeFOSE
N-Ethylheptadecafluorooctane sulphonamidoethanol	NEtFOSE

Table 2-2: Perfluoroalkyls compounds (PFCs) included in laboratory analytical suites in the surface water monitoring events conducted at CFA Fiskville Training College.

2.2 Perfluoroalkyl compounds (PFC) and their production

PFC are synthesised using 2 main processes:

- *Electrochemical fluorination (ECF):* ECF has historically been used to synthesise PFCs such as those used in AFFF fire-fighting foams including PFOS and PFOA. The purity of PFCs synthesised by ECF are typically considered a "technical mixture" as multiple analogues of the target PFC may be produced, i.e. molecules with the same molecular formula.
- *Telomerisation*: Telomerisation is a more recent process used to synthesise PFCs. It does so by first preparing an intermediate, perfluoroalkyl iodide, which is then used to produce a variety of PFCs including some of those listed in Table 2-1 (e.g. 6:2FTS). The benefit of telomerisation is that more control of the synthesis process is gained and the purity of the PFC produced is improved.

Advantages of PFC manufactured using telomerisation over the ECF process include:

• Preparation of straight chain PFCs is possible thus avoiding the preparation of "technical mixtures"; and

• PFC can be prepared without fluoride atoms on every carbon atom in the alkyl chain. This is associated with a reduction in toxicity and bioaccumulation (Dupont 2008) however peer-reviewed technical literature is not currently available to confirm this.

2.3 Properties of surrogate PFCs

A summary of the key properties for the surrogate PFC, i.e. PFOS, PFOA and 6:2FTS, is shown below in Table 2-3.

Table 2-3: General Properties of the Surrogates Used to Classes of Represent Perfluoroalkyl Compound (PFC).

Property		PFC Class				
		PFAS ^a PFAA ^a		OPC ^c		
Surrogate (Compound	PFOS	PFOA (PFO ^b)	6:2 FTS		
Name		Perfluorooctane sulphonate	Perfluorooctanoic acid (Perfluorooctanoate)	1H,1H,2H,2H- Perfluorooctane sulphonate		
IUPAC Nar	ne	<u>1,1,2,2,3,3,4,4,5,5,6,6,7,7,</u> <u>8,8,8-</u> <u>heptadecafluorooctane-1-</u> <u>sulfonic acid</u>	2,2,3,3,4,4,5,5,6,6,7,7,8,8,8 -pentadecafluorooctanoic acid	<u>3,3,4,4,5,5,6,6,7,7,8,8,8-</u> tridecafluorooctane-1- sulfonic acid		
Family		Perfluoroalkyl sulphonates	Perfluoroalkyl carboxylates	Fluorotelomer sulphonates		
Process		ECF	ECF	Telomerisation		
CAS No		(2795-39-3	335-67-1	27619-97-2		
Molecular F	Formula	F(CF ₂) ₈ SO ₃ H	F(CF ₂) ₈ CO ₂ H	F(CF ₂) ₆ CH ₂ CH ₂ SO ₃ H		
Molecular \	Neight:	538 (Potassium Salt)	414	427		
Melting Poi	nt (°C)	>400	45 to 50	NI		
Vapour Pre at 20°C)	essure (mmHg	2.48 x 10 ⁻⁶	0.017	NI		
Water Solu	bility (mg/L)	570	9500	NI		
	Atmospheric	114 days	90 days	NI. Assumed to be		
Hall-life	Water (25 ^C)	41 years	> 92 years	persistent.		
Biodegradable		Does not degrade chemically or biologically	Yes, under sulphur limiting and aerobic conditions.	No biodegradation products identified in sludge.		
Persistent Organic Pollutant (POP)		Yes	No	No		
BMF		22 – 160 ^d	1.3 to 13 (dolphin)	Low		
BCF		1000-4000 ^d (fish 2796 – 3100 ^d)	4 (rainbow trout)	<502		
Bioaccumu	lative	Yes	No ^e	No		

NI = no value identified in literature, PFAS = Perfluoroalkyl sulfonic acids, PFAA = Perfluoroalkyl Carboxylic Acid, OPC = Other Perfluorinated Compounds, PFOS = Perfluorooctane Sulfonic Acid, PFOA = Perfluorooctaneic Acid, 6:2FTS = 6:2 Fluorotelomer Sulfonate.

a. unless specified the property has been sourced from USEPA (2012a).

b. PFOA dissociates to perfluorooctanoate (PFO) in the environment)

c. Based on 3rd party details from Dupont (2008 and 2012). Data not published in peer reviewed journal

d. PFOS fulfils the criteria for bioaccumulation based on the high concentrations that have been measured in top predators at various locations such as the Arctic, the US and Sweden (KemI 2004).

e. Longer chain PFAA are potentially bioaccumulative.

3 EXPOSURE TO PERFLUOROALKYL COMPOUNDS

3.1 Background Exposure to Perfluoralkyl compounds (PFCs)

For the general population the predominant route of exposure is from oral exposure, i.e. from consumption of food and water that are contaminated with PFC (EFSA 2008) The intake from fish was considered more significant than intake from water (EFSA 2008, 2012). Higher PFOS levels were typically quantified in freshwater fish than marine or diadromous fish (ATSDR 2009), i.e. fish that live at sea and breed in freshwater or vice versa (e.g. salmon, trout, etc.). Dermal exposures are considered minor routes of exposures as PFCs in general have poor dermal absorption. The exposure pathway from air is also considered minor (unless a person resides in the vicinity of a manufacturing facility) as in general intake from this pathway would make up only a small portion of background intake.

The upper intakes of PFOS (0.030 μ g/kg/day) and PFOA (0.047 μ g/kg/day) from dietary exposure have been estimated for the general populations in North America and Europe according to ATSDR (2009). Extensive review of dietary intakes has also been conducted by EFSA (2008, 2012). The total intake from water was considered insignificant as it was estimated to be 0.00019 μ g/kg/day (0.014 μ g/person) for PFOS and 0.000024 μ g/kg/day (0.018 μ g/person) for PFOA (EFSA 2008). The total intake from the diet varied and depended on a person's geographical location, the type of food they eat and its source.

Background exposure in this HHRA is based on a survey conducted by Food Standards Australia New Zealand which looked at concentrations of PFCs in foods packaged in glass, paper, plastic or cans (FSANZ 2011). A summary is provided in the HHRA (See Section 5.4). The assumed background dietary intake for adults in the Australian population exposed to PFAS and PFAA are 0.01 and 0.02 μ g/kg/day respectively. The dietary exposure to PFCs for Australian Adults exposures is lower than for adults in North America and Europe.

Estimates of the background concentrations of OPC from surveys in 13 European countries were not quantifiable, i.e. very low, therefore the background dietary intake of OPC is therefore assumed to be negligible (i.e. set to zero).

3.2 Intake from Other Sources

The intake from other sources such as contact with materials on cooking utensils, air and dusts is considered negligible compared to levels from diet. PFC may be present in contact materials used in cooking (e.g. non-stick coatings on frypans, paper as used in bags for microwaving popcorn) and therefore potentially contaminate foods. The intake from this source was considered negligible, however the available data is insufficient to discount contribution from food contact materials such as non-stick coatings on cookware and paper food packaging (EFSA 2008). The intake of PFAS from air (indoor and outdoor) was also considered negligible as it was determined to be <0.001 μ g/kg/day (EFSA 2008). The level of PFOS in indoor air on dust was based on dust collected in studies of residential properties from Japan (Moriwaki 2003, mean of 0.2 μ g/g, range of 0.011 to 2.5 μ g/g, n=11) and Canada (Kubwabo, 2005, mean, 0.443 μ g/g, range of <0.0046 to 5.065 μ g/g, n = 67). The level of PFOS in outdoor air ranged from 0.000001 to 0.00001 μ g/m³ and for outdoor dusts (0.03 to 0.1 μ g/g) (EFSA 2008).

4 ABBREVIATED TOXICOLOGICAL PROFILE FOR PFOS & PFOA

The abbreviated toxicological profile provided here in Section 4 has been prepared by Dr Roger Drew of ToxConsult.

The toxicological literature on the PFCs is large and complex. The toxicological profile below is not intended to be comprehensive, rather it is an easy to read (note format) compilation of information relevant for this occupational exposure risk assessment. Emerging community epidemiology studies have not been reviewed herein as they are more relevant for other risk assessments being undertaken within the overall Fiskville project. Much of the information below has been gleaned from agency reviews but key research papers have also been accessed. The reference list contains a large number of papers that are not cited in the toxicological profile, they nevertheless have been used to formulate the summaries in the information below.

4.1 Absorption, Distribution, Metabolism and Excretion:

- Well absorbed orally, subject to enterohepatic recirculation.
- Not metabolised.
- Urine is the major route of elimination but is poor (significant species differences).
- Marked differences in serum elimination half-lives between species and PFCs.

PFOS:

Rat	~ 40 -100 days
Monkey	~200 days
Human	5.4 years (95%CL 3.9 – 6.9)

PFOA:

Pot a	Female 1.9 to 24 hours				
Ναι	Male 4.4 to 9 days				
Monkey ^b 21 to 30 days					
Human ^b	3.8 years (95% CI 3.1-4.4)				
a. Due to the c rats are usu	Due to the difference in elimination, experimental NOAELs in male rats are usually lower than females.				
b. No importar	No important gender differences in elimination.				

 Blood (serum) PFOS levels are the best indicator of exposure and for determining margins of exposure when assessing risk (3MCompany 2003, MDH 2008, DFG 2011).

4.2 General Distribution:

- Not accumulated in fat.
- Primarily confined to extracellular water, i.e. primarily in serum (Vd 0.2L/kg).
- High protein (albumin) binding, including to fatty acid-binding protein.

The distribution of PFOS is summarised as follows:

- The liver concentration in humans, monkeys, hamster, cows and chickens is approximately the same as in serum or slightly higher. However in rats, mice, sheep and seals it is 4 – 5 times higher.
- In all species PFOS kidney concentrations are about the same as in serum.
- In all species PFOS muscle concentrations are 10 times lower than in serum, other tissues are lower still.

The distribution of PFOA is summarised as follows

- A similar distribution profile to PFOS. Liver and kidney concentrations are the same or less than in serum, muscle concentrations are more than 10 times lower than serum.
- May be dose dependent with greater distribution into liver at low compared to high doses.

4.3 **Biochemical Effects**:

Both PFOS and PFOA are agonists of PPAR α in rodents and produce the typical effects as observed with other peroxisome proliferator substances (see below). PFOA is a stronger agonist for these effects than is PFOS. Humans and monkeys are equally refractory to the effects of PPAR α activation but rats and mice are very sensitive. This species difference is largely due to lower number of receptors. However not all the effects of PFOS and PFOA are necessarily mediated by PPAR α . The mechanisms of toxicity are not fully understood but may include effects on fatty acid transport and metabolism, membrane function, and/or mitochondrial bioenergetics.

Experiments in animals (rats and monkeys) show PFOS and PFOA may affect the transport and metabolism of cholesterol and fatty acids. Clinical chemistry parameters indicate potential for liver toxicity but histopathology is only evident with very high doses. Also observed is a tendency for lower circulating T_3 and at high doses in rodents, hypothyroidism is evident and likely contributes to the low neonatal survival in these species. It should be noted the physiological stability of thyroid hormones in rats is different to that of humans and primates; this renders rodents more susceptible to agents that affect the utility, catabolism and production of thyroid hormones. Monkeys are the most relevant species for humans.

All the above effects are dependent upon the PFC concentration in blood serum.

Thyroid hormones seem to start to be altered when serum PFOS level reaches the 70–90 mg/L range, regardless of animal species (rat or monkey) or route of administration (diet, gavage, or drinking water) (Lau 2012).

In the 6 month monkey PFOS gavage study used by agencies for TDI setting (Seacat et al. 2002) the following is observed:

- At high serum concentrations hypolipidemia and metabolic wasting, with signs of liver toxicity.
- At serum concentrations not causing overt toxicity (approximately 60 100 mg/L) the primary findings are changes in biochemical parameters associated with lipid metabolism. The animals show increased liver weight and decreases in body weight, together with decreased cholesterol and HDL, decreased triglycerides and T₃. These changes have been shown to be readily reversible as serum concentrations decrease.
- Serum NOAEL (as BMDL₁₀) 35 mg/L.

For humans there are no substantial findings in serum hepatic enzymes, cholesterol or lipoproteins in persons occupationally exposed during manufacture of PFOS when serum PFOS concentrations are less than approximately 2 - 6 mg/L. Although firm conclusions at higher concentrations are difficult to make, in worker groups with the highest serum PFOS there is a trend for lower blood cholesterol and HDL, increased serum triglyceride and ALT, and increased T_3 .

Animal studies show reduced synthesis and esterification of cholesterol and enhanced oxidation of fatty acids in the liver. Overall the data suggests high serum PFC may be associated with changed metabolic status, altered serum lipoprotein profile, and therefore may

influence risk factors for cardiovascular disease. Some of the biochemical effects are similar to the fibrate and statin therapeutic agents.

4.4 Genotoxicity:

In a large range of tests PFOS & PFOA are negative for genotoxicity.

4.5 Acute Toxicity:

- PFOS Moderately toxic, rat oral LD₅₀ ~250 mg/kg.
- PFOA Moderately toxic, rat oral LD₅₀ ~400 1,800 mg/kg (M >500 & F 250 – 500 mg/kg).
- In life symptoms include decreased body weight, decreased limb tone, anorexia, and accompanying hypoactivity.
- PFOA is a weak skin irritant, PFOS not an irritant.
- PPARα agonists (PFOA >>PFOS): ↑ liver weight (hepatocyte hypertrophy), ↓ serum glucose, ↓ cholesterol, ↑β-oxidation fatty acids.

4.6 Sub-chronic & Chronic Oral Toxicity

PFOS:

- ↓ total cholesterol an early consistent finding, cumulative toxicity expressed as metabolic wasting.
- 2 year rat dietary study with PFOS (~ 0.04, 0.14, 0.4 &1.5 mg/kg/d) (Thomford 2002) showed:
 - Trend for increased survival in males at two highest doses but not females.
 - Centrilobular hypertrophy (\uparrow SER but \leftrightarrow peroxisomal proliferation).
 - NOAEL 0.14 mg/kg/d.

 - Evidence for induction of thyroid and mammary tumours in F was limited (no dose response).
- BMCL₅ (equivalent to serum concentration NOAEL) (3MCompany 2003, Olsen et al. 2003b):
 - 31 mg/L for rat pup weight gain in multigeneration reproduction studies.
 - 44 mg/L for rat liver toxicity.
 - 62 mg/L for rat liver adenomas.
 - 35 mg/L for monkey \downarrow cholesterol & T₃ (Seacat et al. 2002, MDH 2008).

PFOA:

- Sub-chronic rat studies consistently show ↓ weight gain, ↑ liver weight (hepatocellular hypertrophy, peroxisome proliferation), high doses hepatocellular necrosis & ↑ mortality (preceded by wasting).
 - NOAEL (M) 0.6 mg/kg/d based on increased liver weight at higher doses (Goldenthal 1978) but this dose has shown ↑peroxisome proliferation & ↑ liver weight (Perkins et al. 2004).
- 2 year dietary rat study at ~ 1.5 and 15 mg/kg/d (Sibinski 1987).
 - Dose related ↓ body weight gain, and at top dose ↑ serum ALT, AST, AP & CPK.

NOAEL (M) 1.3 mg/kg/d based on \uparrow liver weight.

- Hepatocellular and Leydig cell adenomas, and pancreatic acinar cell hyperplasia in males (Sibinski 1987, Biegel et al. 2001).
- Tumour pattern is typical of PPARα agonists (Klaunig et al. 2003, 2012, Lau 2012).

In monkeys doses of 0, 3, 10 or 30 mg/kg/d for 6 months showed dose dependent ↑ liver weight (mitochondrial proliferation) in all treatment groups. No histopathological evidence of liver injury at 3 or 10 mg/kg/d. No changes in clinical chemistry, hormones, urine composition or haematological effects (Butenhoff et al. 2002). NOAEL <3 mg/kg/d based on ↑ liver weight.

- BMCL₁₀ (equivalent to serum concentration NOAEL) (Butenhoff et al. 2004a):
 - 23 mg/L ↑ liver weight (monkey), 34 mg/L (rat).
 - 29 mg/L Post-natal effects 2-generation rat.
 - 60 mg/L \downarrow Body weight (monkey)
 - 125 mg/L ↑ Leydig cell tumours (rat). Questionable significance to humans.

4.7 Developmental and Reproductive Toxicity

PFOS:

- Developmental and 1 & 2 generation rat studies show foetal toxicity and neonatal effects at doses similar to, or below those causing maternal toxicity.
 - ↓ foetal weight, cleft palate, anasarca (oedema), delayed ossification (sternebrae and phalanges) and cardiac abnormalities (ventricular septal defects and enlargement of the right atrium).
 - Dose response curves are steep, with high mortality observed early after birth.
 - In surviving pups delays in growth and development accompanied by hypothyroxinemia.
- Late gestational age seems to be a very vulnerable period.
- Neonatal deaths are hypothesised to be due to delayed lung development but more likely to be hypothyroxinemia in the pups (Lau 2012).
- Two-generation reproduction studies give a LOAEL of 0.4 mg/kg/d and NOAEL of 0.1 mg/kg/d.

PFOA:

- Teratology studies at 100–150 mg/kg/d for rats and 50 mg/kg/d for rabbits are negative (Lau et al. 2004).
 - In rats, NOAEL for maternal and developmental toxicity were 5 and 150 mg/kg/d.
- In mice post natal survival \downarrow at >5 mg/kg/d & dose dependent growth deficits \ge 3 mg/kg/d.
 - NOAEL 1 mg/kg/d (Lau et al. 2006).
 - In addition to gestational exposure, abnormal lactational development of dams may play a role in the early growth retardation. PPARα may have a role in delayed weight gain, but other mechanisms may also contribute.
- In a two generation reproduction study in rats at 1, 3, 10 or 30 mg/kg/d by gavage (Butenhoff et al. 2004b); ↓ body weight, ↑liver & kidney weight in F₀ & F₁; ↓pup weight at top dose.
 - NOAELs 30 mg/kg/d for reproductive function, 10 mg/kg/d. for sexual maturation, and < 1 mg/kg/d for body weight and increased liver weight.

4.8 Summary of the Relevant Human Data

In general, no consistent association between serum fluorochemical levels and adverse health effects in worker populations has been observed (Lau et al. 2007).

PFOS:

- Long half-life (ave 5.4 yr), therefore will tend to accumulate.
- Liver:serum ~2:1
- Breast milk:serum ~ 0.01:1 (same in rodents).
- Crosses placenta but neonate:mother serum ~0.5:1 (or less).
- General community population mean serum concentrations: 0.005 0.05 mg/L.
 - Reliable range for individuals in the populations: 0.00006 0.3 mg/L.
- PFOS worker serum concentration range: 0.06 12.8 mg/L.
 - NOEL (for possible \downarrow serum cholesterol & lipoprotein changes) $\sim 2 6$ mg/L.
 - Medical surveillance of PFOS production employees has not been associated with adverse clinical chemistry, haematology results or illness (Olsen et al. 1999, 2003a).

PFOA:

- Long half-life (ave 3.8 yr), therefore will tend to accumulate.
- Concentration neonate:mother plasma ~1.2 1.9:1
- Some occupational studies have found a positive association with cholesterol and triglycerides whereas others found no such association. Overall there is no consistent pattern of changes, but HDL may be negatively associated and triglycerides positively associated with serum PFOA (effects marginal). No significant increased risk of ischaemic heart disease or cancer.
- PFOA serum levels appear inversely associated with birth weight but not low birth weight or small gestational age.
- Hepatic toxicity, hypolipidemia, and abnormal hormone levels have not been associated with serum PFOA concentrations in workers whose serum levels have averaged 5 mg/L (0.1-114 mg/L) (Gilliland and Mandel 1996; Olsen et al. 1998, 2000).

5 AVAILABLE PUBLIC HEALTH GUIDELINE VALUES

5.1 Toxicity Reference Values for Perfluorinated Compounds

Australian toxicity reference values (TRVs) for the PFCs are not available. Many of the international agencies that have developed a toxicity reference value (TRV) for PFCs have done so as part of setting a drinking water guideline for the general population. Often these are provisional or interim (German DWC 2006, NCDENR 2007, RIVM 2010, US EPA 2009) and with limited support documentation explaining the basis of the TRV. These guidelines assume a chronic (lifetime) exposure and are conservative (i.e. are precautionary) in order to provide adequate protection for sections of the general population that are thought to be especially vulnerable to chemicals. These are traditionally considered to be the foetus, young children, the old and infirmed, and persons who, for some reason or other (e.g. genetic constitution or acquired disease) are less able to cope with the effects that the chemical may be able to cause.

A summary of the public health TRV, i.e. equivalent to Tolerable Daily Intakes (TDI), that have been derived by various International Agencies is shown in Table 5-1 for PFOS and Table 5-2 for PFOA. This includes the critical study, the point of departure and the uncertainty factors (UF) used derive the TDI.

	Critical Effect		TDI			
Agency	Critical Study	POD (µg/kg/day)	UF ^a	(µg/kg/day)		
International Ag	encies					
COT (2006a)	Sub-chronic oral study in Cynomolgus monkey ^b	30 (NOEAL)	100	0.3		
EFSA (2008)	Sub-chronic oral study in Cynomolgus monkey ^b	30 (NOEAL)	200	0.15		
FEA (2006) EWG (2002)	2 year dietary study in rat	25 (NOAEL)	300	0.1		
USEPA (2009)	Sub-chronic oral study in Cynomolgus monkey ^{b, c}	30 (NOEAL)	390	0.08		
Other agencies						
MDH (2008) Sub-chronic oral study in Cynomolgus monkey ^b 2.5 (2.5 (BMD) ^d	30	0.08		
Notes: POD = Point of departure from toxicological study, UF = Uncertainty factor, TDI = Tolerable Daily Intake.						

Table 5-1: Summary of public health toxicity reference values for PFOS.

COT = Committee on Toxicology, EFSA = European Food Safety Authority, USEPA = United States Environmental Protection Authority. MDH = Minnesota Department of Health, FEA = German Ministry of Health at the Federal Environment Agency.

a. The uncertainty factor is made up of factors to account for interspecies differences (10x) and human variability (10x). An additional UF was applied by some agencies to account for long half-life of PFOS in humans.

b. Seacat et al. (2002). Steady state blood concentration was not achieved however this is not a concern if serum concentrations at the dose associated with NOEL is used.

c. The TDI from the USEPA is based on their derivation of provisional health advisory levels (drinking water guidelines).

d. The POD is based on PBPK modelling required to convert a serum bench mark concentration to a dose. The serum BMDL of 35mg/L was converted to a human equivalent taking into account physiological differences between monkey and humans and PFOS long half-life in humans.

	Critical Effect	UF ^a	Reference				
Agency	Selected Health Endpoint POD (µg/kg/		Value (µg/kg/day)				
International agen	cies						
COT (2006b)	2 generation reproductive study in mice.	300 (BMDL ₁₀)	100	3			
EFSA (2008)	2 generation reproductive study in mice.	300 (BMDL ₁₀)	200	1.5			
USEPA (2009) ^b	Developmental toxicity study in mice.	460 (BMDL ₁₀)	2400	0.2			
FEA (2006)	2 generation reproductive study in mice.	1000 (LOAEL)	3000	0.3			
Other agencies	Other agencies						
NC (MDH 2008)	Sub-chronic oral study in cynomolgus monkey.	2.9 (BMDL ₁₀) ^c	30	0.09			
MDH (2008)	Sub-chronic oral study in cynomolgus monkey.	2.3 (BMDL ₁₀)	30	0.077			
Notes: POD = Point of departure from toxicological study, $IIE = Incertainty factor, TDI = Tolerable Daily Intake$							

Table 5-2: Summary of public health toxicity reference values for PFOA

Point of departure from toxicological study, UF Uncertainty factor, IDI Tolerable Daily Intake.

COT = Committee on Toxicology, EFSA = European Food Safety Authority, USEPA = United States Environmental Protection Authority, FEA = German Ministry of Health at the Federal Environment Agency, MDH = Minnesota Department of Health, NC = State of North Carolina.

The uncertainty factor is made up of factors to account for interspecies differences (10x) and human variability (10x). An additional UF was applied by some agencies to account for long half-life of PFOA in humans.

b The TDI from the USEPA is based on their derivation of provisional health advisory levels (drinking water guidelines).

The POD is based on PBPK modelling required to convert a serum bench mark concentration to a dose. The serum BMDL was 23mg/L C. was converted to a human equivalent taking in to account physiological differences between rat and humans and PFOA long half-life in humans.

The TDI derived for PFOS ranged from 0.08 to 0.3 µg/kg/day mainly due to the differences in the uncertainty factors (UF) applied, see Table 5-3. In the US an UF of 3x is applied for intraspecies differences compared to 10x by the European agencies. However, large UF are applied by US EPA (2009) for PFOS (13x) and PFOA (81x) or accounted for in bench mark dose modelling (MDH 2008) to account for the long-half-life of PFOS and PFOA in humans.

Table 5-3: Uncertainty Factors used in derivation of the Public Health Toxicity **Reference Values for PFOA and PFOS**

Agency	Intraspecies Differences	Human Variability	Long human half-life	Use of LOAEL	Total
PFOS					
COT (2006a)	10	10	Nil	-	100
EFSA (2008)	10	10	2	-	200
FEA (2006), EWG (2002)	10	10	3	-	300
USEPA (2009)	3	10	13	-	390
MDH (2008)	3	10	n/a ^a	-	30
PFOA					
COT (2006b)	10	10	Nil	-	100
EFSA (2008)	10	10	2	-	200
USEPA (2009)	3	10	81	-	2400
FEA (2006)	10	10	3	10	3000
NC and MDH (MDH 2008)	3	10	n/a ^a		30

Notes: COT = Committee of toxicology, EFSA = European Food Safety Authority, USEPA = United States Environmental Protection Authority, FEA = German Ministry of Health at the Federal Environment agency, MDH = Minnesota Department of Health, NC = State of North Carolina

Clearance was taken into account in benchmark dose modelling used to derive the point of departure

5.2 Human Health Criteria for Perfluorinated Compounds

A summary of criteria suitable for screening the PFCs relevant to the current investigation is provided below in Table 6-1. Drinking water criteria from USEPA (2009) are primarily used for screening human health impacts. In the absence of a specific value for 6:2 FTS, the value for PFOS is substituted as a conservative approach for screening risks associated with 6:2 FTS.

Compound	Criteria Name	Criterion Value	Source	Media			
Drinking Water							
PFOS, 6:2 FTS	PHA	0.2 µg/L					
PFOA	PHA	0.4 µg/L	03EFA (2009a)	Wator			
PFOS	MPC _{DW,Water}	0.53 µg/L	RIVM (2010)	vvaler			
PFOS and PFOA	GV	0.3 µg/L	DWC (2006), DWI (2009)				
Recreational Guidelines (Water)							
A factor of at least 10x could be applied to drinking water guidelines for primary contact recreation as dermal exposure to PFC is considered an incomplete/insignificant exposure pathway compared to the oral pathway (NHMRC 2011). This is because PFCs in general have low rates of dermal absorption. (ASTDR 2009), e.g. PFOS criterion = 0.2 x 10 = 2 µg/L.							
Direct Contact With So	oil						
PFOS,	SSL	6 mg/kg					
PFOA	SSL	16 mg/kg					
6:FTS	SSL	6 mg/kg	Assumes same as PFOS ^a Soil/Sedimer				
PHA = Provisional Health Advisory, GV = guideline value, SSL = Soil Screening Level, MPC _{DW,Water} = Maximum Permissible Concentration in drinking water, a. Note no criteria was identified for 6:2FtS, as result Cardno Lane Piper adopted PFOS criteria value as a screening level only.							

Table 6-4: Summary of human health criteria for PFC

6 **REFERENCES**

Note: The references with asterisks (*) below have been used to compile the abbreviated toxicity profile however they have not been cited within the profile.

3MCompany (2003). Health and Environmental Assessment of Perfluorooctane Sulfonic Acid and its Salts. U.S. EPA docket AR-226-1486.Washington, DC:U.S. Environmental Protection Agency.

http://multimedia.3m.com/mws/mediawebserver?9999993gslo9u1A9N1A990kktLX Z-(Accessed 8th July 2013)

*Andersen, M.E., Clewell, H.J. III., Tan, Y.M., Butenhoff, J.L., Olsen, G.W. (2006). Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys-Probing the determinants of long plasma half-lives. Toxicology 227, 156-164

*Alexander,B.H. and Olsen,G.W. (2007). Bladder cancer in perfluorooctanesulfonyl fluoride manufacturing workers. Ann.Epidemiol. 17, 471-478.

*Alexander, B.H., Olsen, G.W., Burris, J.M., Mandel, J.H. and Mandel, J.S. (2003). Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occupational and Environmental Medicine 60, 722-729.

*Apelberg,B.J., Witter,F.R., Herbstman,J.B., Calafat,A.M., Halden,R.U., Needham,L.L., and Goldman,L.R. (2007). Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ. Health Perspect. 115, 1670-1676.

ATSDR (2005). Public health assessment guidance manual (2005 update). Chapter 7: Health effects evaluation: screening analysis. Agency for Toxic Substances & Disease Registry. <u>http://www.atsdr.cdc.gov/hac/PHAManual/ch7.html#7.2.1</u>.

ATSDR (2009). Draft toxicological profile for perfluoroalkyls. Agency for Toxic Substances and Disease Registry.

Biegel, L.B., Hurtt, M.E., Frame, S.R., O'Conner, J.C. and Cook J.C. (2001). Mechanisms of extrahepatic tumour induction by peroxisome proliferators in male CD rats. Toxicol Sci 60, 44-55.

Birkett, D. J. (1999). Pharmacokinetics made easy. Published in Australia by McGraw-Hill Book Company Australia Pty Ltd.

Butenhoff, J., Costa, G., Elcombe, C., Farrar, D., Hansen, K., Iwai, H., Jung, R., Kennedy Jr., G., Lieder, P., Olsen, G. and Thomford, P. (2002). Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months. Toxicological Sciences. 69: 244-257.

Butenhoff, J.L., Gaylor, D.W., Moore, J.A., Olsen, G.W., Rodricks, J., Mandel, J.H. and Zobela, J.R. (2004a). Characterization of risk for general population exposure to perfluorooctanoate. Reg. Toxicol. Pharmacol. 39, 363–380.

Butenhoff, J. L., Kennedy Jr, G. L., Frame, S. R., O'Connor, J. C. and York, R. G. (2004b). The reproductive toxicology of ammonium perfluorooctanoate (APFO) in the rat. Toxicology. 196: 95-116.

Cariello, N. F., Romach, E. H., Colton, H. M., Ni, H., Yoon, L., Falls, J. G., Casey, W., Creech, D., Anderson, S. P., Benavides, G. R., Hoivik, D. J., Brown, R. and Miller, R. T. (2005). Gene expression profiling of the PPAR-alpha agonist ciprofibrate in the cynomolgus monkey liver. Toxicological Sciences. 88: 250-264.

Chang, S.-C., Noker, P. E., Gorman, G. S., Gibson, S. J., Hart, J. A., Ehresman, D. J. and Butenhoff, J. L. (2012). Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in rats, mice, and monkeys. Reproductive Toxicology. 33: 428-440.

CoT (2006a). COT statement on the tolerable daily intake for perfluorooctane sulfonate. Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment. <u>http://cot.food.gov.uk/pdfs/cotstatementpfos200609.pdf</u>.

CoT (2006b). COT statement on the tolerable daily intake for perfluorooctanoic acid. Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment. <u>http://cot.food.gov.uk/pdfs/cotstatementpfoa200610.pdf</u>.

DFG (2010). Perfluoroctansulfonsäure und ihre Salze [MAK Value Documentation in German language, 2011]. In: The MAK-Collection for Occupational Health and Safety. Deutsche µchungsgemeinschaft. Wiley-VCH Verlag GmbH & Co. KGaA.

DME (2012). Survey of PFOS, PFOA and other perfluoroalkyl and polyfluoroalkyl substances. Part of the LOUS-review, 27 November 2012. Danish Ministry of the Environment.

Dourson, M. L., Felter, S. P. and Robinson, D. (1996). Evolution of science-based uncertainty factors in noncancer risk assessment. Regulatory Toxicology and Pharmacology. 24: 108-120.

Dupont (2008). Fluorotelomer Products in the Environment – An Update. E.I. DuPont de Nemours & Co., Inc. A presentation presented by Dr Stephen Korzeniowski at NFPA WSC&E, 2 to 5 June 2008.

Dupont (2012). Dupont Surface Protection Solutions. Dupont Capstone® repellants and Surfactants. Product Stewardship Detail. E.I. du Pont de Nemours and Company or its affiliates

DWC (2006). Provisional evaluation of PFT in drinking water with the guide substances perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) as examples. German Drinking Water Commission, German Ministry of Health at the Federal Environment Agency. July 13, 2006.

DWI (2009). Guidance on the Water Supply (Water Quality) Regulations 2000 specific to PFOS (perfluorooctane sulphonate) and PFOA (perfluorooctanoic acid) concentrations in drinking water. October 2009. Drinking Water Inspectorate, United Kingdom.

EFSA (2008). Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. Scientific opinion of the Panel on Contaminants in the Foid Chain. European Food Safety Authority. Question No EFSA-Q-2004-163. EFSA Journal 653: 1-131. http://www.efsa.europa.eu/en/efsajournal/doc/653.pdf.

EFSA (2012). Perfluoroalkylated substances in food: occurrence and dietary exposure. European Food Safety Authority. EFSA Journal 2012, Volume 10, issue 6, page 2743.

enHealth (2012a). Environmental health risk assessment guidelines for assessing human health risks from environmental hazards. Commissioned by the enHealth Council.

http://www.health.gov.au/internet/main/publishing.nsf/content/804F8795BABFB1C7CA256F19 00045479/\$File/DoHA-EHRA-120910.pdf.

enHealth (2012b). Australian exposure factors guide. Commissioned by the enHealth Council. <u>http://www.health.gov.au/internet/main/publishing.nsf/content/804F8795BABFB1C7CA256F19</u> 00045479/\$File/doha-aefg-120910.pdf.

EWG (2002). Perfluorinated chemicals: Justification for Inclusion of this Chemical Class in the National Report on Human Exposure to Environmental Chemicals. Nomination of Perfluorinated Chemicals to CDC's Report. Environmental Working Group, Washington, D.C. December 6, 2002.

FEA (2006). Provisional evaluation of PFT in drinking water with the guide substances perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) as examplesFederal Environment Agency, German Ministry of Health.

FSANZ (2011). Survey of chemical migration from food contact packaging materials in Australian food. Food Standards Australia New Zealand. <u>http://www.foodstandards.gov.au/scienceandeducation/monitoringandsurveillance/foodsurveillance/foodsurveillance/foodsurveillance/foodsurveillance/surveyofchemicalmigr5148.cfm</u>.

German DWC (2006). Provisional evaluation of PFT in drinking water with the guide substances perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) as examples. German Drinking Water Commission, German Ministry of Health at the Federal Environment Agency. July 13, 2006. <u>https://www.umweltbundesamt.de/uba-info-presse-e/hintergrund/pft-in-drinking-water.pdf</u>

Gilliland, F.D. and Mandel, J.S. (1996) Serum perfluorooctanoic acid and hepatic enzymes, lipoproteins and cholesterol :a study of occupationally exposed men. Am J Ind Med 26:560-565.

Goldenthal, E.I., Jessup, D.C., Geil, R.G., Mehring, J.S. (1978). Ninety-day subacute rhesus monkey toxicity study. 137-092. Internation Research and Development Corporation. (As described in EFSA 2008).

IGHRC (2003). Uncertainty factors: their use in human health risk assessment by UK Government. The Interdepartmental Group on Health Risks from Chemicals. <u>http://ieh.cranfield.ac.uk/ighrc/cr9.pdf</u>.

JSOH (2010). Recommendation of occupational exposure limits (2010-2011). The Japan Society for Occupational Health. Journal of Occupational Health. 52: 308-324.

Kane, C. D., Francone, O. L. and Stevens, K. A. (2006). Differential regulation of the cynomolgus, human, and rat acyl-CoA oxidase promoters by PPARα. Gene. 380: 84-94.

Keml (2004). Perfluorooctane sulfonate (PFOS) Dossier prepared in support for a nomination of PFOS to the UN-ECE LRTAP Protocol and the Stockholm Convention, Swedish Chemicals Inspectorate (Keml), August 2004.

Kemper, R.A, Jepson, G.W. (2003). Pharmacokinetic of perfluorooctanoic acid in male and female rats. Toxicologist 72 (S-1), 148.

Klaunig, J. E., Babich, M. A., Baetcke, K. P., Cook, J. C., Corton, J. C., David, R. M., DeLuca, J. G., Lai, D. Y., McKee, R. H., Peters, J. M., Roberts, R. A. and Fenner-Crisp, P. A. (2003).

PPARα agonist-induced rodent tumors: modes of action and human relevance. Critical Reviews in Toxicology. 33: 655-780.

Klaunig, J. E., Hocevar, B. A. and Kamendulis, L. M. (2012). Mode of action analysis of perfluorooctanoic acid (PFOA) tumorigenicity and human relevance. Reproductive Toxicology. 33: 410-418.

Kubwabo C., Stewart B., Zhu J., and Marro L. 2005. Occurrence of perfluorosulfonates and other perfluorochemicals in dust from selected homes in the city of Ottawa, Canada. Journal of Environmental Monitoring 7, 1074–1078. As quoted in EFSA (2008).

*Lau, C., Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Stanton, M.E., Butenhoff, J.L. and Stevenson, L.A. (2003). Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse: II. Postnatal evaluation. Toxicol Sci. 74, 382–392.

Lau, C., Butenhoff, J.L. and Rogers, J.M. (2004). The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol. 198, 231-241.

Lau, C., Thibodeaux, J.R., Hanson, R.G., Narotsky, M.G., Rogers, J.M., Lindstrom, A.B., and Strynar, M.J. (2006). Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol.Sci. 90, 510-518.

Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A., and Seed, J. (2007). Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol.Sci. 99, 366-394.

Lau, C. (2012). Perfluorinated Compounds. In: Molecular, Clinical and Environmental Toxicology. Luch, A. Springer Basel. 47-86.

*Luebker, D.J., Case,M.T., York,R.G., Moore,J.A., Hansen,K.J., and Butenhoff, J.L. (2005a). Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology 215, 126-148.

*Luebker, D.J., York, R.G., Hansen, K.J., Moore, J.A., and Butenhoff, J.L. (2005b). Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharamacokinetic parameters. Toxicology 215, 149-169.

MDH (2008). Health risk limits for perfluorochemicals. Report to the Minnesota Legislature 2008. Minnesota Department of Health. Final Report. January 15m, 2008. <u>http://www.health.state.mn.us/divs/eh/hazardous/topics/pfcs/finalreport011508.pdf</u>.

Moriwaki, H., Takata, Y. and Arakawa. R. 2003. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in vacuum cleaner dust collected in Japanese homes. Journal of Environmental Monitoring 5, 753–757. As quoted in EFSA (2008).

NCDENR (2007). Recommended interim maximum allowable concentration for perfluorooctanic acid (PFOA or C8). North Carolina Department of Environment and Natural Resources. <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=89756771-7fd2-457e-8758-905dcb07229d&groupId=38364</u>.

NCSAB (2012). Recommendation to the division of water quality for an interim maximum allowable concentration for perfluorooctanoic acid (PFOA) in groundwater. North Carolina Science Advisory Board. August 10, 2012. http://www.ncair.org/toxics/risk/sab/ra/PFOA Pending.pdf.

NHMRC (2011). National Water Quality Management Strategy. Australian drinking water guidelines 6, 2011. National Health and Medical Research Council.

NICNAS (2007). NICNAS Alert No. 8. Perlfuorooctane Sulfonate (PFOS) and Perlfuoroalkyl Sulfonate (PFAS). December 2008. National Industrial Chemicals Notification and Assessment Scheme. Department of health and Ageing, Australian Government.

NICNAS (2009). Current Status of. Perlfuorooctane Sulfonate (PFOS) and Perlfuoroalkyl Sulfonate (PFAS) in Australia. April 2009. National Industrial Chemicals Notification and Assessment Scheme. Department of health and Ageing, Australian Government.

NICNAS (2011). PFCs: Outcome of the 2009 OECD Survey. Survey on the production, use and release of PFOS, PFAS, PFOA PFCA, their related substances and products/mixtures containing these substances. March 2011. National Industrial Chemicals Notification and Assessment Scheme. Department of health and Ageing, Australian Government. Presentation at the OECD Webinar on Perfluorinated Chemicals.

Noker, P.E. and Gorman, G.S. (2003). A pharmacokinetic study of potassium perfluorooctanesulfonate in the cynomolgus monkey. US EPA docket AR-226-1356. Washington, DC: US Environmental Protection Agency. As cited in Olsen et al. 2007.

NRC (2009). Science and Decisions: Advancing Risk Assessment. National Academies Press. Available online: <u>http://books.nap.edu/openbook.php?record_id=12209&page=R2</u>.

Olsen, G.W., Gilliland, F.D., Burlew, M.M., Burris, J.M., Mandel, J.S. and Mandel, J.H. (1998). An epidemiologic investigation of reproductive hormones in men with occupational exposure to perfluorooctanoic acid . J Occup Eviron Med 40:614-622.

Olsen, G. W., Burris, J.M., Mandel, J.H., Zobel, L.R. (1999). Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees . J Occup Environ Med 41:799-806.

Olsen, G.W., Burris, J.M., Burlew, M.M. and Mandel, J.H. (2000). Plasma cholecystokinin and hepatic enzymes, cholesterol and lipoproteins in ammonium perfluorooctanoate production workers. Drug Chem Toxicol 23 :603-620.

Olsen, G.W., Burris, J.M., Burlew, M.M. and Mandel, J.H. (2003a). Epidemiologic assessment of worker serum perfluoroctanesulfonate (PFOS) and perfluoroctaneate (PFOA) concentrations and medical surveillance examinations. J Occup Environ Med 45, 260-270.

Olsen, G.W., Church, T.R., Miller, J.P., Burris, J.M., Hansen, K.J. Lundberg, J.K., Armitage J.B., Herron, R.M., Medhdisadehkashi, Z., Nobiletti, J.B., O'Niell, E.M., Mandel, J.H. and Zobel, L.R. (2003b). Perfluorocatane sulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors. Environ Health Perspect 111: 1892-1901.

Olsen, G. W., Hansen, K. J., Stevenson, L. A., Burris, J. M. and Mandel, J. H. (2003c). Human Donor liver and serum concentrations of perfluorooctanesulfonate and other perfluorochemicals. Environmental Science & Technology. 37: 888-891.

Olsen, G., Ehresman, D., Froehlich, J., Burris, J. and Butenhoff, J. (2005). Evaluation of the half-life (t1/2) of elimination of perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHS) and perfluorooctanoate (PFOA) from human serum. TOX017 Olsen. "Fluoros" 9th International Symposium on Fluorinated Alkyl Organics in the Environment, August 2005, Toronto, Canada. (As described by EFSA 2008).

Olsen, G.W., Burris, J.M., Ehresman, D.J., Froehlich, J.W., Seacat, A.M., Butenhoff, J.L and Zobel, L.R. (2007). Half-life of serum elimination of perfluorooctanesulfonate, perfluorchexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ. Health Perspect. 115: 1298-1305.

Palazzolo, M.J. (1993). Thirteen-week dietary toxicity study with T-5180, ammoniumperfluorooctanoate (CAS No. 3825-26-1) in male rats. Final Report. Laboratory ProjectIdentification HWI 6329-100. Hazleton Wisconsin, Inc. US EPA AR226-0449. (As described by US EPA 2005).

PC (2013). Peer review of the Toxicity Reference Values (TRV) for the perfluoroalkyl compounds PFOS and PFOA derived by ToxConsult for use in the Fiskeville Occupational Exposure Project. Priestly Consulting, 02 July 2013.

Perforce (2006). Perfluorinated Organic Compounds in the European Environment, Sceintific Report. FP6-NEST-508967. Perforce Project, Institute for Biodiversity and Ecosystem Dynamics, universiteit van Amsterdam.

Perkins, R.G., Butenhoff, J.L., Kennedy, G.L. and Palazzolo, M. (2004). 13-week dietary toxicity study of ammonium perfluorooctanoate (APFO) in male rats. Drug Chem Toxicol. 27, 361-378.

RIVM (2010). Environmental risk limits for PFOS. A proposal for water quality standards in accordance with the Water Framework Directive. Dutch National Institute for Public Health and the Environment. Report 601714013/2010. Written by Moermond CTA, Verbruggen EMJ and Smit CE. <u>http://www.rivm.nl/bibliotheek/rapporten/601714013.pdf</u>.

Seacat, A. M., Thomford, P. J., Hansen, K. J., Olsen, G. W., Case, M. T. and Butenhoff, J. L. (2002). Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicological Sciences. 68: 249-264.

Seacat, A.M., Thomford, P.J., Hansen, K.J., Clemen, L.A., Eldridge, S.R., Elcombe, C.R. and Butenhoff, J.L. 2003. Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 183, 117-131.

Sibinski, L.J. (1987). Final report of a two-year oral (diet) toxicity and carcinogenicity study of fluorochemical FC-143 (perfluorooctanane ammonium carboxylate) in rats.. Vol. 1-4, 3M Company/RIKER, Exp. No. 0281CR0012; 8 EHQ-1087-0394, October 16, 1987. (As described in EFSA 2008).

SUVA (2009). Grenzwerte am Arbeitsplatz 2009 (in German). Swiss Accident Insurance Fund. https://wwwsapp1.suva.ch/sap/public/bc/its/mimes/zwaswo/99/pdf/01903_d.pdf.

*Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Barbee, B.D., Richards, J.H., Butenhoff, J.L., Stevenson, L.A. and Lau, C. (2003). Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse: I. Maternal and prenatal evaluations. Toxicol Sci 74, 369–381.

Thomford, P. J. (2002). 104-week dietary chronic toxicity and carcinogenicity study with perfluorooctane sulfonic acid potassium salt (PFOS; T-6295) in rats. 6329-183. Covance Laboratories Inc. (As described in EFSA 2008).

ToxConsult (2013). Considerations for choosing a TRV for PFCs (040213). ToxConsult Pty Ltd.

US EPA (1989). Risk assessment guidance for superfund volume I: human health evaluation manual. United States Environmental Protection Agency.

US EPA (2002).Draft of hazard assessment of perfluorooctanoic acid and its salts. Docket AR226-1079.. United States Environmental Protection Agency.

US EPA (2005). Draft risk assessment of the potential human health effects associated with exposure to perfluorooctanoic acid and its salts. U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics Risk Assessment Division, January 4, 2005. Labelled *"SAB Review Draft; Do Not Cite or Quote"*. <u>http://www.epa.gov/oppt/pfoa/pubs/pfoarisk.pdf</u> (Accessed January 2013).

US EPA (2009). Provisional health advisories for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). United States Environmental Protection Agency. January 8, 2009.

http://water.epa.gov/action/advisories/drinking/upload/2009 01 15 criteria drinking pha-PFOA PFOS.pdf.

US EPA (2012a). Emerging Contaminants - Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA). May 2012). United States Environmental Protection Agency.

US EPA (2012). Benchmark dose technical guidance. United States Environmental Protection Agency. EPA/100/R-12/001. June 2012. http://www.epa.gov/osa/raf/publications/benchmark_dose_guidance.pdf.

US EPA (2013). America's Children and the Environment, Third Edition. January 2013. EPA240-R-13-001. United States Environmental Protection Agency.

WHO (1994). EHC 170: Assessing human health risks of chemicals: Derivation of guidance values for health-based exposure limits. International Programme on Chemical Safety, World Health Organisation.

WHO (2005). Harmonization project document no. 2: Chemical-specific adjustment factors for interspecies differences and human variability: guidance document for use of data in dose/concentration response assessment. World Health Organization (IPCS). http://www.inchem.org/documents/harmproj/harmproj/harmproj2.pdf.

WHO (2010). Harmonization project document no. 8. WHO human health risk assessment toolkit: chemical hazards. World Health Organization. <u>http://www.inchem.org/documents/harmproj/harmproj/harmproj8.pdf</u>.

